//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.4 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- #ifndef AGG_BASICS_INCLUDED #define AGG_BASICS_INCLUDED #include #include "agg_config.h" //---------------------------------------------------------AGG_CUSTOM_ALLOCATOR #ifdef AGG_CUSTOM_ALLOCATOR #include "agg_allocator.h" #else namespace agg { // The policy of all AGG containers and memory allocation strategy // in general is that no allocated data requires explicit construction. // It means that the allocator can be really simple; you can even // replace new/delete to malloc/free. The constructors and destructors // won't be called in this case, however everything will remain working. // The second argument of deallocate() is the size of the allocated // block. You can use this information if you wish. //------------------------------------------------------------pod_allocator template struct pod_allocator { static T* allocate(unsigned num) { return new T [num]; } static void deallocate(T* ptr, unsigned) { delete [] ptr; } }; // Single object allocator. It's also can be replaced with your custom // allocator. The difference is that it can only allocate a single // object and the constructor and destructor must be called. // In AGG there is no need to allocate an array of objects with // calling their constructors (only single ones). So that, if you // replace these new/delete to malloc/free make sure that the in-place // new is called and take care of calling the destructor too. //------------------------------------------------------------obj_allocator template struct obj_allocator { static T* allocate() { return new T; } static void deallocate(T* ptr) { delete ptr; } }; } #endif //-------------------------------------------------------- Default basic types // // If the compiler has different capacity of the basic types you can redefine // them via the compiler command line or by generating agg_config.h that is // empty by default. // #ifndef AGG_INT8 #define AGG_INT8 signed char #endif #ifndef AGG_INT8U #define AGG_INT8U unsigned char #endif #ifndef AGG_INT16 #define AGG_INT16 short #endif #ifndef AGG_INT16U #define AGG_INT16U unsigned short #endif #ifndef AGG_INT32 #define AGG_INT32 int #endif #ifndef AGG_INT32U #define AGG_INT32U unsigned #endif #ifndef AGG_INT64 #if defined(_MSC_VER) || defined(__BORLANDC__) #define AGG_INT64 signed __int64 #else #define AGG_INT64 signed long long #endif #endif #ifndef AGG_INT64U #if defined(_MSC_VER) || defined(__BORLANDC__) #define AGG_INT64U unsigned __int64 #else #define AGG_INT64U unsigned long long #endif #endif //------------------------------------------------ Some fixes for MS Visual C++ #if defined(_MSC_VER) #pragma warning(disable:4786) // Identifier was truncated... #endif #if defined(_MSC_VER) #define AGG_INLINE __forceinline #else #define AGG_INLINE inline #endif namespace agg { //------------------------------------------------------------------------- typedef AGG_INT8 int8; //----int8 typedef AGG_INT8U int8u; //----int8u typedef AGG_INT16 int16; //----int16 typedef AGG_INT16U int16u; //----int16u typedef AGG_INT32 int32; //----int32 typedef AGG_INT32U int32u; //----int32u typedef AGG_INT64 int64; //----int64 typedef AGG_INT64U int64u; //----int64u #if defined(AGG_FISTP) #pragma warning(push) #pragma warning(disable : 4035) //Disable warning "no return value" AGG_INLINE int iround(double v) //-------iround { int t; __asm fld qword ptr [v] __asm fistp dword ptr [t] __asm mov eax, dword ptr [t] } AGG_INLINE unsigned uround(double v) //-------uround { unsigned t; __asm fld qword ptr [v] __asm fistp dword ptr [t] __asm mov eax, dword ptr [t] } #pragma warning(pop) AGG_INLINE int ifloor(double v) { return int(floor(v)); } AGG_INLINE unsigned ufloor(double v) //-------ufloor { return unsigned(floor(v)); } AGG_INLINE int iceil(double v) { return int(ceil(v)); } AGG_INLINE unsigned uceil(double v) //--------uceil { return unsigned(ceil(v)); } #elif defined(AGG_QIFIST) AGG_INLINE int iround(double v) { return int(v); } AGG_INLINE int uround(double v) { return unsigned(v); } AGG_INLINE int ifloor(double v) { return int(floor(v)); } AGG_INLINE unsigned ufloor(double v) { return unsigned(floor(v)); } AGG_INLINE int iceil(double v) { return int(ceil(v)); } AGG_INLINE unsigned uceil(double v) { return unsigned(ceil(v)); } #else AGG_INLINE int iround(double v) { return int((v < 0.0) ? v - 0.5 : v + 0.5); } AGG_INLINE int uround(double v) { return unsigned(v + 0.5); } AGG_INLINE int ifloor(double v) { int i = int(v); return i - (i > v); } AGG_INLINE unsigned ufloor(double v) { return unsigned(v); } AGG_INLINE int iceil(double v) { return int(ceil(v)); } AGG_INLINE unsigned uceil(double v) { return unsigned(ceil(v)); } #endif //---------------------------------------------------------------saturation template struct saturation { AGG_INLINE static int iround(double v) { if(v < double(-Limit)) return -Limit; if(v > double( Limit)) return Limit; return agg::iround(v); } }; //------------------------------------------------------------------mul_one template struct mul_one { AGG_INLINE static unsigned mul(unsigned a, unsigned b) { unsigned q = a * b + (1 << (Shift-1)); return (q + (q >> Shift)) >> Shift; } }; //------------------------------------------------------------------------- typedef unsigned char cover_type; //----cover_type enum cover_scale_e { cover_shift = 8, //----cover_shift cover_size = 1 << cover_shift, //----cover_size cover_mask = cover_size - 1, //----cover_mask cover_none = 0, //----cover_none cover_full = cover_mask //----cover_full }; //----------------------------------------------------poly_subpixel_scale_e // These constants determine the subpixel accuracy, to be more precise, // the number of bits of the fractional part of the coordinates. // The possible coordinate capacity in bits can be calculated by formula: // sizeof(int) * 8 - poly_subpixel_shift, i.e, for 32-bit integers and // 8-bits fractional part the capacity is 24 bits. enum poly_subpixel_scale_e { poly_subpixel_shift = 8, //----poly_subpixel_shift poly_subpixel_scale = 1< struct rect_base { typedef T value_type; typedef rect_base self_type; T x1, y1, x2, y2; rect_base() {} rect_base(T x1_, T y1_, T x2_, T y2_) : x1(x1_), y1(y1_), x2(x2_), y2(y2_) {} void init(T x1_, T y1_, T x2_, T y2_) { x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_; } const self_type& normalize() { T t; if(x1 > x2) { t = x1; x1 = x2; x2 = t; } if(y1 > y2) { t = y1; y1 = y2; y2 = t; } return *this; } bool clip(const self_type& r) { if(x2 > r.x2) x2 = r.x2; if(y2 > r.y2) y2 = r.y2; if(x1 < r.x1) x1 = r.x1; if(y1 < r.y1) y1 = r.y1; return x1 <= x2 && y1 <= y2; } bool is_valid() const { return x1 <= x2 && y1 <= y2; } bool hit_test(T x, T y) const { return (x >= x1 && x <= x2 && y >= y1 && y <= y2); } bool overlaps(const self_type& r) const { return !(r.x1 > x2 || r.x2 < x1 || r.y1 > y2 || r.y2 < y1); } }; //-----------------------------------------------------intersect_rectangles template inline Rect intersect_rectangles(const Rect& r1, const Rect& r2) { Rect r = r1; // First process x2,y2 because the other order // results in Internal Compiler Error under // Microsoft Visual C++ .NET 2003 69462-335-0000007-18038 in // case of "Maximize Speed" optimization option. //----------------- if(r.x2 > r2.x2) r.x2 = r2.x2; if(r.y2 > r2.y2) r.y2 = r2.y2; if(r.x1 < r2.x1) r.x1 = r2.x1; if(r.y1 < r2.y1) r.y1 = r2.y1; return r; } //---------------------------------------------------------unite_rectangles template inline Rect unite_rectangles(const Rect& r1, const Rect& r2) { Rect r = r1; if(r.x2 < r2.x2) r.x2 = r2.x2; if(r.y2 < r2.y2) r.y2 = r2.y2; if(r.x1 > r2.x1) r.x1 = r2.x1; if(r.y1 > r2.y1) r.y1 = r2.y1; return r; } typedef rect_base rect_i; //----rect_i typedef rect_base rect_f; //----rect_f typedef rect_base rect_d; //----rect_d //---------------------------------------------------------path_commands_e enum path_commands_e { path_cmd_stop = 0, //----path_cmd_stop path_cmd_move_to = 1, //----path_cmd_move_to path_cmd_line_to = 2, //----path_cmd_line_to path_cmd_curve3 = 3, //----path_cmd_curve3 path_cmd_curve4 = 4, //----path_cmd_curve4 path_cmd_curveN = 5, //----path_cmd_curveN path_cmd_catrom = 6, //----path_cmd_catrom path_cmd_ubspline = 7, //----path_cmd_ubspline path_cmd_end_poly = 0x0F, //----path_cmd_end_poly path_cmd_mask = 0x0F //----path_cmd_mask }; //------------------------------------------------------------path_flags_e enum path_flags_e { path_flags_none = 0, //----path_flags_none path_flags_ccw = 0x10, //----path_flags_ccw path_flags_cw = 0x20, //----path_flags_cw path_flags_close = 0x40, //----path_flags_close path_flags_mask = 0xF0 //----path_flags_mask }; //---------------------------------------------------------------is_vertex inline bool is_vertex(unsigned c) { return c >= path_cmd_move_to && c < path_cmd_end_poly; } //--------------------------------------------------------------is_drawing inline bool is_drawing(unsigned c) { return c >= path_cmd_line_to && c < path_cmd_end_poly; } //-----------------------------------------------------------------is_stop inline bool is_stop(unsigned c) { return c == path_cmd_stop; } //--------------------------------------------------------------is_move_to inline bool is_move_to(unsigned c) { return c == path_cmd_move_to; } //--------------------------------------------------------------is_line_to inline bool is_line_to(unsigned c) { return c == path_cmd_line_to; } //----------------------------------------------------------------is_curve inline bool is_curve(unsigned c) { return c == path_cmd_curve3 || c == path_cmd_curve4; } //---------------------------------------------------------------is_curve3 inline bool is_curve3(unsigned c) { return c == path_cmd_curve3; } //---------------------------------------------------------------is_curve4 inline bool is_curve4(unsigned c) { return c == path_cmd_curve4; } //-------------------------------------------------------------is_end_poly inline bool is_end_poly(unsigned c) { return (c & path_cmd_mask) == path_cmd_end_poly; } //----------------------------------------------------------------is_close inline bool is_close(unsigned c) { return (c & ~(path_flags_cw | path_flags_ccw)) == (path_cmd_end_poly | path_flags_close); } //------------------------------------------------------------is_next_poly inline bool is_next_poly(unsigned c) { return is_stop(c) || is_move_to(c) || is_end_poly(c); } //-------------------------------------------------------------------is_cw inline bool is_cw(unsigned c) { return (c & path_flags_cw) != 0; } //------------------------------------------------------------------is_ccw inline bool is_ccw(unsigned c) { return (c & path_flags_ccw) != 0; } //-------------------------------------------------------------is_oriented inline bool is_oriented(unsigned c) { return (c & (path_flags_cw | path_flags_ccw)) != 0; } //---------------------------------------------------------------is_closed inline bool is_closed(unsigned c) { return (c & path_flags_close) != 0; } //----------------------------------------------------------get_close_flag inline unsigned get_close_flag(unsigned c) { return c & path_flags_close; } //-------------------------------------------------------clear_orientation inline unsigned clear_orientation(unsigned c) { return c & ~(path_flags_cw | path_flags_ccw); } //---------------------------------------------------------get_orientation inline unsigned get_orientation(unsigned c) { return c & (path_flags_cw | path_flags_ccw); } //---------------------------------------------------------set_orientation inline unsigned set_orientation(unsigned c, unsigned o) { return clear_orientation(c) | o; } //--------------------------------------------------------------point_base template struct point_base { typedef T value_type; T x,y; point_base() {} point_base(T x_, T y_) : x(x_), y(y_) {} }; typedef point_base point_i; //-----point_i typedef point_base point_f; //-----point_f typedef point_base point_d; //-----point_d //-------------------------------------------------------------vertex_base template struct vertex_base { typedef T value_type; T x,y; unsigned cmd; vertex_base() {} vertex_base(T x_, T y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {} }; typedef vertex_base vertex_i; //-----vertex_i typedef vertex_base vertex_f; //-----vertex_f typedef vertex_base vertex_d; //-----vertex_d //----------------------------------------------------------------row_info template struct row_info { int x1, x2; T* ptr; row_info() {} row_info(int x1_, int x2_, T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {} }; //----------------------------------------------------------const_row_info template struct const_row_info { int x1, x2; const T* ptr; const_row_info() {} const_row_info(int x1_, int x2_, const T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {} }; //------------------------------------------------------------is_equal_eps template inline bool is_equal_eps(T v1, T v2, T epsilon) { return fabs(v1 - v2) <= double(epsilon); } } #endif