/* CTRC functionality */ /* Author: Rudolf Cornelissen 11/2002-9/2005 */ #define MODULE_BIT 0x00040000 #include "std.h" /*Adjust passed parameters to a valid mode line*/ status_t eng_crtc_validate_timing( uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht, uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt ) { /* horizontal */ /* make all parameters multiples of 8 */ *hd_e &= 0xfff8; *hs_s &= 0xfff8; *hs_e &= 0xfff8; *ht &= 0xfff8; /* confine to required number of bits, taking logic into account */ if (*hd_e > ((0x00ff - 2) << 3)) *hd_e = ((0x00ff - 2) << 3); if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3); if (*hs_e > ( 0x01ff << 3)) *hs_e = ( 0x01ff << 3); if (*ht > ((0x01ff + 5) << 3)) *ht = ((0x01ff + 5) << 3); /* NOTE: keep horizontal timing at multiples of 8! */ /* confine to a reasonable width */ if (*hd_e < 640) *hd_e = 640; /* assuming all VIA unichrome cards to have same max. constraint.. */ //fixme: checkout correct max... if (*hd_e > 1600) *hd_e = 1600; /* if hor. total does not leave room for a sensible sync pulse, increase it! */ if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80); /* if hor. total does not adhere to max. blanking pulse width, decrease it! */ if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8); /* make sure sync pulse is not during display */ if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8); if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8); /* correct sync pulse if it is too long: * there are only 5 bits available to save this in the card registers! */ if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8); /*vertical*/ /* confine to required number of bits, taking logic into account */ if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2); if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1); if (*vs_e > 0x7ff ) *vs_e = 0x7ff ; if (*vt > (0x7ff + 2)) *vt = (0x7ff + 2); /* confine to a reasonable height */ if (*vd_e < 480) *vd_e = 480; /* assuming all VIA unichrome cards to have same max. constraint.. */ //fixme: checkout correct max... if (*vd_e > 1200) *vd_e = 1200; /*if vertical total does not leave room for a sync pulse, increase it!*/ if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3); /* if vert. total does not adhere to max. blanking pulse width, decrease it! */ if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff); /* make sure sync pulse is not during display */ if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1); if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1); /* correct sync pulse if it is too long: * there are only 4 bits available to save this in the card registers! */ if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f); return B_OK; } /*set a mode line - inputs are in pixels*/ status_t eng_crtc_set_timing(display_mode target) { uint16 fifolimit = 0; uint8 temp; uint32 htotal; /*total horizontal total VCLKs*/ uint32 hdisp_e; /*end of horizontal display (begins at 0)*/ uint32 hsync_s; /*begin of horizontal sync pulse*/ uint32 hsync_e; /*end of horizontal sync pulse*/ uint32 hblnk_s; /*begin horizontal blanking*/ uint32 hblnk_e; /*end horizontal blanking*/ uint32 vtotal; /*total vertical total scanlines*/ uint32 vdisp_e; /*end of vertical display*/ uint32 vsync_s; /*begin of vertical sync pulse*/ uint32 vsync_e; /*end of vertical sync pulse*/ uint32 vblnk_s; /*begin vertical blanking*/ uint32 vblnk_e; /*end vertical blanking*/ uint32 linecomp; /*split screen and vdisp_e interrupt*/ LOG(4,("CRTC: setting timing\n")); /* setup tuned internal modeline for flatpanel if connected and active */ /* notes: * - the CRTC modeline must end earlier than the panel modeline to keep correct * sync going; * - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel * wide horizontal stripes. This can be observed earliest on fullscreen overlay, * and if it gets worse, also normal desktop output will suffer. The stripes * are mainly visible at the left of the screen, over the entire screen height. */ if (0)//si->ps.tmds1_active) { LOG(2,("CRTC: DFP active: tuning modeline\n")); /* horizontal timing */ target.timing.h_sync_start = ((uint16)((si->ps.p1_timing.h_sync_start / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8; target.timing.h_sync_end = ((uint16)((si->ps.p1_timing.h_sync_end / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8; target.timing.h_total = (((uint16)((si->ps.p1_timing.h_total / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8) - 8; /* in native mode the CRTC needs some extra time to keep synced correctly; * OTOH the overlay unit distorts if we reserve too much time! */ if (target.timing.h_display == si->ps.p1_timing.h_display) { /* NV11 timing has different constraints than later cards */ if (si->ps.card_type == NV11) target.timing.h_total -= 56; else /* confirmed NV34 with 1680x1050 panel */ target.timing.h_total -= 32; } if (target.timing.h_sync_start == target.timing.h_display) target.timing.h_sync_start += 8; if (target.timing.h_sync_end == target.timing.h_total) target.timing.h_sync_end -= 8; /* vertical timing */ target.timing.v_sync_start = ((uint16)((si->ps.p1_timing.v_sync_start / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)); target.timing.v_sync_end = ((uint16)((si->ps.p1_timing.v_sync_end / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)); target.timing.v_total = ((uint16)((si->ps.p1_timing.v_total / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)) - 1; if (target.timing.v_sync_start == target.timing.v_display) target.timing.v_sync_start += 1; if (target.timing.v_sync_end == target.timing.v_total) target.timing.v_sync_end -= 1; /* disable GPU scaling testmode so automatic scaling will be done */ DACW(FP_DEBUG1, 0); } /* Modify parameters as required by standard VGA */ htotal = ((target.timing.h_total >> 3) - 5); hdisp_e = ((target.timing.h_display >> 3) - 1); hblnk_s = hdisp_e; hblnk_e = (htotal + 4);//0; hsync_s = (target.timing.h_sync_start >> 3); hsync_e = (target.timing.h_sync_end >> 3); vtotal = target.timing.v_total - 2; vdisp_e = target.timing.v_display - 1; vblnk_s = vdisp_e; vblnk_e = (vtotal + 1); vsync_s = target.timing.v_sync_start;//-1; vsync_e = target.timing.v_sync_end;//-1; /* prevent memory adress counter from being reset (linecomp may not occur). * set all bits, otherwise distortion stripes may appear onscreen (VIA) */ linecomp = 0xffff; /* Note for laptop and DVI flatpanels: * CRTC timing has a seperate set of registers from flatpanel timing. * The flatpanel timing registers have scaling registers that are used to match * these two modelines. */ { LOG(4,("CRTC: Setting full timing...\n")); /* log the mode that will be set */ LOG(2,("CRTC:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e)); LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e)); /* actually program the card! */ /* unlock CRTC registers at index 0-7 */ CRTCW(VSYNCE, (CRTCR(VSYNCE) & 0x7f)); /* horizontal standard VGA regs */ CRTCW(HTOTAL, (htotal & 0xff)); CRTCW(HDISPE, (hdisp_e & 0xff)); CRTCW(HBLANKS, (hblnk_s & 0xff)); /* also unlock vertical retrace registers in advance */ CRTCW(HBLANKE, ((hblnk_e & 0x1f) | 0x80)); CRTCW(HSYNCS, (hsync_s & 0xff)); CRTCW(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2))); /* vertical standard VGA regs */ CRTCW(VTOTAL, (vtotal & 0xff)); CRTCW(OVERFLOW, ( ((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) | ((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) | ((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) | ((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x0100) >> (8 - 4)) )); CRTCW(PRROWSCN, 0x00); /* not used */ CRTCW(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x0200) >> (9 - 6)))); CRTCW(VSYNCS, (vsync_s & 0xff)); CRTCW(VSYNCE, ((CRTCR(VSYNCE) & 0xf0) | (vsync_e & 0x0f))); CRTCW(VDISPE, (vdisp_e & 0xff)); CRTCW(VBLANKS, (vblnk_s & 0xff)); CRTCW(VBLANKE, (vblnk_e & 0xff)); CRTCW(LINECOMP, (linecomp & 0xff)); /* horizontal extended regs */ CRTCW(HTIMEXT1, (CRTCR(HTIMEXT1) & 0xc8) | ( ((linecomp & 0x1c00) >> (10 - 0)) | ((hblnk_e & 0x040) >> (6 - 5)) | ((hsync_s & 0x100) >> (8 - 4)) )); CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xf7) | ((htotal & 0x100) >> (8 - 3))); /* vertical extended regs */ CRTCW(VTIMEXT_PIT, (CRTCR(VTIMEXT_PIT) & 0xe0) | ( ((vtotal & 0x400) >> (10 - 0)) | ((vsync_s & 0x400) >> (10 - 1)) | ((vdisp_e & 0x400) >> (10 - 2)) | ((vblnk_s & 0x400) >> (10 - 3)) | ((linecomp & 0x2000) >> (13 - 4)) )); /* setup HSYNC & VSYNC polarity */ LOG(2,("CRTC: sync polarity: ")); temp = ENG_REG8(RG8_MISCR); if (target.timing.flags & B_POSITIVE_HSYNC) { LOG(2,("H:pos ")); temp &= ~0x40; } else { LOG(2,("H:neg ")); temp |= 0x40; } if (target.timing.flags & B_POSITIVE_VSYNC) { LOG(2,("V:pos ")); temp &= ~0x80; } else { LOG(2,("V:neg ")); temp |= 0x80; } ENG_REG8(RG8_MISCW) = temp; LOG(2,(", MISC reg readback: $%02x\n", ENG_REG8(RG8_MISCR))); /* setup CRTC FIFO depth, method 'extrapolated' from VBE BIOS behaviour */ switch (target.space) { case B_CMAP8: fifolimit = 0x0001; break; case B_RGB15_LITTLE: case B_RGB16_LITTLE: fifolimit = 0x0002; break; case B_RGB24_LITTLE: fifolimit = 0x0003; break; case B_RGB32_LITTLE: fifolimit = 0x0004; break; } fifolimit *= target.timing.h_display; fifolimit >>= 4; fifolimit += 4; SEQW(FETCHCNTLO, (fifolimit & 0x00fe)); SEQW(FETCHCNTHI, (((SEQR(FETCHCNTHI)) & 0xfc) | ((fifolimit & 0x0300) >> 8))); } /* always disable interlaced operation */ /* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */ // CRTCW(INTERLACE, 0xff); /* disable CRTC slaved mode unless a panel is in use */ // fixme: this kills TVout when it was in use... // if (!si->ps.tmds1_active) CRTCW(PIXEL, (CRTCR(PIXEL) & 0x7f)); /* setup flatpanel if connected and active */ if (0)//si->ps.tmds1_active) { uint32 iscale_x, iscale_y; /* calculate inverse scaling factors used by hardware in 20.12 format */ iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p1_timing.h_display); iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p1_timing.v_display); /* unblock flatpanel timing programming (or something like that..) */ CRTCW(FP_HTIMING, 0); CRTCW(FP_VTIMING, 0); LOG(2,("CRTC: FP_HTIMING reg readback: $%02x\n", CRTCR(FP_HTIMING))); LOG(2,("CRTC: FP_VTIMING reg readback: $%02x\n", CRTCR(FP_VTIMING))); /* enable full width visibility on flatpanel */ DACW(FP_HVALID_S, 0); DACW(FP_HVALID_E, (si->ps.p1_timing.h_display - 1)); /* enable full height visibility on flatpanel */ DACW(FP_VVALID_S, 0); DACW(FP_VVALID_E, (si->ps.p1_timing.v_display - 1)); /* nVidia cards support upscaling except on ??? */ /* NV11 cards can upscale after all! */ if (0)//si->ps.card_type == NV11) { /* disable last fetched line limiting */ DACW(FP_DEBUG2, 0x00000000); /* inform panel to scale if needed */ if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12))) { LOG(2,("CRTC: DFP needs to do scaling\n")); DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) | 0x00000100)); } else { LOG(2,("CRTC: no scaling for DFP needed\n")); DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff)); } } else { float dm_aspect; LOG(2,("CRTC: GPU scales for DFP if needed\n")); /* calculate display mode aspect */ dm_aspect = (target.timing.h_display / ((float)target.timing.v_display)); /* limit last fetched line if vertical scaling is done */ if (iscale_y != (1 << 12)) DACW(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16))); else DACW(FP_DEBUG2, 0x00000000); /* inform panel not to scale */ DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff)); /* GPU scaling is automatically setup by hardware, so only modify this * scalingfactor for non 4:3 (1.33) aspect panels; * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */ /* correct for widescreen panels relative to mode... * (so if panel is more widescreen than mode being set) */ /* BTW: known widescreen panels: * 1280 x 800 (1.60), * 1440 x 900 (1.60), * 1680 x 1050 (1.60), * 1920 x 1200 (1.60). */ /* known 4:3 aspect non-standard resolution panels: * 1400 x 1050 (1.33). */ /* NOTE: * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ if ((iscale_x != (1 << 12)) && (si->ps.panel1_aspect > (dm_aspect + 0.10))) { uint16 diff; LOG(2,("CRTC: (relative) widescreen panel: tuning horizontal scaling\n")); /* X-scaling should be the same as Y-scaling */ iscale_x = iscale_y; /* enable testmode (b12) and program modified X-scaling factor */ DACW(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12))); /* center/cut-off left and right side of screen */ diff = ((si->ps.p1_timing.h_display - (target.timing.h_display * ((1 << 12) / ((float)iscale_x)))) / 2); DACW(FP_HVALID_S, diff); DACW(FP_HVALID_E, ((si->ps.p1_timing.h_display - diff) - 1)); } /* correct for portrait panels... */ /* NOTE: * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ if ((iscale_y != (1 << 12)) && (si->ps.panel1_aspect < (dm_aspect - 0.10))) { LOG(2,("CRTC: (relative) portrait panel: should tune vertical scaling\n")); /* fixme: implement if this kind of portrait panels exist on nVidia... */ } } /* do some logging.. */ LOG(2,("CRTC: FP_HVALID_S reg readback: $%08x\n", DACR(FP_HVALID_S))); LOG(2,("CRTC: FP_HVALID_E reg readback: $%08x\n", DACR(FP_HVALID_E))); LOG(2,("CRTC: FP_VVALID_S reg readback: $%08x\n", DACR(FP_VVALID_S))); LOG(2,("CRTC: FP_VVALID_E reg readback: $%08x\n", DACR(FP_VVALID_E))); LOG(2,("CRTC: FP_DEBUG0 reg readback: $%08x\n", DACR(FP_DEBUG0))); LOG(2,("CRTC: FP_DEBUG1 reg readback: $%08x\n", DACR(FP_DEBUG1))); LOG(2,("CRTC: FP_DEBUG2 reg readback: $%08x\n", DACR(FP_DEBUG2))); LOG(2,("CRTC: FP_DEBUG3 reg readback: $%08x\n", DACR(FP_DEBUG3))); LOG(2,("CRTC: FP_TG_CTRL reg readback: $%08x\n", DACR(FP_TG_CTRL))); } return B_OK; } status_t eng_crtc_depth(int mode) { uint8 genctrl = 0; /* set VCLK scaling */ /* genctrl bit use: b7: %0 = PAL is 6-bit wide (on b0-5) %1 = PAL is 8-bit wide Note: 3123Ax chips only support 6-bits. If we support that chip, update PAL programming! b6: ? b5: %0 = distortions (stripes) only (tested 8-bit mode) %1 = OK b4: %0 = 15-bit color in 2 bytes/pixel mode; %1 = 16-bit color in 2 bytes/pixel mode. b3-2:%00 = 1 byte /pixel; %01 = 2 bytes/pixel; %10 = 3 bytes/pixel; (assumed) %11 = 4 bytes/pixel. b1: %0 = 4 bits/pixel; %1 = b3-2 scheme above. b0: ? */ switch(mode) { case BPP8: /* indexed mode */ genctrl = 0xa2; //%1010 0010 break; case BPP15: /* direct mode */ genctrl = 0xa6; //%1010 0110 break; case BPP16: /* direct mode */ genctrl = 0xb6; //%1011 0110 break; case BPP24: /* direct mode */ //fixme? this is a guess.. genctrl = 0xaa; //%1010 1010 break; case BPP32: /* direct mode */ genctrl = 0xae; //%1010 1110 break; } /* setup bytes per pixel, and direct/indirect mode */ SEQW(COLDEPTH, genctrl); return B_OK; } status_t eng_crtc_dpms(bool display, bool h, bool v) { uint8 temp; LOG(4,("CRTC: setting DPMS: ")); /* start synchronous reset: required before turning screen off! */ SEQW(RESET, 0x01); /* turn screen off */ temp = SEQR(CLKMODE); if (display) { SEQW(CLKMODE, (temp & ~0x20)); /* end synchronous reset if display should be enabled */ SEQW(RESET, 0x03); //'safe mode' test! feedback needed with this 'setting'! if (0)//si->ps.tmds1_active) { /* powerup both LVDS (laptop panellink) and TMDS (DVI panellink) * internal transmitters... */ /* note: * the powerbits in this register are hardwired to the DVI connectors, * instead of to the DACs! (confirmed NV34) */ //fixme... DACW(FP_DEBUG0, (DACR(FP_DEBUG0) & 0xcfffffff)); /* ... and powerup external TMDS transmitter if it exists */ /* (confirmed OK on NV28 and NV34) */ CRTCW(0x59, (CRTCR(0x59) | 0x01)); } LOG(4,("display on, ")); } else { SEQW(CLKMODE, (temp | 0x20)); //'safe mode' test! feedback needed with this 'setting'! if (0)//si->ps.tmds1_active) { /* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink) * internal transmitters... */ /* note: * the powerbits in this register are hardwired to the DVI connectors, * instead of to the DACs! (confirmed NV34) */ //fixme... DACW(FP_DEBUG0, (DACR(FP_DEBUG0) | 0x30000000)); /* ... and powerdown external TMDS transmitter if it exists */ /* (confirmed OK on NV28 and NV34) */ CRTCW(0x59, (CRTCR(0x59) & 0xfe)); } LOG(4,("display off, ")); } if (h) { CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xef)); LOG(4,("hsync enabled, ")); } else { CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) | 0x10)); LOG(4,("hsync disabled, ")); } if (v) { CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xdf)); LOG(4,("vsync enabled\n")); } else { CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) | 0x20)); LOG(4,("vsync disabled\n")); } return B_OK; } status_t eng_crtc_dpms_fetch(bool *display, bool *h, bool *v) { *display = !(SEQR(CLKMODE) & 0x20); *h = !(CRTCR(HTIMEXT2) & 0x10); *v = !(CRTCR(HTIMEXT2) & 0x20); LOG(4,("CTRC: fetched DPMS state: ")); if (*display) LOG(4,("display on, ")); else LOG(4,("display off, ")); if (*h) LOG(4,("hsync enabled, ")); else LOG(4,("hsync disabled, ")); if (*v) LOG(4,("vsync enabled\n")); else LOG(4,("vsync disabled\n")); return B_OK; } status_t eng_crtc_set_display_pitch() { uint16 offset; LOG(4,("CRTC: setting card pitch (offset between lines)\n")); /* figure out offset value hardware needs */ offset = si->fbc.bytes_per_row >> 3; LOG(2,("CRTC: offset register set to: $%04x\n", offset)); /* program the card */ CRTCW(PITCHL, (offset & 0x00ff)); CRTCW(VTIMEXT_PIT, (((CRTCR(VTIMEXT_PIT)) & 0x1f) | ((offset & 0x0700) >> 3))); return B_OK; } status_t eng_crtc_set_display_start(uint32 startadd,uint8 bpp) { LOG(4,("CRTC: setting card RAM to be displayed bpp %d\n", bpp)); LOG(2,("CRTC: startadd: $%08x\n", startadd)); LOG(2,("CRTC: frameRAM: $%08x\n", si->framebuffer)); LOG(2,("CRTC: framebuffer: $%08x\n", si->fbc.frame_buffer)); /* VIA: upto 32Mb RAM can be adressed */ /* set standard registers */ /* (VIA: startadress in 64bit words (b3 - b16): checked CLE266) */ CRTCW(FBSTADDL, ((startadd & 0x000001f8) >> 1)); CRTCW(FBSTADDH, ((startadd & 0x0001fe00) >> 9)); /* set extended bits: (b17-24) */ CRTCW(FBSTADDE, ((startadd & 0x01fe0000) >> 17)); /* VIA doesn't support pixelpanning (checked CLE266). */ return B_OK; } status_t eng_crtc_cursor_init() { int i; uint32 * fb; /* cursor bitmap will be stored at the start of the framebuffer */ const uint32 curadd = 0; /* background is white */ CRTCDW(CURSOR_BG, 0xffffffff); /* foreground is black */ CRTCDW(CURSOR_FG, 0x00000000); /* set cursor bitmap adress */ CRTCDW(CURSOR_MODE, (curadd & 0xfffffffc)); /* clear cursor (via cursor uses 4kb max) */ fb = (uint32 *) si->framebuffer + curadd; for (i = 0; i < (4096/4); i += 2) { fb[i + 0] = 0x00000000; fb[i + 1] = 0xffffffff; } /* activate hardware cursor */ eng_crtc_cursor_show(); return B_OK; } status_t eng_crtc_cursor_show() { LOG(4,("CRTC: enabling cursor\n")); /* b1 = 0 shows a 64x64 pixel map, b1 = 1 shows a 32x32 pixel map; * b0 = 0 disables the cursor, b0 = 1 enables the cursor. */ CRTCDW(CURSOR_MODE, (CRTCDR(CURSOR_MODE) | 0x00000003)); return B_OK; } status_t eng_crtc_cursor_hide() { LOG(4,("CRTC: disabling cursor\n")); CRTCDW(CURSOR_MODE, (CRTCDR(CURSOR_MODE) & 0xfffffffc)); return B_OK; } /*set up cursor shape*/ status_t eng_crtc_cursor_define(uint8* andMask,uint8* xorMask) { int y; uint8 *cursor; /* get a pointer to the cursor */ cursor = (uint8*) si->framebuffer; /* pixmap is 4 bytes per row, two rows form pixeldata for one pixel in height */ for (y = 0; y < 16; y++) { cursor[0 + (y * 8)] = *xorMask++; cursor[1 + (y * 8)] = *xorMask++; cursor[4 + (y * 8)] = *andMask++; cursor[5 + (y * 8)] = *andMask++; } return B_OK; // /* for (y = 0; y < 1; y++)//hele hoogte invert { cursor[0 + (y*4)] = 0xff;//linker helft invert cursor[0 + (1*4)] = 0xff;//rechter helft invert //invert = %11 //black = %00 // cursor[0 + (y * 4)] = *xorMask++; // cursor[32 + (y * 4)] = *xorMask++; // cursor[64 + (y * 4)] = *xorMask++; // cursor[96 + (y * 4)] = *xorMask++; } */ } /* position the cursor */ status_t eng_crtc_cursor_position(uint16 x, uint16 y) { /* set cursor origin, b1-7 = Y offset; b17-23 = X offset * (? linux seems non-consistent) */ CRTCDW(CURSOR_ORG, 0x00000000); /* update cursorposition */ CRTCDW(CURSOR_POS, (((x & 0x07ff) << 16) | (y & 0x07ff))); return B_OK; }