/* tc-i860.c -- Assembler for the Intel i860 architecture. Copyright (C) 1989-2017 Free Software Foundation, Inc. Brought back from the dead and completely reworked by Jason Eckhardt . This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "as.h" #include "safe-ctype.h" #include "subsegs.h" #include "opcode/i860.h" #include "elf/i860.h" /* The opcode hash table. */ static struct hash_control *op_hash = NULL; /* These characters always start a comment. */ const char comment_chars[] = "#!/"; /* These characters start a comment at the beginning of a line. */ const char line_comment_chars[] = "#/"; const char line_separator_chars[] = ";"; /* Characters that can be used to separate the mantissa from the exponent in floating point numbers. */ const char EXP_CHARS[] = "eE"; /* Characters that indicate this number is a floating point constant. As in 0f12.456 or 0d1.2345e12. */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Register prefix (depends on syntax). */ static char reg_prefix; #define MAX_FIXUPS 2 struct i860_it { const char *error; unsigned long opcode; enum expand_type expand; struct i860_fi { expressionS exp; bfd_reloc_code_real_type reloc; int pcrel; valueT fup; } fi[MAX_FIXUPS]; } the_insn; /* The current fixup count. */ static int fc; static char *expr_end; /* Indicates error if a pseudo operation was expanded after a branch. */ static char last_expand; /* If true, then warn if any pseudo operations were expanded. */ static int target_warn_expand = 0; /* If true, then XP support is enabled. */ static int target_xp = 0; /* If true, then Intel syntax is enabled (default to AT&T/SVR4 syntax). */ static int target_intel_syntax = 0; /* Prototypes. */ static void i860_process_insn (char *); static void s_dual (int); static void s_enddual (int); static void s_atmp (int); static void s_align_wrapper (int); static int i860_get_expression (char *); static bfd_reloc_code_real_type obtain_reloc_for_imm16 (fixS *, long *); #ifdef DEBUG_I860 static void print_insn (struct i860_it *); #endif const pseudo_typeS md_pseudo_table[] = { {"align", s_align_wrapper, 0}, {"dual", s_dual, 0}, {"enddual", s_enddual, 0}, {"atmp", s_atmp, 0}, {NULL, 0, 0}, }; /* Dual-instruction mode handling. */ enum dual { DUAL_OFF = 0, DUAL_ON, DUAL_DDOT, DUAL_ONDDOT, }; static enum dual dual_mode = DUAL_OFF; /* Handle ".dual" directive. */ static void s_dual (int ignore ATTRIBUTE_UNUSED) { if (target_intel_syntax) dual_mode = DUAL_ON; else as_bad (_("Directive .dual available only with -mintel-syntax option")); } /* Handle ".enddual" directive. */ static void s_enddual (int ignore ATTRIBUTE_UNUSED) { if (target_intel_syntax) dual_mode = DUAL_OFF; else as_bad (_("Directive .enddual available only with -mintel-syntax option")); } /* Temporary register used when expanding assembler pseudo operations. */ static int atmp = 31; static void s_atmp (int ignore ATTRIBUTE_UNUSED) { int temp; if (! target_intel_syntax) { as_bad (_("Directive .atmp available only with -mintel-syntax option")); demand_empty_rest_of_line (); return; } if (strncmp (input_line_pointer, "sp", 2) == 0) { input_line_pointer += 2; atmp = 2; } else if (strncmp (input_line_pointer, "fp", 2) == 0) { input_line_pointer += 2; atmp = 3; } else if (strncmp (input_line_pointer, "r", 1) == 0) { input_line_pointer += 1; temp = get_absolute_expression (); if (temp >= 0 && temp <= 31) atmp = temp; else as_bad (_("Unknown temporary pseudo register")); } else { as_bad (_("Unknown temporary pseudo register")); } demand_empty_rest_of_line (); } /* Handle ".align" directive depending on syntax mode. AT&T/SVR4 syntax uses the standard align directive. However, the Intel syntax additionally allows keywords for the alignment parameter: ".align type", where type is one of {.short, .long, .quad, .single, .double} representing alignments of 2, 4, 16, 4, and 8, respectively. */ static void s_align_wrapper (int arg) { char *parm = input_line_pointer; if (target_intel_syntax) { /* Replace a keyword with the equivalent integer so the standard align routine can parse the directive. */ if (strncmp (parm, ".short", 6) == 0) strncpy (parm, " 2", 6); else if (strncmp (parm, ".long", 5) == 0) strncpy (parm, " 4", 5); else if (strncmp (parm, ".quad", 5) == 0) strncpy (parm, " 16", 5); else if (strncmp (parm, ".single", 7) == 0) strncpy (parm, " 4", 7); else if (strncmp (parm, ".double", 7) == 0) strncpy (parm, " 8", 7); while (*input_line_pointer == ' ') ++input_line_pointer; } s_align_bytes (arg); } /* This function is called once, at assembler startup time. It should set up all the tables and data structures that the MD part of the assembler will need. */ void md_begin (void) { const char *retval = NULL; int lose = 0; unsigned int i = 0; op_hash = hash_new (); while (i860_opcodes[i].name != NULL) { const char *name = i860_opcodes[i].name; retval = hash_insert (op_hash, name, (void *) &i860_opcodes[i]); if (retval != NULL) { fprintf (stderr, _("internal error: can't hash `%s': %s\n"), i860_opcodes[i].name, retval); lose = 1; } do { if (i860_opcodes[i].match & i860_opcodes[i].lose) { fprintf (stderr, _("internal error: losing opcode: `%s' \"%s\"\n"), i860_opcodes[i].name, i860_opcodes[i].args); lose = 1; } ++i; } while (i860_opcodes[i].name != NULL && strcmp (i860_opcodes[i].name, name) == 0); } if (lose) as_fatal (_("Defective assembler. No assembly attempted.")); /* Set the register prefix for either Intel or AT&T/SVR4 syntax. */ reg_prefix = target_intel_syntax ? 0 : '%'; } /* This is the core of the machine-dependent assembler. STR points to a machine dependent instruction. This function emits the frags/bytes it assembles to. */ void md_assemble (char *str) { char *destp; int num_opcodes = 1; int i; struct i860_it pseudo[3]; gas_assert (str); fc = 0; /* Assemble the instruction. */ i860_process_insn (str); /* Check for expandable flag to produce pseudo-instructions. This is an undesirable feature that should be avoided. */ if (the_insn.expand != 0 && the_insn.expand != XP_ONLY && ! (the_insn.fi[0].fup & (OP_SEL_HA | OP_SEL_H | OP_SEL_L | OP_SEL_GOT | OP_SEL_GOTOFF | OP_SEL_PLT))) { for (i = 0; i < 3; i++) pseudo[i] = the_insn; fc = 1; switch (the_insn.expand) { case E_DELAY: num_opcodes = 1; break; case E_MOV: if (the_insn.fi[0].exp.X_add_symbol == NULL && the_insn.fi[0].exp.X_op_symbol == NULL && (the_insn.fi[0].exp.X_add_number < (1 << 15) && the_insn.fi[0].exp.X_add_number >= -(1 << 15))) break; /* Emit "or l%const,r0,ireg_dest". */ pseudo[0].opcode = (the_insn.opcode & 0x001f0000) | 0xe4000000; pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_L); /* Emit "orh h%const,ireg_dest,ireg_dest". */ pseudo[1].opcode = (the_insn.opcode & 0x03ffffff) | 0xec000000 | ((the_insn.opcode & 0x001f0000) << 5); pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_H); num_opcodes = 2; break; case E_ADDR: if (the_insn.fi[0].exp.X_add_symbol == NULL && the_insn.fi[0].exp.X_op_symbol == NULL && (the_insn.fi[0].exp.X_add_number < (1 << 15) && the_insn.fi[0].exp.X_add_number >= -(1 << 15))) break; /* Emit "orh ha%addr_expr,ireg_src2,r31". */ pseudo[0].opcode = 0xec000000 | (the_insn.opcode & 0x03e00000) | (atmp << 16); pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_HA); /* Emit "l%addr_expr(r31),ireg_dest". We pick up the fixup information from the original instruction. */ pseudo[1].opcode = (the_insn.opcode & ~0x03e00000) | (atmp << 21); pseudo[1].fi[0].fup = the_insn.fi[0].fup | OP_SEL_L; num_opcodes = 2; break; case E_U32: if (the_insn.fi[0].exp.X_add_symbol == NULL && the_insn.fi[0].exp.X_op_symbol == NULL && (the_insn.fi[0].exp.X_add_number < (1 << 16) && the_insn.fi[0].exp.X_add_number >= 0)) break; /* Emit "$(opcode)h h%const,ireg_src2,r31". */ pseudo[0].opcode = (the_insn.opcode & 0xf3e0ffff) | 0x0c000000 | (atmp << 16); pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H); /* Emit "$(opcode) l%const,r31,ireg_dest". */ pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000 | (atmp << 21); pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L); num_opcodes = 2; break; case E_AND: if (the_insn.fi[0].exp.X_add_symbol == NULL && the_insn.fi[0].exp.X_op_symbol == NULL && (the_insn.fi[0].exp.X_add_number < (1 << 16) && the_insn.fi[0].exp.X_add_number >= 0)) break; /* Emit "andnot h%const,ireg_src2,r31". */ pseudo[0].opcode = (the_insn.opcode & 0x03e0ffff) | 0xd4000000 | (atmp << 16); pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H); pseudo[0].fi[0].exp.X_add_number = -1 - the_insn.fi[0].exp.X_add_number; /* Emit "andnot l%const,r31,ireg_dest". */ pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000 | (atmp << 21); pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L); pseudo[1].fi[0].exp.X_add_number = -1 - the_insn.fi[0].exp.X_add_number; num_opcodes = 2; break; case E_S32: if (the_insn.fi[0].exp.X_add_symbol == NULL && the_insn.fi[0].exp.X_op_symbol == NULL && (the_insn.fi[0].exp.X_add_number < (1 << 15) && the_insn.fi[0].exp.X_add_number >= -(1 << 15))) break; /* Emit "orh h%const,r0,r31". */ pseudo[0].opcode = 0xec000000 | (atmp << 16); pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H); /* Emit "or l%const,r31,r31". */ pseudo[1].opcode = 0xe4000000 | (atmp << 21) | (atmp << 16); pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L); /* Emit "r31,ireg_src2,ireg_dest". */ pseudo[2].opcode = (the_insn.opcode & ~0x0400ffff) | (atmp << 11); pseudo[2].fi[0].fup = OP_IMM_S16; num_opcodes = 3; break; default: as_fatal (_("failed sanity check.")); } the_insn = pseudo[0]; /* Warn if an opcode is expanded after a delayed branch. */ if (num_opcodes > 1 && last_expand == 1) as_warn (_("Expanded opcode after delayed branch: `%s'"), str); /* Warn if an opcode is expanded in dual mode. */ if (num_opcodes > 1 && dual_mode != DUAL_OFF) as_warn (_("Expanded opcode in dual mode: `%s'"), str); /* Notify if any expansions happen. */ if (target_warn_expand && num_opcodes > 1) as_warn (_("An instruction was expanded (%s)"), str); } dwarf2_emit_insn (0); i = 0; do { int tmp; /* Output the opcode. Note that the i860 always reads instructions as little-endian data. */ destp = frag_more (4); number_to_chars_littleendian (destp, the_insn.opcode, 4); /* Check for expanded opcode after branch or in dual mode. */ last_expand = the_insn.fi[0].pcrel; /* Output the symbol-dependent stuff. Only btne and bte will ever loop more than once here, since only they (possibly) have more than one fixup. */ for (tmp = 0; tmp < fc; tmp++) { if (the_insn.fi[tmp].fup != OP_NONE) { fixS *fix; fix = fix_new_exp (frag_now, destp - frag_now->fr_literal, 4, &the_insn.fi[tmp].exp, the_insn.fi[tmp].pcrel, the_insn.fi[tmp].reloc); /* Despite the odd name, this is a scratch field. We use it to encode operand type information. */ fix->fx_addnumber = the_insn.fi[tmp].fup; } } the_insn = pseudo[++i]; } while (--num_opcodes > 0); } /* Assemble the instruction pointed to by STR. */ static void i860_process_insn (char *str) { char *s; const char *args; char c; struct i860_opcode *insn; char *args_start; unsigned long opcode; unsigned int mask; int match = 0; int comma = 0; #if 1 /* For compiler warnings. */ args = 0; insn = 0; args_start = 0; opcode = 0; #endif for (s = str; ISLOWER (*s) || *s == '.' || *s == '3' || *s == '2' || *s == '1'; ++s) ; switch (*s) { case '\0': break; case ',': comma = 1; /*FALLTHROUGH*/ case ' ': *s++ = '\0'; break; default: as_fatal (_("Unknown opcode: `%s'"), str); } /* Check for dual mode ("d.") opcode prefix. */ if (strncmp (str, "d.", 2) == 0) { if (dual_mode == DUAL_ON) dual_mode = DUAL_ONDDOT; else dual_mode = DUAL_DDOT; str += 2; } if ((insn = (struct i860_opcode *) hash_find (op_hash, str)) == NULL) { if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT) str -= 2; as_bad (_("Unknown opcode: `%s'"), str); return; } if (comma) *--s = ','; args_start = s; for (;;) { int t; opcode = insn->match; memset (&the_insn, '\0', sizeof (the_insn)); fc = 0; for (t = 0; t < MAX_FIXUPS; t++) { the_insn.fi[t].reloc = BFD_RELOC_NONE; the_insn.fi[t].pcrel = 0; the_insn.fi[t].fup = OP_NONE; } /* Build the opcode, checking as we go that the operands match. */ for (args = insn->args; ; ++args) { if (fc > MAX_FIXUPS) abort (); switch (*args) { /* End of args. */ case '\0': if (*s == '\0') match = 1; break; /* These must match exactly. */ case '+': case '(': case ')': case ',': case ' ': if (*s++ == *args) continue; break; /* Must be at least one digit. */ case '#': if (ISDIGIT (*s++)) { while (ISDIGIT (*s)) ++s; continue; } break; /* Next operand must be a register. */ case '1': case '2': case 'd': /* Check for register prefix if necessary. */ if (reg_prefix && *s != reg_prefix) goto error; else if (reg_prefix) s++; switch (*s) { /* Frame pointer. */ case 'f': s++; if (*s++ == 'p') { mask = 0x3; break; } goto error; /* Stack pointer. */ case 's': s++; if (*s++ == 'p') { mask = 0x2; break; } goto error; /* Any register r0..r31. */ case 'r': s++; if (!ISDIGIT (c = *s++)) { goto error; } if (ISDIGIT (*s)) { if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32) goto error; } else c -= '0'; mask = c; break; /* Not this opcode. */ default: goto error; } /* Obtained the register, now place it in the opcode. */ switch (*args) { case '1': opcode |= mask << 11; continue; case '2': opcode |= mask << 21; continue; case 'd': opcode |= mask << 16; continue; } break; /* Next operand is a floating point register. */ case 'e': case 'f': case 'g': /* Check for register prefix if necessary. */ if (reg_prefix && *s != reg_prefix) goto error; else if (reg_prefix) s++; if (*s++ == 'f' && ISDIGIT (*s)) { mask = *s++; if (ISDIGIT (*s)) { mask = 10 * (mask - '0') + (*s++ - '0'); if (mask >= 32) { break; } } else mask -= '0'; switch (*args) { case 'e': opcode |= mask << 11; continue; case 'f': opcode |= mask << 21; continue; case 'g': opcode |= mask << 16; if ((opcode & (1 << 10)) && mask != 0 && (mask == ((opcode >> 11) & 0x1f))) as_warn (_("Pipelined instruction: fsrc1 = fdest")); continue; } } break; /* Next operand must be a control register. */ case 'c': /* Check for register prefix if necessary. */ if (reg_prefix && *s != reg_prefix) goto error; else if (reg_prefix) s++; if (strncmp (s, "fir", 3) == 0) { opcode |= 0x0 << 21; s += 3; continue; } if (strncmp (s, "psr", 3) == 0) { opcode |= 0x1 << 21; s += 3; continue; } if (strncmp (s, "dirbase", 7) == 0) { opcode |= 0x2 << 21; s += 7; continue; } if (strncmp (s, "db", 2) == 0) { opcode |= 0x3 << 21; s += 2; continue; } if (strncmp (s, "fsr", 3) == 0) { opcode |= 0x4 << 21; s += 3; continue; } if (strncmp (s, "epsr", 4) == 0) { opcode |= 0x5 << 21; s += 4; continue; } /* The remaining control registers are XP only. */ if (target_xp && strncmp (s, "bear", 4) == 0) { opcode |= 0x6 << 21; s += 4; continue; } if (target_xp && strncmp (s, "ccr", 3) == 0) { opcode |= 0x7 << 21; s += 3; continue; } if (target_xp && strncmp (s, "p0", 2) == 0) { opcode |= 0x8 << 21; s += 2; continue; } if (target_xp && strncmp (s, "p1", 2) == 0) { opcode |= 0x9 << 21; s += 2; continue; } if (target_xp && strncmp (s, "p2", 2) == 0) { opcode |= 0xa << 21; s += 2; continue; } if (target_xp && strncmp (s, "p3", 2) == 0) { opcode |= 0xb << 21; s += 2; continue; } break; /* 5-bit immediate in src1. */ case '5': if (! i860_get_expression (s)) { s = expr_end; the_insn.fi[fc].fup |= OP_IMM_U5; fc++; continue; } break; /* 26-bit immediate, relative branch (lbroff). */ case 'l': the_insn.fi[fc].pcrel = 1; the_insn.fi[fc].fup |= OP_IMM_BR26; goto immediate; /* 16-bit split immediate, relative branch (sbroff). */ case 'r': the_insn.fi[fc].pcrel = 1; the_insn.fi[fc].fup |= OP_IMM_BR16; goto immediate; /* 16-bit split immediate. */ case 's': the_insn.fi[fc].fup |= OP_IMM_SPLIT16; goto immediate; /* 16-bit split immediate, byte aligned (st.b). */ case 'S': the_insn.fi[fc].fup |= OP_IMM_SPLIT16; goto immediate; /* 16-bit split immediate, half-word aligned (st.s). */ case 'T': the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN2); goto immediate; /* 16-bit split immediate, word aligned (st.l). */ case 'U': the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN4); goto immediate; /* 16-bit immediate. */ case 'i': the_insn.fi[fc].fup |= OP_IMM_S16; goto immediate; /* 16-bit immediate, byte aligned (ld.b). */ case 'I': the_insn.fi[fc].fup |= OP_IMM_S16; goto immediate; /* 16-bit immediate, half-word aligned (ld.s). */ case 'J': the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN2); goto immediate; /* 16-bit immediate, word aligned (ld.l, {p}fld.l, fst.l). */ case 'K': if (insn->name[0] == 'l') the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN4); else the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE2 | OP_ALIGN4); goto immediate; /* 16-bit immediate, double-word aligned ({p}fld.d, fst.d). */ case 'L': the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN8); goto immediate; /* 16-bit immediate, quad-word aligned (fld.q, fst.q). */ case 'M': the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN16); /*FALLTHROUGH*/ /* Handle the immediate for either the Intel syntax or SVR4 syntax. The Intel syntax is "ha%immediate" whereas SVR4 syntax is "[immediate]@ha". */ immediate: if (target_intel_syntax == 0) { /* AT&T/SVR4 syntax. */ if (*s == ' ') s++; /* Note that if i860_get_expression() fails, we will still have created U entries in the symbol table for the 'symbols' in the input string. Try not to create U symbols for registers, etc. */ if (! i860_get_expression (s)) s = expr_end; else goto error; if (strncmp (s, "@ha", 3) == 0) { the_insn.fi[fc].fup |= OP_SEL_HA; s += 3; } else if (strncmp (s, "@h", 2) == 0) { the_insn.fi[fc].fup |= OP_SEL_H; s += 2; } else if (strncmp (s, "@l", 2) == 0) { the_insn.fi[fc].fup |= OP_SEL_L; s += 2; } else if (strncmp (s, "@gotoff", 7) == 0 || strncmp (s, "@GOTOFF", 7) == 0) { as_bad (_("Assembler does not yet support PIC")); the_insn.fi[fc].fup |= OP_SEL_GOTOFF; s += 7; } else if (strncmp (s, "@got", 4) == 0 || strncmp (s, "@GOT", 4) == 0) { as_bad (_("Assembler does not yet support PIC")); the_insn.fi[fc].fup |= OP_SEL_GOT; s += 4; } else if (strncmp (s, "@plt", 4) == 0 || strncmp (s, "@PLT", 4) == 0) { as_bad (_("Assembler does not yet support PIC")); the_insn.fi[fc].fup |= OP_SEL_PLT; s += 4; } the_insn.expand = insn->expand; fc++; continue; } else { /* Intel syntax. */ if (*s == ' ') s++; if (strncmp (s, "ha%", 3) == 0) { the_insn.fi[fc].fup |= OP_SEL_HA; s += 3; } else if (strncmp (s, "h%", 2) == 0) { the_insn.fi[fc].fup |= OP_SEL_H; s += 2; } else if (strncmp (s, "l%", 2) == 0) { the_insn.fi[fc].fup |= OP_SEL_L; s += 2; } the_insn.expand = insn->expand; /* Note that if i860_get_expression() fails, we will still have created U entries in the symbol table for the 'symbols' in the input string. Try not to create U symbols for registers, etc. */ if (! i860_get_expression (s)) s = expr_end; else goto error; fc++; continue; } break; default: as_fatal (_("failed sanity check.")); } break; } error: if (match == 0) { /* Args don't match. */ if (insn[1].name != NULL && ! strcmp (insn->name, insn[1].name)) { ++insn; s = args_start; continue; } else { as_bad (_("Illegal operands for %s"), insn->name); return; } } break; } /* Set the dual bit on this instruction if necessary. */ if (dual_mode != DUAL_OFF) { if ((opcode & 0xfc000000) == 0x48000000 || opcode == 0xb0000000) { /* The instruction is a flop or a fnop, so set its dual bit (but check that it is 8-byte aligned). */ if (((frag_now->fr_address + frag_now_fix_octets ()) & 7) == 0) opcode |= (1 << 9); else as_bad (_("'d.%s' must be 8-byte aligned"), insn->name); if (dual_mode == DUAL_DDOT) dual_mode = DUAL_OFF; else if (dual_mode == DUAL_ONDDOT) dual_mode = DUAL_ON; } else if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT) as_bad (_("Prefix 'd.' invalid for instruction `%s'"), insn->name); } the_insn.opcode = opcode; /* Only recognize XP instructions when the user has requested it. */ if (insn->expand == XP_ONLY && ! target_xp) as_bad (_("Unknown opcode: `%s'"), insn->name); } static int i860_get_expression (char *str) { char *save_in; segT seg; save_in = input_line_pointer; input_line_pointer = str; seg = expression (&the_insn.fi[fc].exp); if (seg != absolute_section && seg != undefined_section && ! SEG_NORMAL (seg)) { the_insn.error = _("bad segment"); expr_end = input_line_pointer; input_line_pointer = save_in; return 1; } expr_end = input_line_pointer; input_line_pointer = save_in; return 0; } const char * md_atof (int type, char *litP, int *sizeP) { return ieee_md_atof (type, litP, sizeP, TRUE); } /* Write out in current endian mode. */ void md_number_to_chars (char *buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } /* This should never be called for i860. */ int md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED, segT segtype ATTRIBUTE_UNUSED) { as_fatal (_("relaxation not supported\n")); } #ifdef DEBUG_I860 static void print_insn (struct i860_it *insn) { if (insn->error) fprintf (stderr, "ERROR: %s\n", insn->error); fprintf (stderr, "opcode = 0x%08lx\t", insn->opcode); fprintf (stderr, "expand = 0x%x\t", insn->expand); fprintf (stderr, "reloc = %s\t\n", bfd_get_reloc_code_name (insn->reloc)); fprintf (stderr, "exp = {\n"); fprintf (stderr, "\t\tX_add_symbol = %s\n", insn->exp.X_add_symbol ? (S_GET_NAME (insn->exp.X_add_symbol) ? S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0"); fprintf (stderr, "\t\tX_op_symbol = %s\n", insn->exp.X_op_symbol ? (S_GET_NAME (insn->exp.X_op_symbol) ? S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0"); fprintf (stderr, "\t\tX_add_number = %lx\n", insn->exp.X_add_number); fprintf (stderr, "}\n"); } #endif /* DEBUG_I860 */ #ifdef OBJ_ELF const char *md_shortopts = "VQ:"; #else const char *md_shortopts = ""; #endif #define OPTION_EB (OPTION_MD_BASE + 0) #define OPTION_EL (OPTION_MD_BASE + 1) #define OPTION_WARN_EXPAND (OPTION_MD_BASE + 2) #define OPTION_XP (OPTION_MD_BASE + 3) #define OPTION_INTEL_SYNTAX (OPTION_MD_BASE + 4) struct option md_longopts[] = { { "EB", no_argument, NULL, OPTION_EB }, { "EL", no_argument, NULL, OPTION_EL }, { "mwarn-expand", no_argument, NULL, OPTION_WARN_EXPAND }, { "mxp", no_argument, NULL, OPTION_XP }, { "mintel-syntax",no_argument, NULL, OPTION_INTEL_SYNTAX }, { NULL, no_argument, NULL, 0 } }; size_t md_longopts_size = sizeof (md_longopts); int md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED) { switch (c) { case OPTION_EB: target_big_endian = 1; break; case OPTION_EL: target_big_endian = 0; break; case OPTION_WARN_EXPAND: target_warn_expand = 1; break; case OPTION_XP: target_xp = 1; break; case OPTION_INTEL_SYNTAX: target_intel_syntax = 1; break; #ifdef OBJ_ELF /* SVR4 argument compatibility (-V): print version ID. */ case 'V': print_version_id (); break; /* SVR4 argument compatibility (-Qy, -Qn): controls whether a .comment section should be emitted or not (ignored). */ case 'Q': break; #endif default: return 0; } return 1; } void md_show_usage (FILE *stream) { fprintf (stream, _("\ -EL generate code for little endian mode (default)\n\ -EB generate code for big endian mode\n\ -mwarn-expand warn if pseudo operations are expanded\n\ -mxp enable i860XP support (disabled by default)\n\ -mintel-syntax enable Intel syntax (default to AT&T/SVR4)\n")); #ifdef OBJ_ELF /* SVR4 compatibility flags. */ fprintf (stream, _("\ -V print assembler version number\n\ -Qy, -Qn ignored\n")); #endif } /* We have no need to default values of symbols. */ symbolS * md_undefined_symbol (char *name ATTRIBUTE_UNUSED) { return 0; } /* The i860 denotes auto-increment with '++'. */ void md_operand (expressionS *exp) { char *s; for (s = input_line_pointer; *s; s++) { if (s[0] == '+' && s[1] == '+') { input_line_pointer += 2; exp->X_op = O_register; break; } } } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size ATTRIBUTE_UNUSED) { /* Byte alignment is fine. */ return size; } /* On the i860, a PC-relative offset is relative to the address of the offset plus its size. */ long md_pcrel_from (fixS *fixP) { return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; } /* Determine the relocation needed for non PC-relative 16-bit immediates. Also adjust the given immediate as necessary. Finally, check that all constraints (such as alignment) are satisfied. */ static bfd_reloc_code_real_type obtain_reloc_for_imm16 (fixS *fix, long *val) { valueT fup = fix->fx_addnumber; bfd_reloc_code_real_type reloc; if (fix->fx_pcrel) abort (); /* Check alignment restrictions. */ if ((fup & OP_ALIGN2) && (*val & 0x1)) as_bad_where (fix->fx_file, fix->fx_line, _("This immediate requires 0 MOD 2 alignment")); else if ((fup & OP_ALIGN4) && (*val & 0x3)) as_bad_where (fix->fx_file, fix->fx_line, _("This immediate requires 0 MOD 4 alignment")); else if ((fup & OP_ALIGN8) && (*val & 0x7)) as_bad_where (fix->fx_file, fix->fx_line, _("This immediate requires 0 MOD 8 alignment")); else if ((fup & OP_ALIGN16) && (*val & 0xf)) as_bad_where (fix->fx_file, fix->fx_line, _("This immediate requires 0 MOD 16 alignment")); if (fup & OP_SEL_HA) { *val = (*val >> 16) + (*val & 0x8000 ? 1 : 0); reloc = BFD_RELOC_860_HIGHADJ; } else if (fup & OP_SEL_H) { *val >>= 16; reloc = BFD_RELOC_860_HIGH; } else if (fup & OP_SEL_L) { int num_encode; if (fup & OP_IMM_SPLIT16) { if (fup & OP_ENCODE1) { num_encode = 1; reloc = BFD_RELOC_860_SPLIT1; } else if (fup & OP_ENCODE2) { num_encode = 2; reloc = BFD_RELOC_860_SPLIT2; } else { num_encode = 0; reloc = BFD_RELOC_860_SPLIT0; } } else { if (fup & OP_ENCODE1) { num_encode = 1; reloc = BFD_RELOC_860_LOW1; } else if (fup & OP_ENCODE2) { num_encode = 2; reloc = BFD_RELOC_860_LOW2; } else if (fup & OP_ENCODE3) { num_encode = 3; reloc = BFD_RELOC_860_LOW3; } else { num_encode = 0; reloc = BFD_RELOC_860_LOW0; } } /* Preserve size encode bits. */ *val &= ~((1 << num_encode) - 1); } else { /* No selector. What reloc do we generate (???)? */ reloc = BFD_RELOC_32; } return reloc; } /* Attempt to simplify or eliminate a fixup. To indicate that a fixup has been eliminated, set fix->fx_done. If fix->fx_addsy is non-NULL, we will have to generate a reloc entry. */ void md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED) { char *buf; long val = *valP; unsigned long insn; valueT fup; buf = fix->fx_frag->fr_literal + fix->fx_where; /* Recall that earlier we stored the opcode little-endian. */ insn = bfd_getl32 (buf); /* We stored a fix-up in this oddly-named scratch field. */ fup = fix->fx_addnumber; /* Determine the necessary relocations as well as inserting an immediate into the instruction. */ if (fup & OP_IMM_U5) { if (val & ~0x1f) as_bad_where (fix->fx_file, fix->fx_line, _("5-bit immediate too large")); if (fix->fx_addsy) as_bad_where (fix->fx_file, fix->fx_line, _("5-bit field must be absolute")); insn |= (val & 0x1f) << 11; bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } else if (fup & OP_IMM_S16) { fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val); /* Insert the immediate. */ if (fix->fx_addsy) fix->fx_done = 0; else { insn |= val & 0xffff; bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } } else if (fup & OP_IMM_U16) abort (); else if (fup & OP_IMM_SPLIT16) { fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val); /* Insert the immediate. */ if (fix->fx_addsy) fix->fx_done = 0; else { insn |= val & 0x7ff; insn |= (val & 0xf800) << 5; bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } } else if (fup & OP_IMM_BR16) { if (val & 0x3) as_bad_where (fix->fx_file, fix->fx_line, _("A branch offset requires 0 MOD 4 alignment")); val = val >> 2; /* Insert the immediate. */ if (fix->fx_addsy) { fix->fx_done = 0; fix->fx_r_type = BFD_RELOC_860_PC16; } else { insn |= (val & 0x7ff); insn |= ((val & 0xf800) << 5); bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } } else if (fup & OP_IMM_BR26) { if (val & 0x3) as_bad_where (fix->fx_file, fix->fx_line, _("A branch offset requires 0 MOD 4 alignment")); val >>= 2; /* Insert the immediate. */ if (fix->fx_addsy) { fix->fx_r_type = BFD_RELOC_860_PC26; fix->fx_done = 0; } else { insn |= (val & 0x3ffffff); bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } } else if (fup != OP_NONE) { as_bad_where (fix->fx_file, fix->fx_line, _("Unrecognized fix-up (0x%08lx)"), (unsigned long) fup); abort (); } else { /* I believe only fix-ups such as ".long .ep.main-main+0xc8000000" reach here (???). */ if (fix->fx_addsy) { fix->fx_r_type = BFD_RELOC_32; fix->fx_done = 0; } else { insn |= (val & 0xffffffff); bfd_putl32 (insn, buf); fix->fx_r_type = BFD_RELOC_NONE; fix->fx_done = 1; } } } /* Generate a machine dependent reloc from a fixup. */ arelent* tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) { arelent *reloc; reloc = XNEW (arelent); reloc->sym_ptr_ptr = XNEW (asymbol *); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->addend = fixp->fx_offset; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (! reloc->howto) { as_bad_where (fixp->fx_file, fixp->fx_line, "Cannot represent %s relocation in object file", bfd_get_reloc_code_name (fixp->fx_r_type)); } return reloc; } /* This is called from HANDLE_ALIGN in write.c. Fill in the contents of an rs_align_code fragment. */ void i860_handle_align (fragS *fragp) { /* Instructions are always stored little-endian on the i860. */ static const unsigned char le_nop[] = { 0x00, 0x00, 0x00, 0xA0 }; int bytes; char *p; if (fragp->fr_type != rs_align_code) return; bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix; p = fragp->fr_literal + fragp->fr_fix; /* Make sure we are on a 4-byte boundary, in case someone has been putting data into a text section. */ if (bytes & 3) { int fix = bytes & 3; memset (p, 0, fix); p += fix; fragp->fr_fix += fix; } memcpy (p, le_nop, 4); fragp->fr_var = 4; } /* This is called after a user-defined label is seen. We check if the label has a double colon (valid in Intel syntax mode only), in which case it should be externalized. */ void i860_check_label (symbolS *labelsym) { /* At this point, the current line pointer is sitting on the character just after the first colon on the label. */ if (target_intel_syntax && *input_line_pointer == ':') { S_SET_EXTERNAL (labelsym); input_line_pointer++; } }