/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_STACK_H #define OPENSSL_HEADER_STACK_H #include #include #if defined(__cplusplus) extern "C" { #endif // A stack, in OpenSSL, is an array of pointers. They are the most commonly // used collection object. // // This file defines macros for type safe use of the stack functions. A stack // of a specific type of object has type |STACK_OF(type)|. This can be defined // (once) with |DEFINE_STACK_OF(type)| and declared where needed with // |DECLARE_STACK_OF(type)|. For example: // // typedef struct foo_st { // int bar; // } FOO; // // DEFINE_STACK_OF(FOO); // // Although note that the stack will contain /pointers/ to |FOO|. // // A macro will be defined for each of the sk_* functions below. For // STACK_OF(FOO), the macros would be sk_FOO_new, sk_FOO_pop etc. // stack_cmp_func is a comparison function that returns a value < 0, 0 or > 0 // if |*a| is less than, equal to or greater than |*b|, respectively. Note the // extra indirection - the function is given a pointer to a pointer to the // element. This differs from the usual qsort/bsearch comparison function. typedef int (*stack_cmp_func)(const void **a, const void **b); // stack_st contains an array of pointers. It is not designed to be used // directly, rather the wrapper macros should be used. typedef struct stack_st { // num contains the number of valid pointers in |data|. size_t num; void **data; // sorted is non-zero if the values pointed to by |data| are in ascending // order, based on |comp|. int sorted; // num_alloc contains the number of pointers allocated in the buffer pointed // to by |data|, which may be larger than |num|. size_t num_alloc; // comp is an optional comparison function. stack_cmp_func comp; } _STACK; #define STACK_OF(type) struct stack_st_##type #define DECLARE_STACK_OF(type) STACK_OF(type); // These are the raw stack functions, you shouldn't be using them. Rather you // should be using the type stack macros implemented above. // sk_new creates a new, empty stack with the given comparison function, which // may be zero. It returns the new stack or NULL on allocation failure. OPENSSL_EXPORT _STACK *sk_new(stack_cmp_func comp); // sk_new_null creates a new, empty stack. It returns the new stack or NULL on // allocation failure. OPENSSL_EXPORT _STACK *sk_new_null(void); // sk_num returns the number of elements in |s|. OPENSSL_EXPORT size_t sk_num(const _STACK *sk); // sk_zero resets |sk| to the empty state but does nothing to free the // individual elements themselves. OPENSSL_EXPORT void sk_zero(_STACK *sk); // sk_value returns the |i|th pointer in |sk|, or NULL if |i| is out of // range. OPENSSL_EXPORT void *sk_value(const _STACK *sk, size_t i); // sk_set sets the |i|th pointer in |sk| to |p| and returns |p|. If |i| is out // of range, it returns NULL. OPENSSL_EXPORT void *sk_set(_STACK *sk, size_t i, void *p); // sk_free frees the given stack and array of pointers, but does nothing to // free the individual elements. Also see |sk_pop_free|. OPENSSL_EXPORT void sk_free(_STACK *sk); // sk_pop_free calls |free_func| on each element in the stack and then frees // the stack itself. OPENSSL_EXPORT void sk_pop_free(_STACK *sk, void (*free_func)(void *)); // sk_insert inserts |p| into the stack at index |where|, moving existing // elements if needed. It returns the length of the new stack, or zero on // error. OPENSSL_EXPORT size_t sk_insert(_STACK *sk, void *p, size_t where); // sk_delete removes the pointer at index |where|, moving other elements down // if needed. It returns the removed pointer, or NULL if |where| is out of // range. OPENSSL_EXPORT void *sk_delete(_STACK *sk, size_t where); // sk_delete_ptr removes, at most, one instance of |p| from the stack based on // pointer equality. If an instance of |p| is found then |p| is returned, // otherwise it returns NULL. OPENSSL_EXPORT void *sk_delete_ptr(_STACK *sk, void *p); // sk_find returns the first value in the stack equal to |p|. If a comparison // function has been set on the stack, equality is defined by it, otherwise // pointer equality is used. If the stack is sorted, then a binary search is // used, otherwise a linear search is performed. If a matching element is found, // its index is written to // |*out_index| (if |out_index| is not NULL) and one is returned. Otherwise zero // is returned. // // Note this differs from OpenSSL. The type signature is slightly different, and // OpenSSL's sk_find will implicitly sort |sk| if it has a comparison function // defined. OPENSSL_EXPORT int sk_find(const _STACK *sk, size_t *out_index, void *p); // sk_shift removes and returns the first element in the stack, or returns NULL // if the stack is empty. OPENSSL_EXPORT void *sk_shift(_STACK *sk); // sk_push appends |p| to the stack and returns the length of the new stack, or // 0 on allocation failure. OPENSSL_EXPORT size_t sk_push(_STACK *sk, void *p); // sk_pop returns and removes the last element on the stack, or NULL if the // stack is empty. OPENSSL_EXPORT void *sk_pop(_STACK *sk); // sk_dup performs a shallow copy of a stack and returns the new stack, or NULL // on error. OPENSSL_EXPORT _STACK *sk_dup(const _STACK *sk); // sk_sort sorts the elements of |sk| into ascending order based on the // comparison function. The stack maintains a |sorted| flag and sorting an // already sorted stack is a no-op. OPENSSL_EXPORT void sk_sort(_STACK *sk); // sk_is_sorted returns one if |sk| is known to be sorted and zero // otherwise. OPENSSL_EXPORT int sk_is_sorted(const _STACK *sk); // sk_set_cmp_func sets the comparison function to be used by |sk| and returns // the previous one. OPENSSL_EXPORT stack_cmp_func sk_set_cmp_func(_STACK *sk, stack_cmp_func comp); // sk_deep_copy performs a copy of |sk| and of each of the non-NULL elements in // |sk| by using |copy_func|. If an error occurs, |free_func| is used to free // any copies already made and NULL is returned. OPENSSL_EXPORT _STACK *sk_deep_copy(const _STACK *sk, void *(*copy_func)(void *), void (*free_func)(void *)); // Defining stack types. // // This set of macros is used to emit the typed functions that act on a // |STACK_OF(T)|. #if !defined(BORINGSSL_NO_CXX) extern "C++" { namespace bssl { namespace internal { template struct StackTraits {}; } } } #define BORINGSSL_DEFINE_STACK_TRAITS(name, type, is_const) \ extern "C++" { \ namespace bssl { \ namespace internal { \ template <> \ struct StackTraits { \ static constexpr bool kIsStack = true; \ using Type = type; \ static constexpr bool kIsConst = is_const; \ }; \ } \ } \ } #else #define BORINGSSL_DEFINE_STACK_TRAITS(name, type, is_const) #endif // Stack functions must be tagged unused to support file-local stack types. // Clang's -Wunused-function only allows unused static inline functions if they // are defined in a header. #define BORINGSSL_DEFINE_STACK_OF_IMPL(name, ptrtype, constptrtype) \ DECLARE_STACK_OF(name) \ \ typedef int (*stack_##name##_cmp_func)(constptrtype *a, constptrtype *b); \ \ static inline OPENSSL_UNUSED STACK_OF(name) * \ sk_##name##_new(stack_##name##_cmp_func comp) { \ return (STACK_OF(name) *)sk_new((stack_cmp_func)comp); \ } \ \ static inline OPENSSL_UNUSED STACK_OF(name) *sk_##name##_new_null(void) { \ return (STACK_OF(name) *)sk_new_null(); \ } \ \ static inline OPENSSL_UNUSED size_t sk_##name##_num( \ const STACK_OF(name) *sk) { \ return sk_num((const _STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED void sk_##name##_zero(STACK_OF(name) *sk) { \ sk_zero((_STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_value( \ const STACK_OF(name) *sk, size_t i) { \ return (ptrtype)sk_value((const _STACK *)sk, i); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_set(STACK_OF(name) *sk, \ size_t i, ptrtype p) { \ return (ptrtype)sk_set((_STACK *)sk, i, (void *)p); \ } \ \ static inline OPENSSL_UNUSED void sk_##name##_free(STACK_OF(name) *sk) { \ sk_free((_STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED void sk_##name##_pop_free( \ STACK_OF(name) *sk, void (*free_func)(ptrtype p)) { \ sk_pop_free((_STACK *)sk, (void (*)(void *))free_func); \ } \ \ static inline OPENSSL_UNUSED size_t sk_##name##_insert( \ STACK_OF(name) *sk, ptrtype p, size_t where) { \ return sk_insert((_STACK *)sk, (void *)p, where); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_delete(STACK_OF(name) *sk, \ size_t where) { \ return (ptrtype)sk_delete((_STACK *)sk, where); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_delete_ptr( \ STACK_OF(name) *sk, ptrtype p) { \ return (ptrtype)sk_delete_ptr((_STACK *)sk, (void *)p); \ } \ \ static inline OPENSSL_UNUSED int sk_##name##_find( \ const STACK_OF(name) *sk, size_t *out_index, ptrtype p) { \ return sk_find((const _STACK *)sk, out_index, (void *)p); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_shift(STACK_OF(name) *sk) { \ return (ptrtype)sk_shift((_STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED size_t sk_##name##_push(STACK_OF(name) *sk, \ ptrtype p) { \ return sk_push((_STACK *)sk, (void *)p); \ } \ \ static inline OPENSSL_UNUSED ptrtype sk_##name##_pop(STACK_OF(name) *sk) { \ return (ptrtype)sk_pop((_STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED STACK_OF(name) * \ sk_##name##_dup(const STACK_OF(name) *sk) { \ return (STACK_OF(name) *)sk_dup((const _STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED void sk_##name##_sort(STACK_OF(name) *sk) { \ sk_sort((_STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED int sk_##name##_is_sorted( \ const STACK_OF(name) *sk) { \ return sk_is_sorted((const _STACK *)sk); \ } \ \ static inline OPENSSL_UNUSED stack_##name##_cmp_func \ sk_##name##_set_cmp_func(STACK_OF(name) *sk, \ stack_##name##_cmp_func comp) { \ return (stack_##name##_cmp_func)sk_set_cmp_func((_STACK *)sk, \ (stack_cmp_func)comp); \ } \ \ static inline OPENSSL_UNUSED STACK_OF(name) * \ sk_##name##_deep_copy(const STACK_OF(name) *sk, \ ptrtype(*copy_func)(ptrtype), \ void (*free_func)(ptrtype)) { \ return (STACK_OF(name) *)sk_deep_copy((const _STACK *)sk, \ (void *(*)(void *))copy_func, \ (void (*)(void *))free_func); \ } // DEFINE_STACK_OF defines |STACK_OF(type)| to be a stack whose elements are // |type| *. #define DEFINE_STACK_OF(type) \ BORINGSSL_DEFINE_STACK_OF_IMPL(type, type *, const type *) \ BORINGSSL_DEFINE_STACK_TRAITS(type, type, false) // DEFINE_CONST_STACK_OF defines |STACK_OF(type)| to be a stack whose elements // are const |type| *. #define DEFINE_CONST_STACK_OF(type) \ BORINGSSL_DEFINE_STACK_OF_IMPL(type, const type *, const type *) \ BORINGSSL_DEFINE_STACK_TRAITS(type, const type, true) // DEFINE_SPECIAL_STACK_OF defines |STACK_OF(type)| to be a stack whose elements // are |type|, where |type| must be a typedef for a pointer. #define DEFINE_SPECIAL_STACK_OF(type) \ OPENSSL_COMPILE_ASSERT(sizeof(type) == sizeof(void *), \ special_stack_of_non_pointer_##type); \ BORINGSSL_DEFINE_STACK_OF_IMPL(type, type, const type) typedef char *OPENSSL_STRING; DEFINE_STACK_OF(void) DEFINE_SPECIAL_STACK_OF(OPENSSL_STRING) #if defined(__cplusplus) } // extern C #endif #if !defined(BORINGSSL_NO_CXX) extern "C++" { #include namespace bssl { namespace internal { // Stacks defined with |DEFINE_CONST_STACK_OF| are freed with |sk_free|. template struct DeleterImpl< Stack, typename std::enable_if::kIsConst>::type> { static void Free(Stack *sk) { sk_free(reinterpret_cast<_STACK *>(sk)); } }; // Stacks defined with |DEFINE_STACK_OF| are freed with |sk_pop_free| and the // corresponding type's deleter. template struct DeleterImpl< Stack, typename std::enable_if::kIsConst>::type> { static void Free(Stack *sk) { sk_pop_free( reinterpret_cast<_STACK *>(sk), reinterpret_cast( DeleterImpl::Type>::Free)); } }; template class StackIteratorImpl { public: using Type = typename StackTraits::Type; // Iterators must be default-constructable. StackIteratorImpl() : sk_(nullptr), idx_(0) {} StackIteratorImpl(const Stack *sk, size_t idx) : sk_(sk), idx_(idx) {} bool operator==(StackIteratorImpl other) const { return sk_ == other.sk_ && idx_ == other.idx_; } bool operator!=(StackIteratorImpl other) const { return !(*this == other); } Type *operator*() const { return reinterpret_cast( sk_value(reinterpret_cast(sk_), idx_)); } StackIteratorImpl &operator++(/* prefix */) { idx_++; return *this; } StackIteratorImpl operator++(int /* postfix */) { StackIteratorImpl copy(*this); ++(*this); return copy; } private: const Stack *sk_; size_t idx_; }; template using StackIterator = typename std::enable_if::kIsStack, StackIteratorImpl>::type; } // namespace internal // PushToStack pushes |elem| to |sk|. It returns true on success and false on // allocation failure. template static inline typename std::enable_if::kIsConst, bool>::type PushToStack(Stack *sk, UniquePtr::Type> elem) { if (!sk_push(reinterpret_cast<_STACK *>(sk), elem.get())) { return false; } // sk_push takes ownership on success. elem.release(); return true; } } // namespace bssl // Define begin() and end() for stack types so C++ range for loops work. template static inline bssl::internal::StackIterator begin(const Stack *sk) { return bssl::internal::StackIterator(sk, 0); } template static inline bssl::internal::StackIterator end(const Stack *sk) { return bssl::internal::StackIterator( sk, sk_num(reinterpret_cast(sk))); } } // extern C++ #endif #endif // OPENSSL_HEADER_STACK_H