/* ==================================================================== * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" #include "../aes/internal.h" #include "../modes/internal.h" #include "../delocate.h" #if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) #include #endif OPENSSL_MSVC_PRAGMA(warning(push)) OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code. typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; // AES key schedule to use int key_set; // Set if key initialised int iv_set; // Set if an iv is set GCM128_CONTEXT gcm; uint8_t *iv; // Temporary IV store int ivlen; // IV length int taglen; int iv_gen; // It is OK to generate IVs ctr128_f ctr; } EVP_AES_GCM_CTX; #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) #define VPAES static char vpaes_capable(void) { return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0; } #if defined(OPENSSL_X86_64) #define BSAES static char bsaes_capable(void) { return vpaes_capable(); } #endif #elif !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) #if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7 #define BSAES static char bsaes_capable(void) { return CRYPTO_is_NEON_capable(); } #endif #endif #if defined(BSAES) // On platforms where BSAES gets defined (just above), then these functions are // provided by asm. void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]); #else static char bsaes_capable(void) { return 0; } // On other platforms, bsaes_capable() will always return false and so the // following will never be called. static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc) { abort(); } static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]) { abort(); } #endif #if defined(VPAES) // On platforms where VPAES gets defined (just above), then these functions are // provided by asm. int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc); #else static char vpaes_capable(void) { return 0; } // On other platforms, vpaes_capable() will always return false and so the // following will never be called. static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc) { abort(); } #endif static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { if (hwaes_capable()) { ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)aes_hw_decrypt; dat->stream.cbc = NULL; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; } } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; } else if (vpaes_capable()) { ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } } else if (hwaes_capable()) { ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)aes_hw_encrypt; dat->stream.cbc = NULL; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; } else if (mode == EVP_CIPH_CTR_MODE) { dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks; } } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; } else if (vpaes_capable()) { ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } if (ret < 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.cbc) { (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); } else if (ctx->encrypt) { CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } else { CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { size_t bl = ctx->cipher->block_size; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (len < bl) { return 1; } len -= bl; for (size_t i = 0; i <= len; i += bl) { (*dat->block)(in + i, out + i, &dat->ks); } return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.ctr) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, dat->stream.ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, dat->block); } return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); return 1; } ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, block128_f *out_block, const uint8_t *key, size_t key_bytes) { if (hwaes_capable()) { aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt, 1); } if (out_block) { *out_block = (block128_f) aes_hw_encrypt; } return (ctr128_f)aes_hw_ctr32_encrypt_blocks; } if (bsaes_capable()) { AES_set_encrypt_key(key, key_bytes * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0); } if (out_block) { *out_block = (block128_f) AES_encrypt; } return (ctr128_f)bsaes_ctr32_encrypt_blocks; } if (vpaes_capable()) { vpaes_set_encrypt_key(key, key_bytes * 8, aes_key); if (out_block) { *out_block = (block128_f) vpaes_encrypt; } if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt, 0); } return NULL; } AES_set_encrypt_key(key, key_bytes * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0); } if (out_block) { *out_block = (block128_f) AES_encrypt; } return NULL; } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) { return 1; } if (key) { gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len); // If we have an iv can set it directly, otherwise use saved IV. if (iv == NULL && gctx->iv_set) { iv = gctx->iv; } if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { // If key set use IV, otherwise copy if (gctx->key_set) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); } else { OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); } gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } } // increment counter (64-bit int) by 1 static void ctr64_inc(uint8_t *counter) { int n = 8; uint8_t c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) { return; } } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) { return 0; } // Allocate memory for IV if needed if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } gctx->iv = OPENSSL_malloc(arg); if (!gctx->iv) { return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) { return 0; } OPENSSL_memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { return 0; } OPENSSL_memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: // Special case: -1 length restores whole IV if (arg == -1) { OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } // Fixed field must be at least 4 bytes and invocation field // at least 8. if (arg < 4 || (gctx->ivlen - arg) < 8) { return 0; } if (arg) { OPENSSL_memcpy(gctx->iv, ptr, arg); } if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { return 0; } gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) { return 0; } CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) { arg = gctx->ivlen; } OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); // Invocation field will be at least 8 bytes in size and // so no need to check wrap around or increment more than // last 8 bytes. ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { return 0; } OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = out->cipher_data; if (gctx->iv == c->iv) { gctx_out->iv = out->iv; } else { gctx_out->iv = OPENSSL_malloc(gctx->ivlen); if (!gctx_out->iv) { return 0; } OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; // If not set up, return error if (!gctx->key_set) { return -1; } if (!gctx->iv_set) { return -1; } if (in) { if (out == NULL) { if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { return -1; } } else if (ctx->encrypt) { if (gctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, gctx->ctr)) { return -1; } } else { if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { return -1; } } } else { if (gctx->ctr) { if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, gctx->ctr)) { return -1; } } else { if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { return -1; } } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { return -1; } gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; // Don't reuse the IV gctx->iv_set = 0; return 0; } } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_cbc; out->block_size = 16; out->key_len = 16; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CBC_MODE; out->init = aes_init_key; out->cipher = aes_cbc_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ctr; out->block_size = 1; out->key_len = 16; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CTR_MODE; out->init = aes_init_key; out->cipher = aes_ctr_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ecb; out->block_size = 16; out->key_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_ecb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ofb128; out->block_size = 1; out->key_len = 16; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_OFB_MODE; out->init = aes_init_key; out->cipher = aes_ofb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_gcm; out->block_size = 1; out->key_len = 16; out->iv_len = 12; out->ctx_size = sizeof(EVP_AES_GCM_CTX); out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = aes_gcm_init_key; out->cipher = aes_gcm_cipher; out->cleanup = aes_gcm_cleanup; out->ctrl = aes_gcm_ctrl; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_cbc; out->block_size = 16; out->key_len = 24; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CBC_MODE; out->init = aes_init_key; out->cipher = aes_cbc_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_ctr; out->block_size = 1; out->key_len = 24; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CTR_MODE; out->init = aes_init_key; out->cipher = aes_ctr_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_ecb; out->block_size = 16; out->key_len = 24; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_ecb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ofb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_ofb128; out->block_size = 1; out->key_len = 24; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_OFB_MODE; out->init = aes_init_key; out->cipher = aes_ofb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_gcm; out->block_size = 1; out->key_len = 24; out->iv_len = 12; out->ctx_size = sizeof(EVP_AES_GCM_CTX); out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = aes_gcm_init_key; out->cipher = aes_gcm_cipher; out->cleanup = aes_gcm_cleanup; out->ctrl = aes_gcm_ctrl; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_cbc; out->block_size = 16; out->key_len = 32; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CBC_MODE; out->init = aes_init_key; out->cipher = aes_cbc_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_ctr; out->block_size = 1; out->key_len = 32; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_CTR_MODE; out->init = aes_init_key; out->cipher = aes_ctr_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_ecb; out->block_size = 16; out->key_len = 32; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_ecb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_ofb128; out->block_size = 1; out->key_len = 32; out->iv_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_OFB_MODE; out->init = aes_init_key; out->cipher = aes_ofb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_gcm; out->block_size = 1; out->key_len = 32; out->iv_len = 12; out->ctx_size = sizeof(EVP_AES_GCM_CTX); out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = aes_gcm_init_key; out->cipher = aes_gcm_cipher; out->cleanup = aes_gcm_cleanup; out->ctrl = aes_gcm_ctrl; } #if defined(HWAES_ECB) static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { size_t bl = ctx->cipher->block_size; if (len < bl) { return 1; } aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); return 1; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ecb; out->block_size = 16; out->key_len = 16; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_hw_ecb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_192_ecb; out->block_size = 16; out->key_len = 24; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_hw_ecb_cipher; } DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_256_ecb; out->block_size = 16; out->key_len = 32; out->ctx_size = sizeof(EVP_AES_KEY); out->flags = EVP_CIPH_ECB_MODE; out->init = aes_init_key; out->cipher = aes_hw_ecb_cipher; } #define EVP_ECB_CIPHER_FUNCTION(keybits) \ const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ if (hwaes_capable()) { \ return aes_hw_##keybits##_ecb(); \ } \ return aes_##keybits##_ecb_generic(); \ } #else #define EVP_ECB_CIPHER_FUNCTION(keybits) \ const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ return aes_##keybits##_ecb_generic(); \ } #endif // HWAES_ECB #define EVP_CIPHER_FUNCTION(keybits, mode) \ const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ return aes_##keybits##_##mode##_generic(); \ } EVP_CIPHER_FUNCTION(128, cbc) EVP_CIPHER_FUNCTION(128, ctr) EVP_CIPHER_FUNCTION(128, ofb) EVP_CIPHER_FUNCTION(128, gcm) EVP_CIPHER_FUNCTION(192, cbc) EVP_CIPHER_FUNCTION(192, ctr) EVP_CIPHER_FUNCTION(192, ofb) EVP_CIPHER_FUNCTION(192, gcm) EVP_CIPHER_FUNCTION(256, cbc) EVP_CIPHER_FUNCTION(256, ctr) EVP_CIPHER_FUNCTION(256, ofb) EVP_CIPHER_FUNCTION(256, gcm) EVP_ECB_CIPHER_FUNCTION(128) EVP_ECB_CIPHER_FUNCTION(192) EVP_ECB_CIPHER_FUNCTION(256) #define EVP_AEAD_AES_GCM_TAG_LEN 16 struct aead_aes_gcm_ctx { union { double align; AES_KEY ks; } ks; GCM128_CONTEXT gcm; ctr128_f ctr; }; static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, size_t *out_tag_len, const uint8_t *key, size_t key_len, size_t tag_len) { const size_t key_bits = key_len * 8; if (key_bits != 128 && key_bits != 256) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; // EVP_AEAD_CTX_init should catch this. } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_GCM_TAG_LEN; } if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } gcm_ctx->ctr = aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len); *out_tag_len = tag_len; return 1; } static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t requested_tag_len) { struct aead_aes_gcm_ctx *gcm_ctx; gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx)); if (gcm_ctx == NULL) { return 0; } size_t actual_tag_len; if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, requested_tag_len)) { OPENSSL_free(gcm_ctx); return 0; } ctx->aead_state = gcm_ctx; ctx->tag_len = actual_tag_len; return 1; } static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { OPENSSL_free(ctx->aead_state); } static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; GCM128_CONTEXT gcm; if (extra_in_len + ctx->tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < extra_in_len + ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len == 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } const AES_KEY *key = &gcm_ctx->ks.ks; OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { return 0; } } if (extra_in_len) { if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag, extra_in_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) { return 0; } } } CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, ctx->tag_len); *out_tag_len = ctx->tag_len + extra_in_len; return 1; } static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; GCM128_CONTEXT gcm; if (nonce_len == 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (in_tag_len != ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } const AES_KEY *key = &gcm_ctx->ks.ks; OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) { return 0; } } CRYPTO_gcm128_tag(&gcm, tag, ctx->tag_len); if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } return 1; } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 32; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } struct aead_aes_gcm_tls12_ctx { struct aead_aes_gcm_ctx gcm_ctx; uint64_t min_next_nonce; }; static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t requested_tag_len) { struct aead_aes_gcm_tls12_ctx *gcm_ctx; gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_tls12_ctx)); if (gcm_ctx == NULL) { return 0; } gcm_ctx->min_next_nonce = 0; size_t actual_tag_len; if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, requested_tag_len)) { OPENSSL_free(gcm_ctx); return 0; } ctx->aead_state = gcm_ctx; ctx->tag_len = actual_tag_len; return 1; } static int aead_aes_gcm_tls12_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { struct aead_aes_gcm_tls12_ctx *gcm_ctx = ctx->aead_state; if (nonce_len != 12) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } // The given nonces must be strictly monotonically increasing. uint64_t given_counter; OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), sizeof(given_counter)); given_counter = CRYPTO_bswap8(given_counter); if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); return 0; } gcm_ctx->min_next_nonce = given_counter + 1; return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, in_len, extra_in, extra_in_len, ad, ad_len); } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_tls12_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 32; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_tls12_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } struct aead_aes_gcm_tls13_ctx { struct aead_aes_gcm_ctx gcm_ctx; uint64_t min_next_nonce; uint64_t mask; uint8_t first; }; static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t requested_tag_len) { struct aead_aes_gcm_tls13_ctx *gcm_ctx; gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_tls13_ctx)); if (gcm_ctx == NULL) { return 0; } gcm_ctx->min_next_nonce = 0; gcm_ctx->first = 1; size_t actual_tag_len; if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, requested_tag_len)) { OPENSSL_free(gcm_ctx); return 0; } ctx->aead_state = gcm_ctx; ctx->tag_len = actual_tag_len; return 1; } static int aead_aes_gcm_tls13_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { struct aead_aes_gcm_tls13_ctx *gcm_ctx = ctx->aead_state; if (nonce_len != 12) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } // The given nonces must be strictly monotonically increasing. See // https://tools.ietf.org/html/draft-ietf-tls-tls13-28#section-5.3 for details // of the TLS 1.3 nonce construction. uint64_t given_counter; OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter), sizeof(given_counter)); given_counter = CRYPTO_bswap8(given_counter); if (gcm_ctx->first) { // In the first call the sequence number will be zero and therefore the // given nonce will be 0 ^ mask = mask. gcm_ctx->mask = given_counter; gcm_ctx->first = 0; } given_counter ^= gcm_ctx->mask; if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); return 0; } gcm_ctx->min_next_nonce = given_counter + 1; return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, in_len, extra_in, extra_in_len, ad, ad_len); } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_tls13_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 32; out->nonce_len = 12; out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; out->seal_scatter_supports_extra_in = 1; out->init = aead_aes_gcm_tls13_init; out->cleanup = aead_aes_gcm_cleanup; out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; out->open_gather = aead_aes_gcm_open_gather; } int EVP_has_aes_hardware(void) { #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) return hwaes_capable() && crypto_gcm_clmul_enabled(); #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); #else return 0; #endif } OPENSSL_MSVC_PRAGMA(warning(pop))