// Copyright 2016 The Fuchsia Authors // // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file or at // https://opensource.org/licenses/MIT #include #include #include #include #include #include #include #include #include struct hpet_timer_registers { volatile uint64_t conf_caps; volatile uint64_t comparator_value; volatile uint64_t fsb_int_route; uint8_t _reserved[8]; } __PACKED; struct hpet_registers { volatile uint64_t general_caps; uint8_t _reserved0[8]; volatile uint64_t general_config; uint8_t _reserved1[8]; volatile uint64_t general_int_status; uint8_t _reserved2[0xf0 - 0x28]; volatile uint64_t main_counter_value; uint8_t _reserved3[8]; struct hpet_timer_registers timers[]; } __PACKED; static spin_lock_t lock = SPIN_LOCK_INITIAL_VALUE; static struct acpi_hpet_descriptor hpet_desc; static bool hpet_present = false; static struct hpet_registers* hpet_regs; uint64_t _hpet_ticks_per_ms; static uint64_t tick_period_in_fs; static uint8_t num_timers; /* Minimum number of ticks ahead a oneshot timer needs to be. Targetted * to be 100ns */ static uint64_t min_ticks_ahead; #define MAX_PERIOD_IN_FS 0x05F5E100ULL /* Bit masks for the general_config register */ #define GEN_CONF_EN 1 /* Bit masks for the per-time conf_caps register */ #define TIMER_CONF_LEVEL_TRIGGERED (1ULL << 1) #define TIMER_CONF_INT_EN (1ULL << 2) #define TIMER_CONF_PERIODIC (1ULL << 3) #define TIMER_CAP_PERIODIC(reg) BIT_SET(reg, 4) #define TIMER_CAP_64BIT(reg) BIT_SET(reg, 5) #define TIMER_CONF_PERIODIC_SET_COUNT (1ULL << 6) #define TIMER_CONF_IRQ(n) ((uint64_t)((n) & (0x1f)) << 9) #define TIMER_CAP_IRQS(reg) static_cast(BITS_SHIFT(reg, 63, 32)) static void hpet_init(uint level) { zx_status_t status = platform_find_hpet(&hpet_desc); if (status != ZX_OK) { return; } if (hpet_desc.port_io) { return; } zx_status_t res = VmAspace::kernel_aspace()->AllocPhysical( "hpet", PAGE_SIZE, /* size */ (void**)&hpet_regs, /* returned virtual address */ PAGE_SIZE_SHIFT, /* alignment log2 */ (paddr_t)hpet_desc.address, /* physical address */ 0, /* vmm flags */ ARCH_MMU_FLAG_UNCACHED_DEVICE | ARCH_MMU_FLAG_PERM_READ | ARCH_MMU_FLAG_PERM_WRITE); if (res != ZX_OK) { return; } bool has_64bit_count = BIT_SET(hpet_regs->general_caps, 13); tick_period_in_fs = hpet_regs->general_caps >> 32; if (tick_period_in_fs == 0 || tick_period_in_fs > MAX_PERIOD_IN_FS) { goto fail; } /* We only support HPETs that are 64-bit and have at least two timers */ num_timers = static_cast(BITS_SHIFT(hpet_regs->general_caps, 12, 8) + 1); if (!has_64bit_count || num_timers < 2) { goto fail; } /* Make sure all timers have interrupts disabled */ for (uint8_t i = 0; i < num_timers; ++i) { hpet_regs->timers[i].conf_caps &= ~TIMER_CONF_INT_EN; } _hpet_ticks_per_ms = 1000000000000ULL / tick_period_in_fs; min_ticks_ahead = 100000000ULL / tick_period_in_fs; hpet_present = true; return; fail: VmAspace::kernel_aspace()->FreeRegion(reinterpret_cast(hpet_regs)); hpet_regs = nullptr; num_timers = 0; } /* Begin running after ACPI tables are up */ LK_INIT_HOOK(hpet, hpet_init, LK_INIT_LEVEL_VM + 2); zx_status_t hpet_timer_disable(uint n) { if (unlikely(n >= num_timers)) { return ZX_ERR_NOT_SUPPORTED; } AutoSpinLockNoIrqSave guard(&lock); hpet_regs->timers[n].conf_caps &= ~TIMER_CONF_INT_EN; return ZX_OK; } uint64_t hpet_get_value(void) { uint64_t v = hpet_regs->main_counter_value; uint64_t v2 = hpet_regs->main_counter_value; /* Even though the specification says it should not be necessary to read * multiple times, we have observed that QEMU converts the 64-bit * memory access in to two 32-bit accesses, resulting in bad reads. QEMU * reads the low 32-bits first, so the result is a large jump when it * wraps 32 bits. To work around this, we return the lesser of two reads. */ return fbl::min(v, v2); } zx_status_t hpet_set_value(uint64_t v) { AutoSpinLockNoIrqSave guard(&lock); if (hpet_regs->general_config & GEN_CONF_EN) { return ZX_ERR_BAD_STATE; } hpet_regs->main_counter_value = v; return ZX_OK; } zx_status_t hpet_timer_configure_irq(uint n, uint irq) { if (unlikely(n >= num_timers)) { return ZX_ERR_NOT_SUPPORTED; } AutoSpinLockNoIrqSave guard(&lock); uint32_t irq_bitmap = TIMER_CAP_IRQS(hpet_regs->timers[n].conf_caps); if (irq >= 32 || !BIT_SET(irq_bitmap, irq)) { return ZX_ERR_NOT_SUPPORTED; } uint64_t conf = hpet_regs->timers[n].conf_caps; conf &= ~TIMER_CONF_IRQ(~0ULL); conf |= TIMER_CONF_IRQ(irq); hpet_regs->timers[n].conf_caps = conf; return ZX_OK; } zx_status_t hpet_timer_set_oneshot(uint n, uint64_t deadline) { if (unlikely(n >= num_timers)) { return ZX_ERR_NOT_SUPPORTED; } AutoSpinLockNoIrqSave guard(&lock); uint64_t difference = deadline - hpet_get_value(); if (unlikely(difference > (1ULL >> 63))) { /* Either this is a very long timer, or we wrapped around */ return ZX_ERR_INVALID_ARGS; } if (unlikely(difference < min_ticks_ahead)) { return ZX_ERR_INVALID_ARGS; } hpet_regs->timers[n].conf_caps &= ~(TIMER_CONF_PERIODIC | TIMER_CONF_PERIODIC_SET_COUNT); hpet_regs->timers[n].comparator_value = deadline; hpet_regs->timers[n].conf_caps |= TIMER_CONF_INT_EN; return ZX_OK; } zx_status_t hpet_timer_set_periodic(uint n, uint64_t period) { if (unlikely(n >= num_timers)) { return ZX_ERR_NOT_SUPPORTED; } AutoSpinLockNoIrqSave guard(&lock); if (!TIMER_CAP_PERIODIC(hpet_regs->timers[n].conf_caps)) { return ZX_ERR_NOT_SUPPORTED; } /* It's unsafe to set a periodic timer while the hpet is running or the * main counter value is not 0. */ if ((hpet_regs->general_config & GEN_CONF_EN) || hpet_regs->main_counter_value != 0ULL) { return ZX_ERR_BAD_STATE; } hpet_regs->timers[n].conf_caps |= TIMER_CONF_PERIODIC | TIMER_CONF_PERIODIC_SET_COUNT; hpet_regs->timers[n].comparator_value = period; hpet_regs->timers[n].conf_caps |= TIMER_CONF_INT_EN; return ZX_OK; } bool hpet_is_present(void) { return hpet_present; } void hpet_enable(void) { DEBUG_ASSERT(hpet_is_present()); AutoSpinLockNoIrqSave guard(&lock); hpet_regs->general_config |= GEN_CONF_EN; } void hpet_disable(void) { DEBUG_ASSERT(hpet_is_present()); AutoSpinLockNoIrqSave guard(&lock); hpet_regs->general_config &= ~GEN_CONF_EN; } /* Blocks for the requested number of milliseconds. * For use in calibration */ void hpet_wait_ms(uint16_t ms) { uint64_t init_timer_value = hpet_regs->main_counter_value; uint64_t target = (uint64_t)ms * _hpet_ticks_per_ms; while (hpet_regs->main_counter_value - init_timer_value <= target) ; }