/* * DPP crypto functionality * Copyright (c) 2017, Qualcomm Atheros, Inc. * Copyright (c) 2018-2020, The Linux Foundation * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/base64.h" #include "utils/json.h" #include "common/ieee802_11_defs.h" #include "crypto/crypto.h" #include "crypto/random.h" #include "crypto/sha384.h" #include "crypto/sha512.h" #include "tls/asn1.h" #include "dpp.h" #include "dpp_i.h" static const struct dpp_curve_params dpp_curves[] = { /* The mandatory to support and the default NIST P-256 curve needs to * be the first entry on this list. */ { "prime256v1", 32, 32, 16, 32, "P-256", 19, "ES256" }, { "secp384r1", 48, 48, 24, 48, "P-384", 20, "ES384" }, { "secp521r1", 64, 64, 32, 66, "P-521", 21, "ES512" }, { "brainpoolP256r1", 32, 32, 16, 32, "BP-256", 28, "BS256" }, { "brainpoolP384r1", 48, 48, 24, 48, "BP-384", 29, "BS384" }, { "brainpoolP512r1", 64, 64, 32, 64, "BP-512", 30, "BS512" }, { NULL, 0, 0, 0, 0, NULL, 0, NULL } }; const struct dpp_curve_params * dpp_get_curve_name(const char *name) { int i; if (!name) return &dpp_curves[0]; for (i = 0; dpp_curves[i].name; i++) { if (os_strcmp(name, dpp_curves[i].name) == 0 || (dpp_curves[i].jwk_crv && os_strcmp(name, dpp_curves[i].jwk_crv) == 0)) return &dpp_curves[i]; } return NULL; } const struct dpp_curve_params * dpp_get_curve_jwk_crv(const char *name) { int i; for (i = 0; dpp_curves[i].name; i++) { if (dpp_curves[i].jwk_crv && os_strcmp(name, dpp_curves[i].jwk_crv) == 0) return &dpp_curves[i]; } return NULL; } const struct dpp_curve_params * dpp_get_curve_ike_group(u16 group) { int i; for (i = 0; dpp_curves[i].name; i++) { if (dpp_curves[i].ike_group == group) return &dpp_curves[i]; } return NULL; } void dpp_debug_print_key(const char *title, struct crypto_ec_key *key) { struct wpabuf *der = NULL; crypto_ec_key_debug_print(key, title); der = crypto_ec_key_get_ecprivate_key(key, true); if (der) { wpa_hexdump_buf_key(MSG_DEBUG, "DPP: ECPrivateKey", der); } else { der = crypto_ec_key_get_subject_public_key(key); if (der) wpa_hexdump_buf_key(MSG_DEBUG, "DPP: EC_PUBKEY", der); } wpabuf_clear_free(der); } static int dpp_hash_vector(const struct dpp_curve_params *curve, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { if (curve->hash_len == 32) return sha256_vector(num_elem, addr, len, mac); if (curve->hash_len == 48) return sha384_vector(num_elem, addr, len, mac); if (curve->hash_len == 64) return sha512_vector(num_elem, addr, len, mac); return -1; } int dpp_hkdf_expand(size_t hash_len, const u8 *secret, size_t secret_len, const char *label, u8 *out, size_t outlen) { if (hash_len == 32) return hmac_sha256_kdf(secret, secret_len, NULL, (const u8 *) label, os_strlen(label), out, outlen); if (hash_len == 48) return hmac_sha384_kdf(secret, secret_len, NULL, (const u8 *) label, os_strlen(label), out, outlen); if (hash_len == 64) return hmac_sha512_kdf(secret, secret_len, NULL, (const u8 *) label, os_strlen(label), out, outlen); return -1; } int dpp_hmac_vector(size_t hash_len, const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { if (hash_len == 32) return hmac_sha256_vector(key, key_len, num_elem, addr, len, mac); if (hash_len == 48) return hmac_sha384_vector(key, key_len, num_elem, addr, len, mac); if (hash_len == 64) return hmac_sha512_vector(key, key_len, num_elem, addr, len, mac); return -1; } static int dpp_hmac(size_t hash_len, const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { if (hash_len == 32) return hmac_sha256(key, key_len, data, data_len, mac); if (hash_len == 48) return hmac_sha384(key, key_len, data, data_len, mac); if (hash_len == 64) return hmac_sha512(key, key_len, data, data_len, mac); return -1; } #ifdef CONFIG_DPP2 static int dpp_pbkdf2_f(size_t hash_len, const u8 *password, size_t password_len, const u8 *salt, size_t salt_len, unsigned int iterations, unsigned int count, u8 *digest) { unsigned char tmp[DPP_MAX_HASH_LEN], tmp2[DPP_MAX_HASH_LEN]; unsigned int i; size_t j; u8 count_buf[4]; const u8 *addr[2]; size_t len[2]; addr[0] = salt; len[0] = salt_len; addr[1] = count_buf; len[1] = 4; /* F(P, S, c, i) = U1 xor U2 xor ... Uc * U1 = PRF(P, S || i) * U2 = PRF(P, U1) * Uc = PRF(P, Uc-1) */ WPA_PUT_BE32(count_buf, count); if (dpp_hmac_vector(hash_len, password, password_len, 2, addr, len, tmp)) return -1; os_memcpy(digest, tmp, hash_len); for (i = 1; i < iterations; i++) { if (dpp_hmac(hash_len, password, password_len, tmp, hash_len, tmp2)) return -1; os_memcpy(tmp, tmp2, hash_len); for (j = 0; j < hash_len; j++) digest[j] ^= tmp2[j]; } return 0; } int dpp_pbkdf2(size_t hash_len, const u8 *password, size_t password_len, const u8 *salt, size_t salt_len, unsigned int iterations, u8 *buf, size_t buflen) { unsigned int count = 0; unsigned char *pos = buf; size_t left = buflen, plen; unsigned char digest[DPP_MAX_HASH_LEN]; while (left > 0) { count++; if (dpp_pbkdf2_f(hash_len, password, password_len, salt, salt_len, iterations, count, digest)) return -1; plen = left > hash_len ? hash_len : left; os_memcpy(pos, digest, plen); pos += plen; left -= plen; } return 0; } #endif /* CONFIG_DPP2 */ struct crypto_ec_key * dpp_set_pubkey_point(struct crypto_ec_key *group_key, const u8 *buf, size_t len) { int ike_group = crypto_ec_key_group(group_key); if (len & 1) return NULL; if (ike_group < 0) { wpa_printf(MSG_ERROR, "DPP: Could not get EC group"); return NULL; } return crypto_ec_key_set_pub(ike_group, buf, buf + len / 2, len / 2); } int dpp_get_pubkey_hash(struct crypto_ec_key *key, u8 *hash) { struct wpabuf *uncomp; const u8 *addr[1]; size_t len[1]; int res; if (!key) return -1; uncomp = crypto_ec_key_get_pubkey_point(key, 1); if (!uncomp) return -1; addr[0] = wpabuf_head(uncomp); len[0] = wpabuf_len(uncomp); res = sha256_vector(1, addr, len, hash); wpabuf_free(uncomp); return res; } struct crypto_ec_key * dpp_gen_keypair(const struct dpp_curve_params *curve) { struct crypto_ec_key *key; wpa_printf(MSG_DEBUG, "DPP: Generating a keypair"); key = crypto_ec_key_gen(curve->ike_group); if (key && wpa_debug_show_keys) dpp_debug_print_key("Own generated key", key); return key; } struct crypto_ec_key * dpp_set_keypair(const struct dpp_curve_params **curve, const u8 *privkey, size_t privkey_len) { struct crypto_ec_key *key; int group; key = crypto_ec_key_parse_priv(privkey, privkey_len); if (!key) { wpa_printf(MSG_INFO, "DPP: Failed to parse private key"); return NULL; } group = crypto_ec_key_group(key); if (group < 0) { crypto_ec_key_deinit(key); return NULL; } *curve = dpp_get_curve_ike_group(group); if (!*curve) { wpa_printf(MSG_INFO, "DPP: Unsupported curve (group=%d) in pre-assigned key", group); crypto_ec_key_deinit(key); return NULL; } return key; } int dpp_bootstrap_key_hash(struct dpp_bootstrap_info *bi) { struct wpabuf *der; int res; der = crypto_ec_key_get_subject_public_key(bi->pubkey); if (!der) return -1; wpa_hexdump_buf(MSG_DEBUG, "DPP: Compressed public key (DER)", der); res = dpp_bi_pubkey_hash(bi, wpabuf_head(der), wpabuf_len(der)); if (res < 0) wpa_printf(MSG_DEBUG, "DPP: Failed to hash public key"); wpabuf_free(der); return res; } int dpp_keygen(struct dpp_bootstrap_info *bi, const char *curve, const u8 *privkey, size_t privkey_len) { char *base64 = NULL; char *pos, *end; size_t len; struct wpabuf *der = NULL; bi->curve = dpp_get_curve_name(curve); if (!bi->curve) { wpa_printf(MSG_INFO, "DPP: Unsupported curve: %s", curve); return -1; } if (privkey) bi->pubkey = dpp_set_keypair(&bi->curve, privkey, privkey_len); else bi->pubkey = dpp_gen_keypair(bi->curve); if (!bi->pubkey) goto fail; bi->own = 1; der = crypto_ec_key_get_subject_public_key(bi->pubkey); if (!der) goto fail; wpa_hexdump_buf(MSG_DEBUG, "DPP: Compressed public key (DER)", der); if (dpp_bi_pubkey_hash(bi, wpabuf_head(der), wpabuf_len(der)) < 0) { wpa_printf(MSG_DEBUG, "DPP: Failed to hash public key"); goto fail; } base64 = base64_encode(wpabuf_head(der), wpabuf_len(der), &len); wpabuf_free(der); der = NULL; if (!base64) goto fail; pos = base64; end = pos + len; for (;;) { pos = os_strchr(pos, '\n'); if (!pos) break; os_memmove(pos, pos + 1, end - pos); } os_free(bi->pk); bi->pk = base64; return 0; fail: os_free(base64); wpabuf_free(der); return -1; } int dpp_derive_k1(const u8 *Mx, size_t Mx_len, u8 *k1, unsigned int hash_len) { u8 salt[DPP_MAX_HASH_LEN], prk[DPP_MAX_HASH_LEN]; const char *info = "first intermediate key"; int res; /* k1 = HKDF(<>, "first intermediate key", M.x) */ /* HKDF-Extract(<>, M.x) */ os_memset(salt, 0, hash_len); if (dpp_hmac(hash_len, salt, hash_len, Mx, Mx_len, prk) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK = HKDF-Extract(<>, IKM=M.x)", prk, hash_len); /* HKDF-Expand(PRK, info, L) */ res = dpp_hkdf_expand(hash_len, prk, hash_len, info, k1, hash_len); os_memset(prk, 0, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: k1 = HKDF-Expand(PRK, info, L)", k1, hash_len); return 0; } int dpp_derive_k2(const u8 *Nx, size_t Nx_len, u8 *k2, unsigned int hash_len) { u8 salt[DPP_MAX_HASH_LEN], prk[DPP_MAX_HASH_LEN]; const char *info = "second intermediate key"; int res; /* k2 = HKDF(<>, "second intermediate key", N.x) */ /* HKDF-Extract(<>, N.x) */ os_memset(salt, 0, hash_len); res = dpp_hmac(hash_len, salt, hash_len, Nx, Nx_len, prk); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK = HKDF-Extract(<>, IKM=N.x)", prk, hash_len); /* HKDF-Expand(PRK, info, L) */ res = dpp_hkdf_expand(hash_len, prk, hash_len, info, k2, hash_len); os_memset(prk, 0, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: k2 = HKDF-Expand(PRK, info, L)", k2, hash_len); return 0; } int dpp_derive_bk_ke(struct dpp_authentication *auth) { unsigned int hash_len = auth->curve->hash_len; size_t nonce_len = auth->curve->nonce_len; u8 nonces[2 * DPP_MAX_NONCE_LEN]; const char *info_ke = "DPP Key"; int res; const u8 *addr[3]; size_t len[3]; size_t num_elem = 0; if (!auth->Mx_len || !auth->Nx_len) { wpa_printf(MSG_DEBUG, "DPP: Mx/Nx not available - cannot derive ke"); return -1; } /* bk = HKDF-Extract(I-nonce | R-nonce, M.x | N.x [| L.x]) */ os_memcpy(nonces, auth->i_nonce, nonce_len); os_memcpy(&nonces[nonce_len], auth->r_nonce, nonce_len); addr[num_elem] = auth->Mx; len[num_elem] = auth->Mx_len; num_elem++; addr[num_elem] = auth->Nx; len[num_elem] = auth->Nx_len; num_elem++; if (auth->peer_bi && auth->own_bi) { if (!auth->Lx_len) { wpa_printf(MSG_DEBUG, "DPP: Lx not available - cannot derive ke"); return -1; } addr[num_elem] = auth->Lx; len[num_elem] = auth->secret_len; num_elem++; } res = dpp_hmac_vector(hash_len, nonces, 2 * nonce_len, num_elem, addr, len, auth->bk); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: bk = HKDF-Extract(I-nonce | R-nonce, M.x | N.x [| L.x])", auth->bk, hash_len); /* ke = HKDF-Expand(bk, "DPP Key", length) */ res = dpp_hkdf_expand(hash_len, auth->bk, hash_len, info_ke, auth->ke, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: ke = HKDF-Expand(bk, \"DPP Key\", length)", auth->ke, hash_len); return 0; } int dpp_ecdh(struct crypto_ec_key *own, struct crypto_ec_key *peer, u8 *secret, size_t *secret_len) { struct crypto_ecdh *ecdh; struct wpabuf *peer_pub, *secret_buf = NULL; int ret = -1; *secret_len = 0; ecdh = crypto_ecdh_init2(crypto_ec_key_group(own), own); if (!ecdh) { wpa_printf(MSG_ERROR, "DPP: crypto_ecdh_init2() failed"); return -1; } peer_pub = crypto_ec_key_get_pubkey_point(peer, 0); if (!peer_pub) { wpa_printf(MSG_ERROR, "DPP: crypto_ec_key_get_pubkey_point() failed"); goto fail; } secret_buf = crypto_ecdh_set_peerkey(ecdh, 1, wpabuf_head(peer_pub), wpabuf_len(peer_pub)); if (!secret_buf) { wpa_printf(MSG_ERROR, "DPP: crypto_ecdh_set_peerkey() failed"); goto fail; } if (wpabuf_len(secret_buf) > DPP_MAX_SHARED_SECRET_LEN) { wpa_printf(MSG_ERROR, "DPP: ECDH secret longer than expected"); goto fail; } *secret_len = wpabuf_len(secret_buf); os_memcpy(secret, wpabuf_head(secret_buf), wpabuf_len(secret_buf)); ret = 0; fail: wpabuf_clear_free(secret_buf); wpabuf_free(peer_pub); crypto_ecdh_deinit(ecdh); return ret; } int dpp_bi_pubkey_hash(struct dpp_bootstrap_info *bi, const u8 *data, size_t data_len) { const u8 *addr[2]; size_t len[2]; addr[0] = data; len[0] = data_len; if (sha256_vector(1, addr, len, bi->pubkey_hash) < 0) return -1; wpa_hexdump(MSG_DEBUG, "DPP: Public key hash", bi->pubkey_hash, SHA256_MAC_LEN); addr[0] = (const u8 *) "chirp"; len[0] = 5; addr[1] = data; len[1] = data_len; if (sha256_vector(2, addr, len, bi->pubkey_hash_chirp) < 0) return -1; wpa_hexdump(MSG_DEBUG, "DPP: Public key hash (chirp)", bi->pubkey_hash_chirp, SHA256_MAC_LEN); return 0; } int dpp_get_subject_public_key(struct dpp_bootstrap_info *bi, const u8 *data, size_t data_len) { struct crypto_ec_key *key; if (dpp_bi_pubkey_hash(bi, data, data_len) < 0) { wpa_printf(MSG_DEBUG, "DPP: Failed to hash public key"); return -1; } key = crypto_ec_key_parse_pub(data, data_len); if (!key) { wpa_printf(MSG_DEBUG, "DPP: Could not parse URI public-key SubjectPublicKeyInfo"); return -1; } bi->curve = dpp_get_curve_ike_group(crypto_ec_key_group(key)); if (!bi->curve) { wpa_printf(MSG_DEBUG, "DPP: Unsupported SubjectPublicKeyInfo curve: group %d", crypto_ec_key_group(key)); goto fail; } bi->pubkey = key; return 0; fail: crypto_ec_key_deinit(key); return -1; } static struct wpabuf * dpp_parse_jws_prot_hdr(const struct dpp_curve_params *curve, const u8 *prot_hdr, u16 prot_hdr_len, int *hash_func) { struct json_token *root, *token; struct wpabuf *kid = NULL; root = json_parse((const char *) prot_hdr, prot_hdr_len); if (!root) { wpa_printf(MSG_DEBUG, "DPP: JSON parsing failed for JWS Protected Header"); goto fail; } if (root->type != JSON_OBJECT) { wpa_printf(MSG_DEBUG, "DPP: JWS Protected Header root is not an object"); goto fail; } token = json_get_member(root, "typ"); if (!token || token->type != JSON_STRING) { wpa_printf(MSG_DEBUG, "DPP: No typ string value found"); goto fail; } wpa_printf(MSG_DEBUG, "DPP: JWS Protected Header typ=%s", token->string); if (os_strcmp(token->string, "dppCon") != 0) { wpa_printf(MSG_DEBUG, "DPP: Unsupported JWS Protected Header typ=%s", token->string); goto fail; } token = json_get_member(root, "alg"); if (!token || token->type != JSON_STRING) { wpa_printf(MSG_DEBUG, "DPP: No alg string value found"); goto fail; } wpa_printf(MSG_DEBUG, "DPP: JWS Protected Header alg=%s", token->string); if (os_strcmp(token->string, curve->jws_alg) != 0) { wpa_printf(MSG_DEBUG, "DPP: Unexpected JWS Protected Header alg=%s (expected %s based on C-sign-key)", token->string, curve->jws_alg); goto fail; } if (os_strcmp(token->string, "ES256") == 0 || os_strcmp(token->string, "BS256") == 0) { *hash_func = CRYPTO_HASH_ALG_SHA256; } else if (os_strcmp(token->string, "ES384") == 0 || os_strcmp(token->string, "BS384") == 0) { *hash_func = CRYPTO_HASH_ALG_SHA384; } else if (os_strcmp(token->string, "ES512") == 0 || os_strcmp(token->string, "BS512") == 0) { *hash_func = CRYPTO_HASH_ALG_SHA512; } else { *hash_func = -1; wpa_printf(MSG_DEBUG, "DPP: Unsupported JWS Protected Header alg=%s", token->string); goto fail; } kid = json_get_member_base64url(root, "kid"); if (!kid) { wpa_printf(MSG_DEBUG, "DPP: No kid string value found"); goto fail; } wpa_hexdump_buf(MSG_DEBUG, "DPP: JWS Protected Header kid (decoded)", kid); fail: json_free(root); return kid; } static int dpp_check_pubkey_match(struct crypto_ec_key *pub, struct wpabuf *r_hash) { struct wpabuf *uncomp; int res; u8 hash[SHA256_MAC_LEN]; const u8 *addr[1]; size_t len[1]; if (wpabuf_len(r_hash) != SHA256_MAC_LEN) return -1; uncomp = crypto_ec_key_get_pubkey_point(pub, 1); if (!uncomp) return -1; addr[0] = wpabuf_head(uncomp); len[0] = wpabuf_len(uncomp); wpa_hexdump(MSG_DEBUG, "DPP: Uncompressed public key", addr[0], len[0]); res = sha256_vector(1, addr, len, hash); wpabuf_free(uncomp); if (res < 0) return -1; if (os_memcmp(hash, wpabuf_head(r_hash), SHA256_MAC_LEN) != 0) { wpa_printf(MSG_DEBUG, "DPP: Received hash value does not match calculated public key hash value"); wpa_hexdump(MSG_DEBUG, "DPP: Calculated hash", hash, SHA256_MAC_LEN); return -1; } return 0; } enum dpp_status_error dpp_process_signed_connector(struct dpp_signed_connector_info *info, struct crypto_ec_key *csign_pub, const char *connector) { enum dpp_status_error ret = 255; const char *pos, *end, *signed_start, *signed_end; struct wpabuf *kid = NULL; unsigned char *prot_hdr = NULL, *signature = NULL; size_t prot_hdr_len = 0, signature_len = 0, signed_len; int res, hash_func = -1; const struct dpp_curve_params *curve; u8 *hash = NULL; curve = dpp_get_curve_ike_group(crypto_ec_key_group(csign_pub)); if (!curve) goto fail; wpa_printf(MSG_DEBUG, "DPP: C-sign-key group: %s", curve->jwk_crv); os_memset(info, 0, sizeof(*info)); signed_start = pos = connector; end = os_strchr(pos, '.'); if (!end) { wpa_printf(MSG_DEBUG, "DPP: Missing dot(1) in signedConnector"); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } prot_hdr = base64_url_decode(pos, end - pos, &prot_hdr_len); if (!prot_hdr) { wpa_printf(MSG_DEBUG, "DPP: Failed to base64url decode signedConnector JWS Protected Header"); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } wpa_hexdump_ascii(MSG_DEBUG, "DPP: signedConnector - JWS Protected Header", prot_hdr, prot_hdr_len); kid = dpp_parse_jws_prot_hdr(curve, prot_hdr, prot_hdr_len, &hash_func); if (!kid) { ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } if (wpabuf_len(kid) != SHA256_MAC_LEN) { wpa_printf(MSG_DEBUG, "DPP: Unexpected signedConnector JWS Protected Header kid length: %u (expected %u)", (unsigned int) wpabuf_len(kid), SHA256_MAC_LEN); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } pos = end + 1; end = os_strchr(pos, '.'); if (!end) { wpa_printf(MSG_DEBUG, "DPP: Missing dot(2) in signedConnector"); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } signed_end = end - 1; info->payload = base64_url_decode(pos, end - pos, &info->payload_len); if (!info->payload) { wpa_printf(MSG_DEBUG, "DPP: Failed to base64url decode signedConnector JWS Payload"); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } wpa_hexdump_ascii(MSG_DEBUG, "DPP: signedConnector - JWS Payload", info->payload, info->payload_len); pos = end + 1; signature = base64_url_decode(pos, os_strlen(pos), &signature_len); if (!signature) { wpa_printf(MSG_DEBUG, "DPP: Failed to base64url decode signedConnector signature"); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } wpa_hexdump(MSG_DEBUG, "DPP: signedConnector - signature", signature, signature_len); if (dpp_check_pubkey_match(csign_pub, kid) < 0) { ret = DPP_STATUS_NO_MATCH; goto fail; } if (signature_len & 0x01) { wpa_printf(MSG_DEBUG, "DPP: Unexpected signedConnector signature length (%d)", (int) signature_len); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } hash = os_malloc(curve->hash_len); if (!hash) goto fail; signed_len = signed_end - signed_start + 1; if (hash_func == CRYPTO_HASH_ALG_SHA256) res = sha256_vector(1, (const u8 **) &signed_start, &signed_len, hash); else if (hash_func == CRYPTO_HASH_ALG_SHA384) res = sha384_vector(1, (const u8 **) &signed_start, &signed_len, hash); else if (hash_func == CRYPTO_HASH_ALG_SHA512) res = sha512_vector(1, (const u8 **) &signed_start, &signed_len, hash); else goto fail; if (res) goto fail; res = crypto_ec_key_verify_signature_r_s(csign_pub, hash, curve->hash_len, signature, signature_len / 2, signature + signature_len / 2, signature_len / 2); if (res != 1) { wpa_printf(MSG_DEBUG, "DPP: signedConnector signature check failed (res=%d)", res); ret = DPP_STATUS_INVALID_CONNECTOR; goto fail; } ret = DPP_STATUS_OK; fail: os_free(hash); os_free(prot_hdr); wpabuf_free(kid); os_free(signature); return ret; } enum dpp_status_error dpp_check_signed_connector(struct dpp_signed_connector_info *info, const u8 *csign_key, size_t csign_key_len, const u8 *peer_connector, size_t peer_connector_len) { struct crypto_ec_key *csign; char *signed_connector = NULL; enum dpp_status_error res = DPP_STATUS_INVALID_CONNECTOR; csign = crypto_ec_key_parse_pub(csign_key, csign_key_len); if (!csign) { wpa_printf(MSG_ERROR, "DPP: Failed to parse local C-sign-key information"); goto fail; } wpa_hexdump_ascii(MSG_DEBUG, "DPP: Peer signedConnector", peer_connector, peer_connector_len); signed_connector = os_malloc(peer_connector_len + 1); if (!signed_connector) goto fail; os_memcpy(signed_connector, peer_connector, peer_connector_len); signed_connector[peer_connector_len] = '\0'; res = dpp_process_signed_connector(info, csign, signed_connector); fail: os_free(signed_connector); crypto_ec_key_deinit(csign); return res; } int dpp_gen_r_auth(struct dpp_authentication *auth, u8 *r_auth) { struct wpabuf *pix, *prx, *bix, *brx; const u8 *addr[7]; size_t len[7]; size_t i, num_elem = 0; size_t nonce_len; u8 zero = 0; int res = -1; /* R-auth = H(I-nonce | R-nonce | PI.x | PR.x | [BI.x |] BR.x | 0) */ nonce_len = auth->curve->nonce_len; if (auth->initiator) { pix = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); prx = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); if (auth->own_bi) bix = crypto_ec_key_get_pubkey_point( auth->own_bi->pubkey, 0); else bix = NULL; brx = crypto_ec_key_get_pubkey_point(auth->peer_bi->pubkey, 0); } else { pix = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); prx = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); if (auth->peer_bi) bix = crypto_ec_key_get_pubkey_point( auth->peer_bi->pubkey, 0); else bix = NULL; brx = crypto_ec_key_get_pubkey_point(auth->own_bi->pubkey, 0); } if (!pix || !prx || !brx) goto fail; addr[num_elem] = auth->i_nonce; len[num_elem] = nonce_len; num_elem++; addr[num_elem] = auth->r_nonce; len[num_elem] = nonce_len; num_elem++; addr[num_elem] = wpabuf_head(pix); len[num_elem] = wpabuf_len(pix) / 2; num_elem++; addr[num_elem] = wpabuf_head(prx); len[num_elem] = wpabuf_len(prx) / 2; num_elem++; if (bix) { addr[num_elem] = wpabuf_head(bix); len[num_elem] = wpabuf_len(bix) / 2; num_elem++; } addr[num_elem] = wpabuf_head(brx); len[num_elem] = wpabuf_len(brx) / 2; num_elem++; addr[num_elem] = &zero; len[num_elem] = 1; num_elem++; wpa_printf(MSG_DEBUG, "DPP: R-auth hash components"); for (i = 0; i < num_elem; i++) wpa_hexdump(MSG_DEBUG, "DPP: hash component", addr[i], len[i]); res = dpp_hash_vector(auth->curve, num_elem, addr, len, r_auth); if (res == 0) wpa_hexdump(MSG_DEBUG, "DPP: R-auth", r_auth, auth->curve->hash_len); fail: wpabuf_free(pix); wpabuf_free(prx); wpabuf_free(bix); wpabuf_free(brx); return res; } int dpp_gen_i_auth(struct dpp_authentication *auth, u8 *i_auth) { struct wpabuf *pix = NULL, *prx = NULL, *bix = NULL, *brx = NULL; const u8 *addr[7]; size_t len[7]; size_t i, num_elem = 0; size_t nonce_len; u8 one = 1; int res = -1; /* I-auth = H(R-nonce | I-nonce | PR.x | PI.x | BR.x | [BI.x |] 1) */ nonce_len = auth->curve->nonce_len; if (auth->initiator) { pix = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); prx = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); if (auth->own_bi) bix = crypto_ec_key_get_pubkey_point( auth->own_bi->pubkey, 0); else bix = NULL; if (!auth->peer_bi) goto fail; brx = crypto_ec_key_get_pubkey_point(auth->peer_bi->pubkey, 0); } else { pix = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); prx = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); if (auth->peer_bi) bix = crypto_ec_key_get_pubkey_point( auth->peer_bi->pubkey, 0); else bix = NULL; if (!auth->own_bi) goto fail; brx = crypto_ec_key_get_pubkey_point(auth->own_bi->pubkey, 0); } if (!pix || !prx || !brx) goto fail; addr[num_elem] = auth->r_nonce; len[num_elem] = nonce_len; num_elem++; addr[num_elem] = auth->i_nonce; len[num_elem] = nonce_len; num_elem++; addr[num_elem] = wpabuf_head(prx); len[num_elem] = wpabuf_len(prx) / 2; num_elem++; addr[num_elem] = wpabuf_head(pix); len[num_elem] = wpabuf_len(pix) / 2; num_elem++; addr[num_elem] = wpabuf_head(brx); len[num_elem] = wpabuf_len(brx) / 2; num_elem++; if (bix) { addr[num_elem] = wpabuf_head(bix); len[num_elem] = wpabuf_len(bix) / 2; num_elem++; } addr[num_elem] = &one; len[num_elem] = 1; num_elem++; wpa_printf(MSG_DEBUG, "DPP: I-auth hash components"); for (i = 0; i < num_elem; i++) wpa_hexdump(MSG_DEBUG, "DPP: hash component", addr[i], len[i]); res = dpp_hash_vector(auth->curve, num_elem, addr, len, i_auth); if (res == 0) wpa_hexdump(MSG_DEBUG, "DPP: I-auth", i_auth, auth->curve->hash_len); fail: wpabuf_free(pix); wpabuf_free(prx); wpabuf_free(bix); wpabuf_free(brx); return res; } int dpp_auth_derive_l_responder(struct dpp_authentication *auth) { struct crypto_ec *ec; struct crypto_ec_point *L = NULL, *BI = NULL; const struct crypto_bignum *q; struct crypto_bignum *sum = NULL, *lx = NULL, *bR = NULL, *pR = NULL; int ret = -1; /* L = ((bR + pR) modulo q) * BI */ ec = crypto_ec_init(crypto_ec_key_group(auth->peer_bi->pubkey)); if (!ec) goto fail; q = crypto_ec_get_order(ec); BI = crypto_ec_key_get_public_key(auth->peer_bi->pubkey); bR = crypto_ec_key_get_private_key(auth->own_bi->pubkey); pR = crypto_ec_key_get_private_key(auth->own_protocol_key); sum = crypto_bignum_init(); L = crypto_ec_point_init(ec); lx = crypto_bignum_init(); if (!q || !BI || !bR || !pR || !sum || !L || !lx || crypto_bignum_addmod(bR, pR, q, sum) || crypto_ec_point_mul(ec, BI, sum, L) || crypto_ec_point_x(ec, L, lx) || crypto_bignum_to_bin(lx, auth->Lx, sizeof(auth->Lx), auth->secret_len) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: L.x", auth->Lx, auth->secret_len); auth->Lx_len = auth->secret_len; ret = 0; fail: crypto_bignum_deinit(lx, 1); crypto_bignum_deinit(sum, 1); crypto_bignum_deinit(bR, 1); crypto_bignum_deinit(pR, 1); crypto_ec_point_deinit(L, 1); crypto_ec_point_deinit(BI, 1); crypto_ec_deinit(ec); return ret; } int dpp_auth_derive_l_initiator(struct dpp_authentication *auth) { struct crypto_ec *ec; struct crypto_ec_point *L = NULL, *sum = NULL, *BR = NULL, *PR = NULL; struct crypto_bignum *lx = NULL, *bI = NULL; int ret = -1; /* L = bI * (BR + PR) */ ec = crypto_ec_init(crypto_ec_key_group(auth->peer_bi->pubkey)); if (!ec) goto fail; BR = crypto_ec_key_get_public_key(auth->peer_bi->pubkey); PR = crypto_ec_key_get_public_key(auth->peer_protocol_key); bI = crypto_ec_key_get_private_key(auth->own_bi->pubkey); sum = crypto_ec_point_init(ec); L = crypto_ec_point_init(ec); lx = crypto_bignum_init(); if (!BR || !PR || !bI || !sum || !L || !lx || crypto_ec_point_add(ec, BR, PR, sum) || crypto_ec_point_mul(ec, sum, bI, L) || crypto_ec_point_x(ec, L, lx) || crypto_bignum_to_bin(lx, auth->Lx, sizeof(auth->Lx), auth->secret_len) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: L.x", auth->Lx, auth->secret_len); auth->Lx_len = auth->secret_len; ret = 0; fail: crypto_bignum_deinit(lx, 1); crypto_bignum_deinit(bI, 1); crypto_ec_point_deinit(sum, 1); crypto_ec_point_deinit(L, 1); crypto_ec_point_deinit(BR, 1); crypto_ec_point_deinit(PR, 1); crypto_ec_deinit(ec); return ret; } int dpp_derive_pmk(const u8 *Nx, size_t Nx_len, u8 *pmk, unsigned int hash_len) { u8 salt[DPP_MAX_HASH_LEN], prk[DPP_MAX_HASH_LEN]; const char *info = "DPP PMK"; int res; /* PMK = HKDF(<>, "DPP PMK", N.x) */ /* HKDF-Extract(<>, N.x) */ os_memset(salt, 0, hash_len); if (dpp_hmac(hash_len, salt, hash_len, Nx, Nx_len, prk) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK = HKDF-Extract(<>, IKM=N.x)", prk, hash_len); /* HKDF-Expand(PRK, info, L) */ res = dpp_hkdf_expand(hash_len, prk, hash_len, info, pmk, hash_len); os_memset(prk, 0, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: PMK = HKDF-Expand(PRK, info, L)", pmk, hash_len); return 0; } int dpp_derive_pmkid(const struct dpp_curve_params *curve, struct crypto_ec_key *own_key, struct crypto_ec_key *peer_key, u8 *pmkid) { struct wpabuf *nkx, *pkx; int ret = -1, res; const u8 *addr[2]; size_t len[2]; u8 hash[SHA256_MAC_LEN]; /* PMKID = Truncate-128(H(min(NK.x, PK.x) | max(NK.x, PK.x))) */ nkx = crypto_ec_key_get_pubkey_point(own_key, 0); pkx = crypto_ec_key_get_pubkey_point(peer_key, 0); if (!nkx || !pkx) goto fail; addr[0] = wpabuf_head(nkx); len[0] = wpabuf_len(nkx) / 2; addr[1] = wpabuf_head(pkx); len[1] = wpabuf_len(pkx) / 2; if (len[0] != len[1]) goto fail; if (os_memcmp(addr[0], addr[1], len[0]) > 0) { addr[0] = wpabuf_head(pkx); addr[1] = wpabuf_head(nkx); } wpa_hexdump(MSG_DEBUG, "DPP: PMKID hash payload 1", addr[0], len[0]); wpa_hexdump(MSG_DEBUG, "DPP: PMKID hash payload 2", addr[1], len[1]); res = sha256_vector(2, addr, len, hash); if (res < 0) goto fail; wpa_hexdump(MSG_DEBUG, "DPP: PMKID hash output", hash, SHA256_MAC_LEN); os_memcpy(pmkid, hash, PMKID_LEN); wpa_hexdump(MSG_DEBUG, "DPP: PMKID", pmkid, PMKID_LEN); ret = 0; fail: wpabuf_free(nkx); wpabuf_free(pkx); return ret; } /* Role-specific elements for PKEX */ /* NIST P-256 */ static const u8 pkex_init_x_p256[32] = { 0x56, 0x26, 0x12, 0xcf, 0x36, 0x48, 0xfe, 0x0b, 0x07, 0x04, 0xbb, 0x12, 0x22, 0x50, 0xb2, 0x54, 0xb1, 0x94, 0x64, 0x7e, 0x54, 0xce, 0x08, 0x07, 0x2e, 0xec, 0xca, 0x74, 0x5b, 0x61, 0x2d, 0x25 }; static const u8 pkex_init_y_p256[32] = { 0x3e, 0x44, 0xc7, 0xc9, 0x8c, 0x1c, 0xa1, 0x0b, 0x20, 0x09, 0x93, 0xb2, 0xfd, 0xe5, 0x69, 0xdc, 0x75, 0xbc, 0xad, 0x33, 0xc1, 0xe7, 0xc6, 0x45, 0x4d, 0x10, 0x1e, 0x6a, 0x3d, 0x84, 0x3c, 0xa4 }; static const u8 pkex_resp_x_p256[32] = { 0x1e, 0xa4, 0x8a, 0xb1, 0xa4, 0xe8, 0x42, 0x39, 0xad, 0x73, 0x07, 0xf2, 0x34, 0xdf, 0x57, 0x4f, 0xc0, 0x9d, 0x54, 0xbe, 0x36, 0x1b, 0x31, 0x0f, 0x59, 0x91, 0x52, 0x33, 0xac, 0x19, 0x9d, 0x76 }; static const u8 pkex_resp_y_p256[32] = { 0xd9, 0xfb, 0xf6, 0xb9, 0xf5, 0xfa, 0xdf, 0x19, 0x58, 0xd8, 0x3e, 0xc9, 0x89, 0x7a, 0x35, 0xc1, 0xbd, 0xe9, 0x0b, 0x77, 0x7a, 0xcb, 0x91, 0x2a, 0xe8, 0x21, 0x3f, 0x47, 0x52, 0x02, 0x4d, 0x67 }; /* NIST P-384 */ static const u8 pkex_init_x_p384[48] = { 0x95, 0x3f, 0x42, 0x9e, 0x50, 0x7f, 0xf9, 0xaa, 0xac, 0x1a, 0xf2, 0x85, 0x2e, 0x64, 0x91, 0x68, 0x64, 0xc4, 0x3c, 0xb7, 0x5c, 0xf8, 0xc9, 0x53, 0x6e, 0x58, 0x4c, 0x7f, 0xc4, 0x64, 0x61, 0xac, 0x51, 0x8a, 0x6f, 0xfe, 0xab, 0x74, 0xe6, 0x12, 0x81, 0xac, 0x38, 0x5d, 0x41, 0xe6, 0xb9, 0xa3 }; static const u8 pkex_init_y_p384[48] = { 0x76, 0x2f, 0x68, 0x84, 0xa6, 0xb0, 0x59, 0x29, 0x83, 0xa2, 0x6c, 0xa4, 0x6c, 0x3b, 0xf8, 0x56, 0x76, 0x11, 0x2a, 0x32, 0x90, 0xbd, 0x07, 0xc7, 0x37, 0x39, 0x9d, 0xdb, 0x96, 0xf3, 0x2b, 0xb6, 0x27, 0xbb, 0x29, 0x3c, 0x17, 0x33, 0x9d, 0x94, 0xc3, 0xda, 0xac, 0x46, 0xb0, 0x8e, 0x07, 0x18 }; static const u8 pkex_resp_x_p384[48] = { 0xad, 0xbe, 0xd7, 0x1d, 0x3a, 0x71, 0x64, 0x98, 0x5f, 0xb4, 0xd6, 0x4b, 0x50, 0xd0, 0x84, 0x97, 0x4b, 0x7e, 0x57, 0x70, 0xd2, 0xd9, 0xf4, 0x92, 0x2a, 0x3f, 0xce, 0x99, 0xc5, 0x77, 0x33, 0x44, 0x14, 0x56, 0x92, 0xcb, 0xae, 0x46, 0x64, 0xdf, 0xe0, 0xbb, 0xd7, 0xb1, 0x29, 0x20, 0x72, 0xdf }; static const u8 pkex_resp_y_p384[48] = { 0xab, 0xa7, 0xdf, 0x52, 0xaa, 0xe2, 0x35, 0x0c, 0xe3, 0x75, 0x32, 0xe6, 0xbf, 0x06, 0xc8, 0x7c, 0x38, 0x29, 0x4c, 0xec, 0x82, 0xac, 0xd7, 0xa3, 0x09, 0xd2, 0x0e, 0x22, 0x5a, 0x74, 0x52, 0xa1, 0x7e, 0x54, 0x4e, 0xfe, 0xc6, 0x29, 0x33, 0x63, 0x15, 0xe1, 0x7b, 0xe3, 0x40, 0x1c, 0xca, 0x06 }; /* NIST P-521 */ static const u8 pkex_init_x_p521[66] = { 0x00, 0x16, 0x20, 0x45, 0x19, 0x50, 0x95, 0x23, 0x0d, 0x24, 0xbe, 0x00, 0x87, 0xdc, 0xfa, 0xf0, 0x58, 0x9a, 0x01, 0x60, 0x07, 0x7a, 0xca, 0x76, 0x01, 0xab, 0x2d, 0x5a, 0x46, 0xcd, 0x2c, 0xb5, 0x11, 0x9a, 0xff, 0xaa, 0x48, 0x04, 0x91, 0x38, 0xcf, 0x86, 0xfc, 0xa4, 0xa5, 0x0f, 0x47, 0x01, 0x80, 0x1b, 0x30, 0xa3, 0xae, 0xe8, 0x1c, 0x2e, 0xea, 0xcc, 0xf0, 0x03, 0x9f, 0x77, 0x4c, 0x8d, 0x97, 0x76 }; static const u8 pkex_init_y_p521[66] = { 0x00, 0xb3, 0x8e, 0x02, 0xe4, 0x2a, 0x63, 0x59, 0x12, 0xc6, 0x10, 0xba, 0x3a, 0xf9, 0x02, 0x99, 0x3f, 0x14, 0xf0, 0x40, 0xde, 0x5c, 0xc9, 0x8b, 0x02, 0x55, 0xfa, 0x91, 0xb1, 0xcc, 0x6a, 0xbd, 0xe5, 0x62, 0xc0, 0xc5, 0xe3, 0xa1, 0x57, 0x9f, 0x08, 0x1a, 0xa6, 0xe2, 0xf8, 0x55, 0x90, 0xbf, 0xf5, 0xa6, 0xc3, 0xd8, 0x52, 0x1f, 0xb7, 0x02, 0x2e, 0x7c, 0xc8, 0xb3, 0x20, 0x1e, 0x79, 0x8d, 0x03, 0xa8 }; static const u8 pkex_resp_x_p521[66] = { 0x00, 0x79, 0xe4, 0x4d, 0x6b, 0x5e, 0x12, 0x0a, 0x18, 0x2c, 0xb3, 0x05, 0x77, 0x0f, 0xc3, 0x44, 0x1a, 0xcd, 0x78, 0x46, 0x14, 0xee, 0x46, 0x3f, 0xab, 0xc9, 0x59, 0x7c, 0x85, 0xa0, 0xc2, 0xfb, 0x02, 0x32, 0x99, 0xde, 0x5d, 0xe1, 0x0d, 0x48, 0x2d, 0x71, 0x7d, 0x8d, 0x3f, 0x61, 0x67, 0x9e, 0x2b, 0x8b, 0x12, 0xde, 0x10, 0x21, 0x55, 0x0a, 0x5b, 0x2d, 0xe8, 0x05, 0x09, 0xf6, 0x20, 0x97, 0x84, 0xb4 }; static const u8 pkex_resp_y_p521[66] = { 0x00, 0x46, 0x63, 0x39, 0xbe, 0xcd, 0xa4, 0x2d, 0xca, 0x27, 0x74, 0xd4, 0x1b, 0x91, 0x33, 0x20, 0x83, 0xc7, 0x3b, 0xa4, 0x09, 0x8b, 0x8e, 0xa3, 0x88, 0xe9, 0x75, 0x7f, 0x56, 0x7b, 0x38, 0x84, 0x62, 0x02, 0x7c, 0x90, 0x51, 0x07, 0xdb, 0xe9, 0xd0, 0xde, 0xda, 0x9a, 0x5d, 0xe5, 0x94, 0xd2, 0xcf, 0x9d, 0x4c, 0x33, 0x91, 0xa6, 0xc3, 0x80, 0xa7, 0x6e, 0x7e, 0x8d, 0xf8, 0x73, 0x6e, 0x53, 0xce, 0xe1 }; /* Brainpool P-256r1 */ static const u8 pkex_init_x_bp_p256r1[32] = { 0x46, 0x98, 0x18, 0x6c, 0x27, 0xcd, 0x4b, 0x10, 0x7d, 0x55, 0xa3, 0xdd, 0x89, 0x1f, 0x9f, 0xca, 0xc7, 0x42, 0x5b, 0x8a, 0x23, 0xed, 0xf8, 0x75, 0xac, 0xc7, 0xe9, 0x8d, 0xc2, 0x6f, 0xec, 0xd8 }; static const u8 pkex_init_y_bp_p256r1[32] = { 0x93, 0xca, 0xef, 0xa9, 0x66, 0x3e, 0x87, 0xcd, 0x52, 0x6e, 0x54, 0x13, 0xef, 0x31, 0x67, 0x30, 0x15, 0x13, 0x9d, 0x6d, 0xc0, 0x95, 0x32, 0xbe, 0x4f, 0xab, 0x5d, 0xf7, 0xbf, 0x5e, 0xaa, 0x0b }; static const u8 pkex_resp_x_bp_p256r1[32] = { 0x90, 0x18, 0x84, 0xc9, 0xdc, 0xcc, 0xb5, 0x2f, 0x4a, 0x3f, 0x4f, 0x18, 0x0a, 0x22, 0x56, 0x6a, 0xa9, 0xef, 0xd4, 0xe6, 0xc3, 0x53, 0xc2, 0x1a, 0x23, 0x54, 0xdd, 0x08, 0x7e, 0x10, 0xd8, 0xe3 }; static const u8 pkex_resp_y_bp_p256r1[32] = { 0x2a, 0xfa, 0x98, 0x9b, 0xe3, 0xda, 0x30, 0xfd, 0x32, 0x28, 0xcb, 0x66, 0xfb, 0x40, 0x7f, 0xf2, 0xb2, 0x25, 0x80, 0x82, 0x44, 0x85, 0x13, 0x7e, 0x4b, 0xb5, 0x06, 0xc0, 0x03, 0x69, 0x23, 0x64 }; /* Brainpool P-384r1 */ static const u8 pkex_init_x_bp_p384r1[48] = { 0x0a, 0x2c, 0xeb, 0x49, 0x5e, 0xb7, 0x23, 0xbd, 0x20, 0x5b, 0xe0, 0x49, 0xdf, 0xcf, 0xcf, 0x19, 0x37, 0x36, 0xe1, 0x2f, 0x59, 0xdb, 0x07, 0x06, 0xb5, 0xeb, 0x2d, 0xae, 0xc2, 0xb2, 0x38, 0x62, 0xa6, 0x73, 0x09, 0xa0, 0x6c, 0x0a, 0xa2, 0x30, 0x99, 0xeb, 0xf7, 0x1e, 0x47, 0xb9, 0x5e, 0xbe }; static const u8 pkex_init_y_bp_p384r1[48] = { 0x54, 0x76, 0x61, 0x65, 0x75, 0x5a, 0x2f, 0x99, 0x39, 0x73, 0xca, 0x6c, 0xf9, 0xf7, 0x12, 0x86, 0x54, 0xd5, 0xd4, 0xad, 0x45, 0x7b, 0xbf, 0x32, 0xee, 0x62, 0x8b, 0x9f, 0x52, 0xe8, 0xa0, 0xc9, 0xb7, 0x9d, 0xd1, 0x09, 0xb4, 0x79, 0x1c, 0x3e, 0x1a, 0xbf, 0x21, 0x45, 0x66, 0x6b, 0x02, 0x52 }; static const u8 pkex_resp_x_bp_p384r1[48] = { 0x03, 0xa2, 0x57, 0xef, 0xe8, 0x51, 0x21, 0xa0, 0xc8, 0x9e, 0x21, 0x02, 0xb5, 0x9a, 0x36, 0x25, 0x74, 0x22, 0xd1, 0xf2, 0x1b, 0xa8, 0x9a, 0x9b, 0x97, 0xbc, 0x5a, 0xeb, 0x26, 0x15, 0x09, 0x71, 0x77, 0x59, 0xec, 0x8b, 0xb7, 0xe1, 0xe8, 0xce, 0x65, 0xb8, 0xaf, 0xf8, 0x80, 0xae, 0x74, 0x6c }; static const u8 pkex_resp_y_bp_p384r1[48] = { 0x2f, 0xd9, 0x6a, 0xc7, 0x3e, 0xec, 0x76, 0x65, 0x2d, 0x38, 0x7f, 0xec, 0x63, 0x26, 0x3f, 0x04, 0xd8, 0x4e, 0xff, 0xe1, 0x0a, 0x51, 0x74, 0x70, 0xe5, 0x46, 0x63, 0x7f, 0x5c, 0xc0, 0xd1, 0x7c, 0xfb, 0x2f, 0xea, 0xe2, 0xd8, 0x0f, 0x84, 0xcb, 0xe9, 0x39, 0x5c, 0x64, 0xfe, 0xcb, 0x2f, 0xf1 }; /* Brainpool P-512r1 */ static const u8 pkex_init_x_bp_p512r1[64] = { 0x4c, 0xe9, 0xb6, 0x1c, 0xe2, 0x00, 0x3c, 0x9c, 0xa9, 0xc8, 0x56, 0x52, 0xaf, 0x87, 0x3e, 0x51, 0x9c, 0xbb, 0x15, 0x31, 0x1e, 0xc1, 0x05, 0xfc, 0x7c, 0x77, 0xd7, 0x37, 0x61, 0x27, 0xd0, 0x95, 0x98, 0xee, 0x5d, 0xa4, 0x3d, 0x09, 0xdb, 0x3d, 0xfa, 0x89, 0x9e, 0x7f, 0xa6, 0xa6, 0x9c, 0xff, 0x83, 0x5c, 0x21, 0x6c, 0x3e, 0xf2, 0xfe, 0xdc, 0x63, 0xe4, 0xd1, 0x0e, 0x75, 0x45, 0x69, 0x0f }; static const u8 pkex_init_y_bp_p512r1[64] = { 0x50, 0xb5, 0x9b, 0xfa, 0x45, 0x67, 0x75, 0x94, 0x44, 0xe7, 0x68, 0xb0, 0xeb, 0x3e, 0xb3, 0xb8, 0xf9, 0x99, 0x05, 0xef, 0xae, 0x6c, 0xbc, 0xe3, 0xe1, 0xd2, 0x51, 0x54, 0xdf, 0x59, 0xd4, 0x45, 0x41, 0x3a, 0xa8, 0x0b, 0x76, 0x32, 0x44, 0x0e, 0x07, 0x60, 0x3a, 0x6e, 0xbe, 0xfe, 0xe0, 0x58, 0x52, 0xa0, 0xaa, 0x8b, 0xd8, 0x5b, 0xf2, 0x71, 0x11, 0x9a, 0x9e, 0x8f, 0x1a, 0xd1, 0xc9, 0x99 }; static const u8 pkex_resp_x_bp_p512r1[64] = { 0x2a, 0x60, 0x32, 0x27, 0xa1, 0xe6, 0x94, 0x72, 0x1c, 0x48, 0xbe, 0xc5, 0x77, 0x14, 0x30, 0x76, 0xe4, 0xbf, 0xf7, 0x7b, 0xc5, 0xfd, 0xdf, 0x19, 0x1e, 0x0f, 0xdf, 0x1c, 0x40, 0xfa, 0x34, 0x9e, 0x1f, 0x42, 0x24, 0xa3, 0x2c, 0xd5, 0xc7, 0xc9, 0x7b, 0x47, 0x78, 0x96, 0xf1, 0x37, 0x0e, 0x88, 0xcb, 0xa6, 0x52, 0x29, 0xd7, 0xa8, 0x38, 0x29, 0x8e, 0x6e, 0x23, 0x47, 0xd4, 0x4b, 0x70, 0x3e }; static const u8 pkex_resp_y_bp_p512r1[64] = { 0x80, 0x1f, 0x43, 0xd2, 0x17, 0x35, 0xec, 0x81, 0xd9, 0x4b, 0xdc, 0x81, 0x19, 0xd9, 0x5f, 0x68, 0x16, 0x84, 0xfe, 0x63, 0x4b, 0x8d, 0x5d, 0xaa, 0x88, 0x4a, 0x47, 0x48, 0xd4, 0xea, 0xab, 0x7d, 0x6a, 0xbf, 0xe1, 0x28, 0x99, 0x6a, 0x87, 0x1c, 0x30, 0xb4, 0x44, 0x2d, 0x75, 0xac, 0x35, 0x09, 0x73, 0x24, 0x3d, 0xb4, 0x43, 0xb1, 0xc1, 0x56, 0x56, 0xad, 0x30, 0x87, 0xf4, 0xc3, 0x00, 0xc7 }; static struct crypto_ec_key * dpp_pkex_get_role_elem(const struct dpp_curve_params *curve, int init) { const u8 *x, *y; switch (curve->ike_group) { case 19: x = init ? pkex_init_x_p256 : pkex_resp_x_p256; y = init ? pkex_init_y_p256 : pkex_resp_y_p256; break; case 20: x = init ? pkex_init_x_p384 : pkex_resp_x_p384; y = init ? pkex_init_y_p384 : pkex_resp_y_p384; break; case 21: x = init ? pkex_init_x_p521 : pkex_resp_x_p521; y = init ? pkex_init_y_p521 : pkex_resp_y_p521; break; case 28: x = init ? pkex_init_x_bp_p256r1 : pkex_resp_x_bp_p256r1; y = init ? pkex_init_y_bp_p256r1 : pkex_resp_y_bp_p256r1; break; case 29: x = init ? pkex_init_x_bp_p384r1 : pkex_resp_x_bp_p384r1; y = init ? pkex_init_y_bp_p384r1 : pkex_resp_y_bp_p384r1; break; case 30: x = init ? pkex_init_x_bp_p512r1 : pkex_resp_x_bp_p512r1; y = init ? pkex_init_y_bp_p512r1 : pkex_resp_y_bp_p512r1; break; default: return NULL; } return crypto_ec_key_set_pub(curve->ike_group, x, y, curve->prime_len); } struct crypto_ec_point * dpp_pkex_derive_Qi(const struct dpp_curve_params *curve, const u8 *mac_init, const char *code, size_t code_len, const char *identifier, struct crypto_ec **ret_ec) { u8 hash[DPP_MAX_HASH_LEN]; const u8 *addr[3]; size_t len[3]; unsigned int num_elem = 0; struct crypto_ec_point *Qi = NULL, *Pi = NULL; struct crypto_ec_key *Pi_key = NULL; struct crypto_bignum *hash_bn = NULL; struct crypto_ec *ec = NULL; /* Qi = H([MAC-Initiator |] [identifier |] code) * Pi */ if (mac_init) { wpa_printf(MSG_DEBUG, "DPP: MAC-Initiator: " MACSTR, MAC2STR(mac_init)); addr[num_elem] = mac_init; len[num_elem] = ETH_ALEN; num_elem++; } if (identifier) { wpa_printf(MSG_DEBUG, "DPP: code identifier: %s", identifier); addr[num_elem] = (const u8 *) identifier; len[num_elem] = os_strlen(identifier); num_elem++; } wpa_hexdump_ascii_key(MSG_DEBUG, "DPP: code", code, code_len); addr[num_elem] = (const u8 *) code; len[num_elem] = code_len; num_elem++; if (dpp_hash_vector(curve, num_elem, addr, len, hash) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: H([MAC-Initiator |] [identifier |] code)", hash, curve->hash_len); Pi_key = dpp_pkex_get_role_elem(curve, 1); if (!Pi_key) goto fail; dpp_debug_print_key("DPP: Pi", Pi_key); ec = crypto_ec_init(curve->ike_group); if (!ec) goto fail; Pi = crypto_ec_key_get_public_key(Pi_key); Qi = crypto_ec_point_init(ec); hash_bn = crypto_bignum_init_set(hash, curve->hash_len); if (!Pi || !Qi || !hash_bn || crypto_ec_point_mul(ec, Pi, hash_bn, Qi)) goto fail; if (crypto_ec_point_is_at_infinity(ec, Qi)) { wpa_printf(MSG_INFO, "DPP: Qi is the point-at-infinity"); goto fail; } crypto_ec_point_debug_print(ec, Qi, "DPP: Qi"); out: crypto_ec_key_deinit(Pi_key); crypto_ec_point_deinit(Pi, 1); crypto_bignum_deinit(hash_bn, 1); if (ret_ec && Qi) *ret_ec = ec; else crypto_ec_deinit(ec); return Qi; fail: crypto_ec_point_deinit(Qi, 1); Qi = NULL; goto out; } struct crypto_ec_point * dpp_pkex_derive_Qr(const struct dpp_curve_params *curve, const u8 *mac_resp, const char *code, size_t code_len, const char *identifier, struct crypto_ec **ret_ec) { u8 hash[DPP_MAX_HASH_LEN]; const u8 *addr[3]; size_t len[3]; unsigned int num_elem = 0; struct crypto_ec_point *Qr = NULL, *Pr = NULL; struct crypto_ec_key *Pr_key = NULL; struct crypto_bignum *hash_bn = NULL; struct crypto_ec *ec = NULL; /* Qr = H([MAC-Responder |] [identifier |] code) * Pr */ if (mac_resp) { wpa_printf(MSG_DEBUG, "DPP: MAC-Responder: " MACSTR, MAC2STR(mac_resp)); addr[num_elem] = mac_resp; len[num_elem] = ETH_ALEN; num_elem++; } if (identifier) { wpa_printf(MSG_DEBUG, "DPP: code identifier: %s", identifier); addr[num_elem] = (const u8 *) identifier; len[num_elem] = os_strlen(identifier); num_elem++; } wpa_hexdump_ascii_key(MSG_DEBUG, "DPP: code", code, code_len); addr[num_elem] = (const u8 *) code; len[num_elem] = code_len; num_elem++; if (dpp_hash_vector(curve, num_elem, addr, len, hash) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: H([MAC-Responder |] [identifier |] code)", hash, curve->hash_len); Pr_key = dpp_pkex_get_role_elem(curve, 0); if (!Pr_key) goto fail; dpp_debug_print_key("DPP: Pr", Pr_key); ec = crypto_ec_init(curve->ike_group); if (!ec) goto fail; Pr = crypto_ec_key_get_public_key(Pr_key); Qr = crypto_ec_point_init(ec); hash_bn = crypto_bignum_init_set(hash, curve->hash_len); if (!Pr || !Qr || !hash_bn || crypto_ec_point_mul(ec, Pr, hash_bn, Qr)) goto fail; if (crypto_ec_point_is_at_infinity(ec, Qr)) { wpa_printf(MSG_INFO, "DPP: Qr is the point-at-infinity"); goto fail; } crypto_ec_point_debug_print(ec, Qr, "DPP: Qr"); out: crypto_ec_key_deinit(Pr_key); crypto_ec_point_deinit(Pr, 1); crypto_bignum_deinit(hash_bn, 1); if (ret_ec && Qr) *ret_ec = ec; else crypto_ec_deinit(ec); return Qr; fail: crypto_ec_point_deinit(Qr, 1); Qr = NULL; goto out; } int dpp_pkex_derive_z(const u8 *mac_init, const u8 *mac_resp, u8 ver_init, u8 ver_resp, const u8 *Mx, size_t Mx_len, const u8 *Nx, size_t Nx_len, const char *code, size_t code_len, const u8 *Kx, size_t Kx_len, u8 *z, unsigned int hash_len) { u8 salt[DPP_MAX_HASH_LEN], prk[DPP_MAX_HASH_LEN]; int res; u8 *info, *pos; size_t info_len; /* * v1: info = MAC-Initiator | MAC-Responder * v2: info = Protocol Version-Initiator | Protocol Version-Responder * z = HKDF(<>, info | M.x | N.x | code, K.x) */ /* HKDF-Extract(<>, IKM=K.x) */ os_memset(salt, 0, hash_len); if (dpp_hmac(hash_len, salt, hash_len, Kx, Kx_len, prk) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK = HKDF-Extract(<>, IKM)", prk, hash_len); if (mac_init && mac_resp) info_len = 2 * ETH_ALEN; else info_len = 2; info_len += Mx_len + Nx_len + code_len; info = os_malloc(info_len); if (!info) return -1; pos = info; if (mac_init && mac_resp) { os_memcpy(pos, mac_init, ETH_ALEN); pos += ETH_ALEN; os_memcpy(pos, mac_resp, ETH_ALEN); pos += ETH_ALEN; } else { *pos++ = ver_init; *pos++ = ver_resp; } os_memcpy(pos, Mx, Mx_len); pos += Mx_len; os_memcpy(pos, Nx, Nx_len); pos += Nx_len; os_memcpy(pos, code, code_len); /* HKDF-Expand(PRK, info, L) */ if (hash_len == 32) res = hmac_sha256_kdf(prk, hash_len, NULL, info, info_len, z, hash_len); else if (hash_len == 48) res = hmac_sha384_kdf(prk, hash_len, NULL, info, info_len, z, hash_len); else if (hash_len == 64) res = hmac_sha512_kdf(prk, hash_len, NULL, info, info_len, z, hash_len); else res = -1; os_free(info); os_memset(prk, 0, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: z = HKDF-Expand(PRK, info, L)", z, hash_len); return 0; } int dpp_reconfig_derive_ke_responder(struct dpp_authentication *auth, const u8 *net_access_key, size_t net_access_key_len, struct json_token *peer_net_access_key) { struct crypto_ec_key *own_key = NULL, *peer_key = NULL; struct crypto_bignum *sum = NULL, *cR = NULL, *pR = NULL; const struct crypto_bignum *q; struct crypto_ec *ec = NULL; struct crypto_ec_point *M = NULL, *CI = NULL; u8 Mx[DPP_MAX_SHARED_SECRET_LEN]; u8 prk[DPP_MAX_HASH_LEN]; const struct dpp_curve_params *curve; int res = -1; u8 nonces[2 * DPP_MAX_NONCE_LEN]; own_key = dpp_set_keypair(&auth->curve, net_access_key, net_access_key_len); if (!own_key) { dpp_auth_fail(auth, "Failed to parse own netAccessKey"); goto fail; } peer_key = dpp_parse_jwk(peer_net_access_key, &curve); if (!peer_key) goto fail; dpp_debug_print_key("DPP: Received netAccessKey", peer_key); if (auth->curve != curve) { wpa_printf(MSG_DEBUG, "DPP: Mismatching netAccessKey curves (own=%s != peer=%s)", auth->curve->name, curve->name); goto fail; } auth->own_protocol_key = dpp_gen_keypair(curve); if (!auth->own_protocol_key) goto fail; if (random_get_bytes(auth->e_nonce, auth->curve->nonce_len)) { wpa_printf(MSG_ERROR, "DPP: Failed to generate E-nonce"); goto fail; } wpa_hexdump_key(MSG_DEBUG, "DPP: E-nonce", auth->e_nonce, auth->curve->nonce_len); /* M = { cR + pR } * CI */ ec = crypto_ec_init(curve->ike_group); if (!ec) goto fail; sum = crypto_bignum_init(); q = crypto_ec_get_order(ec); M = crypto_ec_point_init(ec); cR = crypto_ec_key_get_private_key(own_key); pR = crypto_ec_key_get_private_key(auth->own_protocol_key); CI = crypto_ec_key_get_public_key(peer_key); if (!sum || !q || !M || !cR || !pR || !CI || crypto_bignum_addmod(cR, pR, q, sum) || crypto_ec_point_mul(ec, CI, sum, M) || crypto_ec_point_to_bin(ec, M, Mx, NULL)) { wpa_printf(MSG_ERROR, "DPP: Error during M computation"); goto fail; } wpa_hexdump_key(MSG_DEBUG, "DPP: M.x", Mx, curve->prime_len); /* ke = HKDF(C-nonce | E-nonce, "dpp reconfig key", M.x) */ /* HKDF-Extract(C-nonce | E-nonce, M.x) */ os_memcpy(nonces, auth->c_nonce, curve->nonce_len); os_memcpy(&nonces[curve->nonce_len], auth->e_nonce, curve->nonce_len); if (dpp_hmac(curve->hash_len, nonces, 2 * curve->nonce_len, Mx, curve->prime_len, prk) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK", prk, curve->hash_len); /* HKDF-Expand(PRK, "dpp reconfig key", L) */ if (dpp_hkdf_expand(curve->hash_len, prk, curve->hash_len, "dpp reconfig key", auth->ke, curve->hash_len) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: ke = HKDF(C-nonce | E-nonce, \"dpp reconfig key\", M.x)", auth->ke, curve->hash_len); res = 0; crypto_ec_key_deinit(auth->reconfig_old_protocol_key); auth->reconfig_old_protocol_key = own_key; own_key = NULL; fail: forced_memzero(prk, sizeof(prk)); forced_memzero(Mx, sizeof(Mx)); crypto_ec_point_deinit(M, 1); crypto_ec_point_deinit(CI, 1); crypto_bignum_deinit(sum, 1); crypto_bignum_deinit(cR, 1); crypto_bignum_deinit(pR, 1); crypto_ec_key_deinit(own_key); crypto_ec_key_deinit(peer_key); crypto_ec_deinit(ec); return res; } int dpp_reconfig_derive_ke_initiator(struct dpp_authentication *auth, const u8 *r_proto, u16 r_proto_len, struct json_token *net_access_key) { struct crypto_ec_key *pr = NULL, *peer_key = NULL; struct crypto_bignum *cI = NULL; struct crypto_ec *ec = NULL; struct crypto_ec_point *sum = NULL, *M = NULL, *CR = NULL, *PR = NULL; u8 Mx[DPP_MAX_SHARED_SECRET_LEN]; u8 prk[DPP_MAX_HASH_LEN]; int res = -1; const struct dpp_curve_params *curve; u8 nonces[2 * DPP_MAX_NONCE_LEN]; pr = dpp_set_pubkey_point(auth->conf->connector_key, r_proto, r_proto_len); if (!pr) { dpp_auth_fail(auth, "Invalid Responder Protocol Key"); goto fail; } dpp_debug_print_key("Peer (Responder) Protocol Key", pr); crypto_ec_key_deinit(auth->peer_protocol_key); auth->peer_protocol_key = pr; pr = NULL; peer_key = dpp_parse_jwk(net_access_key, &curve); if (!peer_key) goto fail; dpp_debug_print_key("DPP: Received netAccessKey", peer_key); if (auth->curve != curve) { wpa_printf(MSG_DEBUG, "DPP: Mismatching netAccessKey curves (own=%s != peer=%s)", auth->curve->name, curve->name); goto fail; } /* M = cI * { CR + PR } */ ec = crypto_ec_init(curve->ike_group); if (!ec) goto fail; cI = crypto_ec_key_get_private_key(auth->conf->connector_key); sum = crypto_ec_point_init(ec); M = crypto_ec_point_init(ec); CR = crypto_ec_key_get_public_key(peer_key); PR = crypto_ec_key_get_public_key(auth->peer_protocol_key); if (!cI || !sum || !M || !CR || !PR || crypto_ec_point_add(ec, CR, PR, sum) || crypto_ec_point_mul(ec, sum, cI, M) || crypto_ec_point_to_bin(ec, M, Mx, NULL)) { wpa_printf(MSG_ERROR, "DPP: Error during M computation"); goto fail; } wpa_hexdump_key(MSG_DEBUG, "DPP: M.x", Mx, curve->prime_len); /* ke = HKDF(C-nonce | E-nonce, "dpp reconfig key", M.x) */ /* HKDF-Extract(C-nonce | E-nonce, M.x) */ os_memcpy(nonces, auth->c_nonce, curve->nonce_len); os_memcpy(&nonces[curve->nonce_len], auth->e_nonce, curve->nonce_len); if (dpp_hmac(curve->hash_len, nonces, 2 * curve->nonce_len, Mx, curve->prime_len, prk) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: PRK", prk, curve->hash_len); /* HKDF-Expand(PRK, "dpp reconfig key", L) */ if (dpp_hkdf_expand(curve->hash_len, prk, curve->hash_len, "dpp reconfig key", auth->ke, curve->hash_len) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: ke = HKDF(C-nonce | E-nonce, \"dpp reconfig key\", M.x)", auth->ke, curve->hash_len); res = 0; fail: forced_memzero(prk, sizeof(prk)); forced_memzero(Mx, sizeof(Mx)); crypto_bignum_deinit(cI, 1); crypto_ec_key_deinit(pr); crypto_ec_key_deinit(peer_key); crypto_ec_point_deinit(sum, 1); crypto_ec_point_deinit(M, 1); crypto_ec_point_deinit(CR, 1); crypto_ec_point_deinit(PR, 1); crypto_ec_deinit(ec); return res; } static char * dpp_build_jws_prot_hdr(struct dpp_configurator *conf, size_t *signed1_len) { struct wpabuf *jws_prot_hdr; char *signed1; jws_prot_hdr = wpabuf_alloc(100); if (!jws_prot_hdr) return NULL; json_start_object(jws_prot_hdr, NULL); json_add_string(jws_prot_hdr, "typ", "dppCon"); json_value_sep(jws_prot_hdr); json_add_string(jws_prot_hdr, "kid", conf->kid); json_value_sep(jws_prot_hdr); json_add_string(jws_prot_hdr, "alg", conf->curve->jws_alg); json_end_object(jws_prot_hdr); signed1 = base64_url_encode(wpabuf_head(jws_prot_hdr), wpabuf_len(jws_prot_hdr), signed1_len); wpabuf_free(jws_prot_hdr); return signed1; } static char * dpp_build_conn_signature(struct dpp_configurator *conf, const char *signed1, size_t signed1_len, const char *signed2, size_t signed2_len, size_t *signed3_len) { const struct dpp_curve_params *curve; struct wpabuf *sig = NULL; char *signed3 = NULL; char *dot = "."; const u8 *vector[3]; size_t vector_len[3]; u8 *hash; int ret; vector[0] = (const u8 *) signed1; vector[1] = (const u8 *) dot; vector[2] = (const u8 *) signed2; vector_len[0] = signed1_len; vector_len[1] = 1; vector_len[2] = signed2_len; curve = conf->curve; hash = os_malloc(curve->hash_len); if (!hash) goto fail; if (curve->hash_len == SHA256_MAC_LEN) { ret = sha256_vector(3, vector, vector_len, hash); } else if (curve->hash_len == SHA384_MAC_LEN) { ret = sha384_vector(3, vector, vector_len, hash); } else if (curve->hash_len == SHA512_MAC_LEN) { ret = sha512_vector(3, vector, vector_len, hash); } else { wpa_printf(MSG_DEBUG, "DPP: Unknown signature algorithm"); goto fail; } if (ret) { wpa_printf(MSG_DEBUG, "DPP: Hash computation failed"); goto fail; } wpa_hexdump(MSG_DEBUG, "DPP: Hash value for Connector signature", hash, curve->hash_len); sig = crypto_ec_key_sign_r_s(conf->csign, hash, curve->hash_len); if (!sig) { wpa_printf(MSG_ERROR, "DPP: Signature computation failed"); goto fail; } wpa_hexdump(MSG_DEBUG, "DPP: signedConnector ECDSA signature (raw r,s)", wpabuf_head(sig), wpabuf_len(sig)); signed3 = base64_url_encode(wpabuf_head(sig), wpabuf_len(sig), signed3_len); fail: os_free(hash); wpabuf_free(sig); return signed3; } char * dpp_sign_connector(struct dpp_configurator *conf, const struct wpabuf *dppcon) { char *signed1 = NULL, *signed2 = NULL, *signed3 = NULL; char *signed_conn = NULL, *pos; size_t signed1_len, signed2_len, signed3_len; signed1 = dpp_build_jws_prot_hdr(conf, &signed1_len); signed2 = base64_url_encode(wpabuf_head(dppcon), wpabuf_len(dppcon), &signed2_len); if (!signed1 || !signed2) goto fail; signed3 = dpp_build_conn_signature(conf, signed1, signed1_len, signed2, signed2_len, &signed3_len); if (!signed3) goto fail; signed_conn = os_malloc(signed1_len + signed2_len + signed3_len + 3); if (!signed_conn) goto fail; pos = signed_conn; os_memcpy(pos, signed1, signed1_len); pos += signed1_len; *pos++ = '.'; os_memcpy(pos, signed2, signed2_len); pos += signed2_len; *pos++ = '.'; os_memcpy(pos, signed3, signed3_len); pos += signed3_len; *pos = '\0'; fail: os_free(signed1); os_free(signed2); os_free(signed3); return signed_conn; } #ifdef CONFIG_DPP2 struct dpp_pfs * dpp_pfs_init(const u8 *net_access_key, size_t net_access_key_len) { struct wpabuf *pub = NULL; struct crypto_ec_key *own_key; struct dpp_pfs *pfs; pfs = os_zalloc(sizeof(*pfs)); if (!pfs) return NULL; own_key = dpp_set_keypair(&pfs->curve, net_access_key, net_access_key_len); if (!own_key) { wpa_printf(MSG_ERROR, "DPP: Failed to parse own netAccessKey"); goto fail; } crypto_ec_key_deinit(own_key); pfs->ecdh = crypto_ecdh_init(pfs->curve->ike_group); if (!pfs->ecdh) goto fail; pub = crypto_ecdh_get_pubkey(pfs->ecdh, 0); pub = wpabuf_zeropad(pub, pfs->curve->prime_len); if (!pub) goto fail; pfs->ie = wpabuf_alloc(5 + wpabuf_len(pub)); if (!pfs->ie) goto fail; wpabuf_put_u8(pfs->ie, WLAN_EID_EXTENSION); wpabuf_put_u8(pfs->ie, 1 + 2 + wpabuf_len(pub)); wpabuf_put_u8(pfs->ie, WLAN_EID_EXT_OWE_DH_PARAM); wpabuf_put_le16(pfs->ie, pfs->curve->ike_group); wpabuf_put_buf(pfs->ie, pub); wpabuf_free(pub); wpa_hexdump_buf(MSG_DEBUG, "DPP: Diffie-Hellman Parameter element", pfs->ie); return pfs; fail: wpabuf_free(pub); dpp_pfs_free(pfs); return NULL; } int dpp_pfs_process(struct dpp_pfs *pfs, const u8 *peer_ie, size_t peer_ie_len) { if (peer_ie_len < 2) return -1; if (WPA_GET_LE16(peer_ie) != pfs->curve->ike_group) { wpa_printf(MSG_DEBUG, "DPP: Peer used different group for PFS"); return -1; } pfs->secret = crypto_ecdh_set_peerkey(pfs->ecdh, 0, peer_ie + 2, peer_ie_len - 2); pfs->secret = wpabuf_zeropad(pfs->secret, pfs->curve->prime_len); if (!pfs->secret) { wpa_printf(MSG_DEBUG, "DPP: Invalid peer DH public key"); return -1; } wpa_hexdump_buf_key(MSG_DEBUG, "DPP: DH shared secret", pfs->secret); return 0; } void dpp_pfs_free(struct dpp_pfs *pfs) { if (!pfs) return; crypto_ecdh_deinit(pfs->ecdh); wpabuf_free(pfs->ie); wpabuf_clear_free(pfs->secret); os_free(pfs); } struct wpabuf * dpp_build_csr(struct dpp_authentication *auth, const char *name) { struct crypto_csr *csr = NULL; struct wpabuf *buf = NULL; struct crypto_ec_key *key; unsigned int hash_len = auth->curve->hash_len; struct wpabuf *priv_key; u8 cp[DPP_CP_LEN]; char *password = NULL; size_t password_len = 0; int hash_sign_algo; /* TODO: use auth->csrattrs */ /* TODO: support generation of a new private key if csrAttrs requests * a specific group to be used */ key = auth->own_protocol_key; priv_key = crypto_ec_key_get_ecprivate_key(key, true); if (!priv_key) goto fail; wpabuf_free(auth->priv_key); auth->priv_key = priv_key; csr = crypto_csr_init(); if (!csr || crypto_csr_set_ec_public_key(csr, key)) goto fail; if (name && crypto_csr_set_name(csr, CSR_NAME_CN, name)) goto fail; /* cp = HKDF-Expand(bk, "CSR challengePassword", 64) */ if (dpp_hkdf_expand(hash_len, auth->bk, hash_len, "CSR challengePassword", cp, DPP_CP_LEN) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: cp = HKDF-Expand(bk, \"CSR challengePassword\", 64)", cp, DPP_CP_LEN); password = base64_encode_no_lf(cp, DPP_CP_LEN, &password_len); forced_memzero(cp, DPP_CP_LEN); if (!password || crypto_csr_set_attribute(csr, CSR_ATTR_CHALLENGE_PASSWORD, ASN1_TAG_UTF8STRING, (const u8 *) password, password_len)) goto fail; /* TODO: hash func selection based on csrAttrs */ if (hash_len == SHA256_MAC_LEN) { hash_sign_algo = CRYPTO_HASH_ALG_SHA256; } else if (hash_len == SHA384_MAC_LEN) { hash_sign_algo = CRYPTO_HASH_ALG_SHA384; } else if (hash_len == SHA512_MAC_LEN) { hash_sign_algo = CRYPTO_HASH_ALG_SHA512; } else { wpa_printf(MSG_DEBUG, "DPP: Unknown signature algorithm"); goto fail; } buf = crypto_csr_sign(csr, key, hash_sign_algo); if (!buf) goto fail; wpa_hexdump_buf(MSG_DEBUG, "DPP: CSR", buf); fail: bin_clear_free(password, password_len); crypto_csr_deinit(csr); return buf; } int dpp_validate_csr(struct dpp_authentication *auth, const struct wpabuf *csrbuf) { struct crypto_csr *csr; const u8 *attr; size_t attr_len; int attr_type; unsigned char *cp = NULL; size_t cp_len; u8 exp_cp[DPP_CP_LEN]; unsigned int hash_len = auth->curve->hash_len; int ret = -1; csr = crypto_csr_verify(csrbuf); if (!csr) { wpa_printf(MSG_DEBUG, "DPP: CSR invalid or invalid signature"); goto fail; } attr = crypto_csr_get_attribute(csr, CSR_ATTR_CHALLENGE_PASSWORD, &attr_len, &attr_type); if (!attr) { wpa_printf(MSG_DEBUG, "DPP: CSR does not include challengePassword"); goto fail; } /* This is supposed to be UTF8String, but allow other strings as well * since challengePassword is using ASCII (base64 encoded). */ if (attr_type != ASN1_TAG_UTF8STRING && attr_type != ASN1_TAG_PRINTABLESTRING && attr_type != ASN1_TAG_IA5STRING) { wpa_printf(MSG_DEBUG, "DPP: Unexpected challengePassword attribute type %d", attr_type); goto fail; } cp = base64_decode((const char *) attr, attr_len, &cp_len); if (!cp) { wpa_printf(MSG_DEBUG, "DPP: Could not base64 decode challengePassword"); goto fail; } if (cp_len != DPP_CP_LEN) { wpa_printf(MSG_DEBUG, "DPP: Unexpected cp length (%zu) in CSR challengePassword", cp_len); goto fail; } wpa_hexdump_key(MSG_DEBUG, "DPP: cp from CSR challengePassword", cp, cp_len); /* cp = HKDF-Expand(bk, "CSR challengePassword", 64) */ if (dpp_hkdf_expand(hash_len, auth->bk, hash_len, "CSR challengePassword", exp_cp, DPP_CP_LEN) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: cp = HKDF-Expand(bk, \"CSR challengePassword\", 64)", exp_cp, DPP_CP_LEN); if (os_memcmp_const(cp, exp_cp, DPP_CP_LEN) != 0) { wpa_printf(MSG_DEBUG, "DPP: CSR challengePassword does not match calculated cp"); goto fail; } ret = 0; fail: os_free(cp); crypto_csr_deinit(csr); return ret; } struct dpp_reconfig_id * dpp_gen_reconfig_id(const u8 *csign_key, size_t csign_key_len, const u8 *pp_key, size_t pp_key_len) { struct crypto_ec_key *csign = NULL, *ppkey = NULL; struct dpp_reconfig_id *id = NULL; struct crypto_ec *ec = NULL; const struct crypto_bignum *q; struct crypto_bignum *bn = NULL; struct crypto_ec_point *e_id = NULL; const struct crypto_ec_point *generator; csign = crypto_ec_key_parse_pub(csign_key, csign_key_len); if (!csign) goto fail; if (!pp_key) goto fail; ppkey = crypto_ec_key_parse_pub(pp_key, pp_key_len); if (!ppkey) goto fail; ec = crypto_ec_init(crypto_ec_key_group(csign)); if (!ec) goto fail; e_id = crypto_ec_point_init(ec); bn = crypto_bignum_init(); q = crypto_ec_get_order(ec); generator = crypto_ec_get_generator(ec); if (!e_id || !bn || !q || !generator || crypto_bignum_rand(bn, q) || crypto_ec_point_mul(ec, generator, bn, e_id)) goto fail; crypto_ec_point_debug_print(ec, e_id, "DPP: Generated random point E-id"); id = os_zalloc(sizeof(*id)); if (!id) goto fail; id->ec = ec; ec = NULL; id->e_id = e_id; e_id = NULL; id->csign = csign; csign = NULL; id->pp_key = ppkey; ppkey = NULL; fail: crypto_ec_point_deinit(e_id, 1); crypto_ec_key_deinit(csign); crypto_ec_key_deinit(ppkey); crypto_bignum_deinit(bn, 1); crypto_ec_deinit(ec); return id; } int dpp_update_reconfig_id(struct dpp_reconfig_id *id) { const struct crypto_bignum *q; struct crypto_bignum *bn; const struct crypto_ec_point *generator; struct crypto_ec_point *e_prime_id, *a_nonce, *pp; int ret = -1; pp = crypto_ec_key_get_public_key(id->pp_key); e_prime_id = crypto_ec_point_init(id->ec); a_nonce = crypto_ec_point_init(id->ec); bn = crypto_bignum_init(); q = crypto_ec_get_order(id->ec); generator = crypto_ec_get_generator(id->ec); /* Generate random 0 <= a-nonce < q * A-NONCE = a-nonce * G * E'-id = E-id + a-nonce * P_pk */ if (!pp || !e_prime_id || !a_nonce || !bn || !q || !generator || crypto_bignum_rand(bn, q) || /* bn = a-nonce */ crypto_ec_point_mul(id->ec, generator, bn, a_nonce) || crypto_ec_point_mul(id->ec, pp, bn, e_prime_id) || crypto_ec_point_add(id->ec, id->e_id, e_prime_id, e_prime_id)) goto fail; crypto_ec_point_debug_print(id->ec, a_nonce, "DPP: Generated A-NONCE"); crypto_ec_point_debug_print(id->ec, e_prime_id, "DPP: Encrypted E-id to E'-id"); crypto_ec_key_deinit(id->a_nonce); crypto_ec_key_deinit(id->e_prime_id); id->a_nonce = crypto_ec_key_set_pub_point(id->ec, a_nonce); id->e_prime_id = crypto_ec_key_set_pub_point(id->ec, e_prime_id); if (!id->a_nonce || !id->e_prime_id) goto fail; ret = 0; fail: crypto_ec_point_deinit(e_prime_id, 1); crypto_ec_point_deinit(a_nonce, 1); crypto_ec_point_deinit(pp, 1); crypto_bignum_deinit(bn, 1); return ret; } void dpp_free_reconfig_id(struct dpp_reconfig_id *id) { if (id) { crypto_ec_point_deinit(id->e_id, 1); crypto_ec_key_deinit(id->csign); crypto_ec_key_deinit(id->a_nonce); crypto_ec_key_deinit(id->e_prime_id); crypto_ec_key_deinit(id->pp_key); crypto_ec_deinit(id->ec); os_free(id); } } struct crypto_ec_point * dpp_decrypt_e_id(struct crypto_ec_key *ppkey, struct crypto_ec_key *a_nonce, struct crypto_ec_key *e_prime_id) { struct crypto_ec *ec; struct crypto_bignum *pp = NULL; struct crypto_ec_point *e_id = NULL; struct crypto_ec_point *a_nonce_point, *e_prime_id_point; if (!ppkey) return NULL; /* E-id = E'-id - s_C * A-NONCE */ ec = crypto_ec_init(crypto_ec_key_group(ppkey)); if (!ec) return NULL; pp = crypto_ec_key_get_private_key(ppkey); a_nonce_point = crypto_ec_key_get_public_key(a_nonce); e_prime_id_point = crypto_ec_key_get_public_key(e_prime_id); e_id = crypto_ec_point_init(ec); if (!pp || !a_nonce_point || !e_prime_id_point || !e_id || crypto_ec_point_mul(ec, a_nonce_point, pp, e_id) || crypto_ec_point_invert(ec, e_id) || crypto_ec_point_add(ec, e_id, e_prime_id_point, e_id)) { crypto_ec_point_deinit(e_id, 1); goto fail; } crypto_ec_point_debug_print(ec, e_id, "DPP: Decrypted E-id"); fail: crypto_ec_point_deinit(a_nonce_point, 1); crypto_ec_point_deinit(e_prime_id_point, 1); crypto_bignum_deinit(pp, 1); crypto_ec_deinit(ec); return e_id; } #endif /* CONFIG_DPP2 */ #ifdef CONFIG_DPP3 int dpp_derive_auth_i(struct dpp_authentication *auth, u8 *auth_i) { int ret = -1, res; u8 Sx[DPP_MAX_SHARED_SECRET_LEN]; size_t Sx_len; unsigned int hash_len; const char *info = "New DPP Protocol Key"; const u8 *addr[3]; size_t len[3]; u8 tmp[DPP_MAX_HASH_LEN], k[DPP_MAX_HASH_LEN]; struct wpabuf *pcx = NULL, *pex = NULL; hash_len = auth->curve->hash_len; /* * Configurator: S = pc * Pe * Enrollee: S = pe * Pc * k = HKDF(bk, "New DPP Protocol Key", S.x) * = HKDF-Expand(HKDF-Extract(bk, S.X), "New DPP Protocol Key", * len(new-curve-hash-out)) * Auth-I = HMAC(k, E-nonce | Pc.x | Pe.x) * * auth->own_protocol_key and auth->peer_protocol_key have already been * updated to use the new keys. The new curve determines the size of * the (new) protocol keys and S.x. The other parameters (bk, hash * algorithm, k) are determined based on the initially determined curve * during the (re)authentication exchange. */ if (dpp_ecdh(auth->own_protocol_key, auth->peer_protocol_key, Sx, &Sx_len) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: S.x", Sx, Sx_len); /* tmp = HKDF-Extract(bk, S.x) */ addr[0] = Sx; len[0] = Sx_len; res = dpp_hmac_vector(hash_len, auth->bk, hash_len, 1, addr, len, tmp); if (res < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: HKDF-Extract(bk, S.x)", tmp, hash_len); /* k = HKDF-Expand(tmp, "New DPP Protocol Key", len(hash-output)) */ res = dpp_hkdf_expand(hash_len, tmp, hash_len, info, k, hash_len); if (res < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "DPP: k = HKDF-Expand(\"New DPP Protocol Key\")", k, hash_len); /* Auth-I = HMAC(k, E-nonce | Pc.x | Pe.x) */ addr[0] = auth->e_nonce; len[0] = auth->curve->nonce_len; if (auth->configurator) { pcx = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); pex = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); } else { pcx = crypto_ec_key_get_pubkey_point(auth->peer_protocol_key, 0); pex = crypto_ec_key_get_pubkey_point(auth->own_protocol_key, 0); } if (!pcx || !pex) goto fail; addr[1] = wpabuf_head(pcx); len[1] = wpabuf_len(pcx) / 2; addr[2] = wpabuf_head(pex); len[2] = wpabuf_len(pex) / 2; if (dpp_hmac_vector(hash_len, k, hash_len, 3, addr, len, auth_i) < 0) goto fail; wpa_hexdump_key(MSG_DEBUG, "DPP: Auth-I = HMAC(k, E-nonce | Pc.x | Pe.x)", auth_i, hash_len); ret = 0; fail: forced_memzero(Sx, sizeof(Sx)); forced_memzero(tmp, sizeof(tmp)); forced_memzero(k, sizeof(k)); wpabuf_free(pcx); wpabuf_free(pex); return ret; } int dpp_hpke_suite(int iana_group, enum hpke_kem_id *kem_id, enum hpke_kdf_id *kdf_id, enum hpke_aead_id *aead_id) { switch (iana_group) { case 19: *kem_id = HPKE_DHKEM_P256_HKDF_SHA256; *kdf_id = HPKE_KDF_HKDF_SHA256; *aead_id = HPKE_AEAD_AES_128_GCM; return 0; case 20: *kem_id = HPKE_DHKEM_P384_HKDF_SHA384; *kdf_id = HPKE_KDF_HKDF_SHA384; *aead_id = HPKE_AEAD_AES_256_GCM; return 0; case 21: *kem_id = HPKE_DHKEM_P521_HKDF_SHA512; *kdf_id = HPKE_KDF_HKDF_SHA512; *aead_id = HPKE_AEAD_AES_256_GCM; return 0; case 28: *kem_id = HPKE_DHKEM_P256_HKDF_SHA256; *kdf_id = HPKE_KDF_HKDF_SHA256; *aead_id = HPKE_AEAD_AES_128_GCM; return 0; case 29: *kem_id = HPKE_DHKEM_P384_HKDF_SHA384; *kdf_id = HPKE_KDF_HKDF_SHA384; *aead_id = HPKE_AEAD_AES_256_GCM; return 0; case 30: *kem_id = HPKE_DHKEM_P521_HKDF_SHA512; *kdf_id = HPKE_KDF_HKDF_SHA512; *aead_id = HPKE_AEAD_AES_256_GCM; return 0; } return -1; } #endif /* CONFIG_DPP3 */ #ifdef CONFIG_TESTING_OPTIONS int dpp_test_gen_invalid_key(struct wpabuf *msg, const struct dpp_curve_params *curve) { struct crypto_ec *ec; struct crypto_ec_key *key = NULL; struct crypto_ec_point *p = NULL, *pub_key = NULL; u8 *x, *y; int ret = -1; ec = crypto_ec_init(curve->ike_group); x = wpabuf_put(msg, curve->prime_len); y = wpabuf_put(msg, curve->prime_len); if (!ec) goto fail; retry: /* Generate valid key pair */ key = crypto_ec_key_gen(curve->ike_group); if (!key) goto fail; /* Retrieve public key coordinates */ pub_key = crypto_ec_key_get_public_key(key); if (!pub_key || crypto_ec_point_to_bin(ec, pub_key, x, y)) goto fail; /* And corrupt them */ y[curve->prime_len - 1] ^= 0x01; p = crypto_ec_point_from_bin(ec, x); if (p && crypto_ec_point_is_on_curve(ec, p)) { crypto_ec_point_deinit(p, 0); p = NULL; goto retry; } ret = 0; fail: crypto_ec_point_deinit(p, 0); crypto_ec_point_deinit(pub_key, 0); crypto_ec_key_deinit(key); crypto_ec_deinit(ec); return ret; } char * dpp_corrupt_connector_signature(const char *connector) { char *tmp, *pos, *signed3 = NULL; unsigned char *signature = NULL; size_t signature_len = 0, signed3_len; tmp = os_zalloc(os_strlen(connector) + 5); if (!tmp) goto fail; os_memcpy(tmp, connector, os_strlen(connector)); pos = os_strchr(tmp, '.'); if (!pos) goto fail; pos = os_strchr(pos + 1, '.'); if (!pos) goto fail; pos++; wpa_printf(MSG_DEBUG, "DPP: Original base64url encoded signature: %s", pos); signature = base64_url_decode(pos, os_strlen(pos), &signature_len); if (!signature || signature_len == 0) goto fail; wpa_hexdump(MSG_DEBUG, "DPP: Original Connector signature", signature, signature_len); signature[signature_len - 1] ^= 0x01; wpa_hexdump(MSG_DEBUG, "DPP: Corrupted Connector signature", signature, signature_len); signed3 = base64_url_encode(signature, signature_len, &signed3_len); if (!signed3) goto fail; os_memcpy(pos, signed3, signed3_len); pos[signed3_len] = '\0'; wpa_printf(MSG_DEBUG, "DPP: Corrupted base64url encoded signature: %s", pos); out: os_free(signature); os_free(signed3); return tmp; fail: os_free(tmp); tmp = NULL; goto out; } #endif /* CONFIG_TESTING_OPTIONS */