//===- LoopExtractor.cpp - Extract each loop into a new function ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // A pass wrapper around the ExtractLoop() scalar transformation to extract each // top-level loop into its own new function. If the loop is the ONLY loop in a // given function, it is not touched. This is a pass most useful for debugging // via bugpoint. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/LoopExtractor.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/CodeExtractor.h" using namespace llvm; #define DEBUG_TYPE "loop-extract" STATISTIC(NumExtracted, "Number of loops extracted"); namespace { struct LoopExtractorLegacyPass : public ModulePass { static char ID; // Pass identification, replacement for typeid unsigned NumLoops; explicit LoopExtractorLegacyPass(unsigned NumLoops = ~0) : ModulePass(ID), NumLoops(NumLoops) { initializeLoopExtractorLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequiredID(BreakCriticalEdgesID); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addUsedIfAvailable(); } }; struct LoopExtractor { explicit LoopExtractor( unsigned NumLoops, function_ref LookupDomTree, function_ref LookupLoopInfo, function_ref LookupAssumptionCache) : NumLoops(NumLoops), LookupDomTree(LookupDomTree), LookupLoopInfo(LookupLoopInfo), LookupAssumptionCache(LookupAssumptionCache) {} bool runOnModule(Module &M); private: // The number of natural loops to extract from the program into functions. unsigned NumLoops; function_ref LookupDomTree; function_ref LookupLoopInfo; function_ref LookupAssumptionCache; bool runOnFunction(Function &F); bool extractLoops(Loop::iterator From, Loop::iterator To, LoopInfo &LI, DominatorTree &DT); bool extractLoop(Loop *L, LoopInfo &LI, DominatorTree &DT); }; } // namespace char LoopExtractorLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopExtractorLegacyPass, "loop-extract", "Extract loops into new functions", false, false) INITIALIZE_PASS_DEPENDENCY(BreakCriticalEdges) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopExtractorLegacyPass, "loop-extract", "Extract loops into new functions", false, false) namespace { /// SingleLoopExtractor - For bugpoint. struct SingleLoopExtractor : public LoopExtractorLegacyPass { static char ID; // Pass identification, replacement for typeid SingleLoopExtractor() : LoopExtractorLegacyPass(1) {} }; } // End anonymous namespace char SingleLoopExtractor::ID = 0; INITIALIZE_PASS(SingleLoopExtractor, "loop-extract-single", "Extract at most one loop into a new function", false, false) // createLoopExtractorPass - This pass extracts all natural loops from the // program into a function if it can. // Pass *llvm::createLoopExtractorPass() { return new LoopExtractorLegacyPass(); } bool LoopExtractorLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; bool Changed = false; auto LookupDomTree = [this](Function &F) -> DominatorTree & { return this->getAnalysis(F).getDomTree(); }; auto LookupLoopInfo = [this, &Changed](Function &F) -> LoopInfo & { return this->getAnalysis(F, &Changed).getLoopInfo(); }; auto LookupACT = [this](Function &F) -> AssumptionCache * { if (auto *ACT = this->getAnalysisIfAvailable()) return ACT->lookupAssumptionCache(F); return nullptr; }; return LoopExtractor(NumLoops, LookupDomTree, LookupLoopInfo, LookupACT) .runOnModule(M) || Changed; } bool LoopExtractor::runOnModule(Module &M) { if (M.empty()) return false; if (!NumLoops) return false; bool Changed = false; // The end of the function list may change (new functions will be added at the // end), so we run from the first to the current last. auto I = M.begin(), E = --M.end(); while (true) { Function &F = *I; Changed |= runOnFunction(F); if (!NumLoops) break; // If this is the last function. if (I == E) break; ++I; } return Changed; } bool LoopExtractor::runOnFunction(Function &F) { // Do not modify `optnone` functions. if (F.hasOptNone()) return false; if (F.empty()) return false; bool Changed = false; LoopInfo &LI = LookupLoopInfo(F); // If there are no loops in the function. if (LI.empty()) return Changed; DominatorTree &DT = LookupDomTree(F); // If there is more than one top-level loop in this function, extract all of // the loops. if (std::next(LI.begin()) != LI.end()) return Changed | extractLoops(LI.begin(), LI.end(), LI, DT); // Otherwise there is exactly one top-level loop. Loop *TLL = *LI.begin(); // If the loop is in LoopSimplify form, then extract it only if this function // is more than a minimal wrapper around the loop. if (TLL->isLoopSimplifyForm()) { bool ShouldExtractLoop = false; // Extract the loop if the entry block doesn't branch to the loop header. Instruction *EntryTI = F.getEntryBlock().getTerminator(); if (!isa(EntryTI) || !cast(EntryTI)->isUnconditional() || EntryTI->getSuccessor(0) != TLL->getHeader()) { ShouldExtractLoop = true; } else { // Check to see if any exits from the loop are more than just return // blocks. SmallVector ExitBlocks; TLL->getExitBlocks(ExitBlocks); for (auto *ExitBlock : ExitBlocks) if (!isa(ExitBlock->getTerminator())) { ShouldExtractLoop = true; break; } } if (ShouldExtractLoop) return Changed | extractLoop(TLL, LI, DT); } // Okay, this function is a minimal container around the specified loop. // If we extract the loop, we will continue to just keep extracting it // infinitely... so don't extract it. However, if the loop contains any // sub-loops, extract them. return Changed | extractLoops(TLL->begin(), TLL->end(), LI, DT); } bool LoopExtractor::extractLoops(Loop::iterator From, Loop::iterator To, LoopInfo &LI, DominatorTree &DT) { bool Changed = false; SmallVector Loops; // Save the list of loops, as it may change. Loops.assign(From, To); for (Loop *L : Loops) { // If LoopSimplify form is not available, stay out of trouble. if (!L->isLoopSimplifyForm()) continue; Changed |= extractLoop(L, LI, DT); if (!NumLoops) break; } return Changed; } bool LoopExtractor::extractLoop(Loop *L, LoopInfo &LI, DominatorTree &DT) { assert(NumLoops != 0); Function &Func = *L->getHeader()->getParent(); AssumptionCache *AC = LookupAssumptionCache(Func); CodeExtractorAnalysisCache CEAC(Func); CodeExtractor Extractor(DT, *L, false, nullptr, nullptr, AC); if (Extractor.extractCodeRegion(CEAC)) { LI.erase(L); --NumLoops; ++NumExtracted; return true; } return false; } // createSingleLoopExtractorPass - This pass extracts one natural loop from the // program into a function if it can. This is used by bugpoint. // Pass *llvm::createSingleLoopExtractorPass() { return new SingleLoopExtractor(); } PreservedAnalyses LoopExtractorPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { return FAM.getResult(F); }; auto LookupLoopInfo = [&FAM](Function &F) -> LoopInfo & { return FAM.getResult(F); }; auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { return FAM.getCachedResult(F); }; if (!LoopExtractor(NumLoops, LookupDomTree, LookupLoopInfo, LookupAssumptionCache) .runOnModule(M)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; } void LoopExtractorPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << '<'; if (NumLoops == 1) OS << "single"; OS << '>'; }