//===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ARMBaseInstrInfo.h" #include "ARMFeatures.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMInstPrinter.h" #include "MCTargetDesc/ARMMCExpr.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "TargetInfo/ARMTargetInfo.h" #include "Utils/ARMBaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserExtension.h" #include "llvm/MC/MCParser/MCAsmParserUtils.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/ARMEHABI.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include "llvm/TargetParser/TargetParser.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #include #include #include #include #include #define DEBUG_TYPE "asm-parser" using namespace llvm; namespace llvm { struct ARMInstrTable { MCInstrDesc Insts[4445]; MCOperandInfo OperandInfo[3026]; MCPhysReg ImplicitOps[130]; }; extern const ARMInstrTable ARMDescs; } // end namespace llvm namespace { enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; static cl::opt ImplicitItMode( "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), cl::desc("Allow conditional instructions outdside of an IT block"), cl::values(clEnumValN(ImplicitItModeTy::Always, "always", "Accept in both ISAs, emit implicit ITs in Thumb"), clEnumValN(ImplicitItModeTy::Never, "never", "Warn in ARM, reject in Thumb"), clEnumValN(ImplicitItModeTy::ARMOnly, "arm", "Accept in ARM, reject in Thumb"), clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", "Warn in ARM, emit implicit ITs in Thumb"))); static cl::opt AddBuildAttributes("arm-add-build-attributes", cl::init(false)); enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { // Position==0 means we're not in an IT block at all. Position==1 // means we want the first state bit, which is always 0 (Then). // Position==2 means we want the second state bit, stored at bit 3 // of Mask, and so on downwards. So (5 - Position) will shift the // right bit down to bit 0, including the always-0 bit at bit 4 for // the mandatory initial Then. return (Mask >> (5 - Position) & 1); } class UnwindContext { using Locs = SmallVector; MCAsmParser &Parser; Locs FnStartLocs; Locs CantUnwindLocs; Locs PersonalityLocs; Locs PersonalityIndexLocs; Locs HandlerDataLocs; int FPReg; public: UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} bool hasFnStart() const { return !FnStartLocs.empty(); } bool cantUnwind() const { return !CantUnwindLocs.empty(); } bool hasHandlerData() const { return !HandlerDataLocs.empty(); } bool hasPersonality() const { return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); } void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } void saveFPReg(int Reg) { FPReg = Reg; } int getFPReg() const { return FPReg; } void emitFnStartLocNotes() const { for (const SMLoc &Loc : FnStartLocs) Parser.Note(Loc, ".fnstart was specified here"); } void emitCantUnwindLocNotes() const { for (const SMLoc &Loc : CantUnwindLocs) Parser.Note(Loc, ".cantunwind was specified here"); } void emitHandlerDataLocNotes() const { for (const SMLoc &Loc : HandlerDataLocs) Parser.Note(Loc, ".handlerdata was specified here"); } void emitPersonalityLocNotes() const { for (Locs::const_iterator PI = PersonalityLocs.begin(), PE = PersonalityLocs.end(), PII = PersonalityIndexLocs.begin(), PIE = PersonalityIndexLocs.end(); PI != PE || PII != PIE;) { if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) Parser.Note(*PI++, ".personality was specified here"); else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) Parser.Note(*PII++, ".personalityindex was specified here"); else llvm_unreachable(".personality and .personalityindex cannot be " "at the same location"); } } void reset() { FnStartLocs = Locs(); CantUnwindLocs = Locs(); PersonalityLocs = Locs(); HandlerDataLocs = Locs(); PersonalityIndexLocs = Locs(); FPReg = ARM::SP; } }; // Various sets of ARM instruction mnemonics which are used by the asm parser class ARMMnemonicSets { StringSet<> CDE; StringSet<> CDEWithVPTSuffix; public: ARMMnemonicSets(const MCSubtargetInfo &STI); /// Returns true iff a given mnemonic is a CDE instruction bool isCDEInstr(StringRef Mnemonic) { // Quick check before searching the set if (!Mnemonic.starts_with("cx") && !Mnemonic.starts_with("vcx")) return false; return CDE.count(Mnemonic); } /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction /// (possibly with a predication suffix "e" or "t") bool isVPTPredicableCDEInstr(StringRef Mnemonic) { if (!Mnemonic.starts_with("vcx")) return false; return CDEWithVPTSuffix.count(Mnemonic); } /// Returns true iff a given mnemonic is an IT-predicable CDE instruction /// (possibly with a condition suffix) bool isITPredicableCDEInstr(StringRef Mnemonic) { if (!Mnemonic.starts_with("cx")) return false; return Mnemonic.starts_with("cx1a") || Mnemonic.starts_with("cx1da") || Mnemonic.starts_with("cx2a") || Mnemonic.starts_with("cx2da") || Mnemonic.starts_with("cx3a") || Mnemonic.starts_with("cx3da"); } /// Return true iff a given mnemonic is an integer CDE instruction with /// dual-register destination bool isCDEDualRegInstr(StringRef Mnemonic) { if (!Mnemonic.starts_with("cx")) return false; return Mnemonic == "cx1d" || Mnemonic == "cx1da" || Mnemonic == "cx2d" || Mnemonic == "cx2da" || Mnemonic == "cx3d" || Mnemonic == "cx3da"; } }; ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", "cx2", "cx2a", "cx2d", "cx2da", "cx3", "cx3a", "cx3d", "cx3da", }) CDE.insert(Mnemonic); for (StringRef Mnemonic : {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { CDE.insert(Mnemonic); CDEWithVPTSuffix.insert(Mnemonic); CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); } } class ARMAsmParser : public MCTargetAsmParser { const MCRegisterInfo *MRI; UnwindContext UC; ARMMnemonicSets MS; ARMTargetStreamer &getTargetStreamer() { assert(getParser().getStreamer().getTargetStreamer() && "do not have a target streamer"); MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast(TS); } // Map of register aliases registers via the .req directive. StringMap RegisterReqs; bool NextSymbolIsThumb; bool useImplicitITThumb() const { return ImplicitItMode == ImplicitItModeTy::Always || ImplicitItMode == ImplicitItModeTy::ThumbOnly; } bool useImplicitITARM() const { return ImplicitItMode == ImplicitItModeTy::Always || ImplicitItMode == ImplicitItModeTy::ARMOnly; } struct { ARMCC::CondCodes Cond; // Condition for IT block. unsigned Mask:4; // Condition mask for instructions. // Starting at first 1 (from lsb). // '1' condition as indicated in IT. // '0' inverse of condition (else). // Count of instructions in IT block is // 4 - trailingzeroes(mask) // Note that this does not have the same encoding // as in the IT instruction, which also depends // on the low bit of the condition code. unsigned CurPosition; // Current position in parsing of IT // block. In range [0,4], with 0 being the IT // instruction itself. Initialized according to // count of instructions in block. ~0U if no // active IT block. bool IsExplicit; // true - The IT instruction was present in the // input, we should not modify it. // false - The IT instruction was added // implicitly, we can extend it if that // would be legal. } ITState; SmallVector PendingConditionalInsts; void flushPendingInstructions(MCStreamer &Out) override { if (!inImplicitITBlock()) { assert(PendingConditionalInsts.size() == 0); return; } // Emit the IT instruction MCInst ITInst; ITInst.setOpcode(ARM::t2IT); ITInst.addOperand(MCOperand::createImm(ITState.Cond)); ITInst.addOperand(MCOperand::createImm(ITState.Mask)); Out.emitInstruction(ITInst, getSTI()); // Emit the conditional instructions assert(PendingConditionalInsts.size() <= 4); for (const MCInst &Inst : PendingConditionalInsts) { Out.emitInstruction(Inst, getSTI()); } PendingConditionalInsts.clear(); // Clear the IT state ITState.Mask = 0; ITState.CurPosition = ~0U; } bool inITBlock() { return ITState.CurPosition != ~0U; } bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } bool lastInITBlock() { return ITState.CurPosition == 4 - (unsigned)llvm::countr_zero(ITState.Mask); } void forwardITPosition() { if (!inITBlock()) return; // Move to the next instruction in the IT block, if there is one. If not, // mark the block as done, except for implicit IT blocks, which we leave // open until we find an instruction that can't be added to it. unsigned TZ = llvm::countr_zero(ITState.Mask); if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) ITState.CurPosition = ~0U; // Done with the IT block after this. } // Rewind the state of the current IT block, removing the last slot from it. void rewindImplicitITPosition() { assert(inImplicitITBlock()); assert(ITState.CurPosition > 1); ITState.CurPosition--; unsigned TZ = llvm::countr_zero(ITState.Mask); unsigned NewMask = 0; NewMask |= ITState.Mask & (0xC << TZ); NewMask |= 0x2 << TZ; ITState.Mask = NewMask; } // Rewind the state of the current IT block, removing the last slot from it. // If we were at the first slot, this closes the IT block. void discardImplicitITBlock() { assert(inImplicitITBlock()); assert(ITState.CurPosition == 1); ITState.CurPosition = ~0U; } // Return the low-subreg of a given Q register. unsigned getDRegFromQReg(unsigned QReg) const { return MRI->getSubReg(QReg, ARM::dsub_0); } // Get the condition code corresponding to the current IT block slot. ARMCC::CondCodes currentITCond() { unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; } // Invert the condition of the current IT block slot without changing any // other slots in the same block. void invertCurrentITCondition() { if (ITState.CurPosition == 1) { ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); } else { ITState.Mask ^= 1 << (5 - ITState.CurPosition); } } // Returns true if the current IT block is full (all 4 slots used). bool isITBlockFull() { return inITBlock() && (ITState.Mask & 1); } // Extend the current implicit IT block to have one more slot with the given // condition code. void extendImplicitITBlock(ARMCC::CondCodes Cond) { assert(inImplicitITBlock()); assert(!isITBlockFull()); assert(Cond == ITState.Cond || Cond == ARMCC::getOppositeCondition(ITState.Cond)); unsigned TZ = llvm::countr_zero(ITState.Mask); unsigned NewMask = 0; // Keep any existing condition bits. NewMask |= ITState.Mask & (0xE << TZ); // Insert the new condition bit. NewMask |= (Cond != ITState.Cond) << TZ; // Move the trailing 1 down one bit. NewMask |= 1 << (TZ - 1); ITState.Mask = NewMask; } // Create a new implicit IT block with a dummy condition code. void startImplicitITBlock() { assert(!inITBlock()); ITState.Cond = ARMCC::AL; ITState.Mask = 8; ITState.CurPosition = 1; ITState.IsExplicit = false; } // Create a new explicit IT block with the given condition and mask. // The mask should be in the format used in ARMOperand and // MCOperand, with a 1 implying 'e', regardless of the low bit of // the condition. void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { assert(!inITBlock()); ITState.Cond = Cond; ITState.Mask = Mask; ITState.CurPosition = 0; ITState.IsExplicit = true; } struct { unsigned Mask : 4; unsigned CurPosition; } VPTState; bool inVPTBlock() { return VPTState.CurPosition != ~0U; } void forwardVPTPosition() { if (!inVPTBlock()) return; unsigned TZ = llvm::countr_zero(VPTState.Mask); if (++VPTState.CurPosition == 5 - TZ) VPTState.CurPosition = ~0U; } void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { return getParser().Note(L, Msg, Range); } bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { return getParser().Warning(L, Msg, Range); } bool Error(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { return getParser().Error(L, Msg, Range); } bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo, bool IsARPop = false); bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo); int tryParseRegister(); bool tryParseRegisterWithWriteBack(OperandVector &); int tryParseShiftRegister(OperandVector &); bool parseRegisterList(OperandVector &, bool EnforceOrder = true, bool AllowRAAC = false); bool parseMemory(OperandVector &); bool parseOperand(OperandVector &, StringRef Mnemonic); bool parseImmExpr(int64_t &Out); bool parsePrefix(ARMMCExpr::VariantKind &RefKind); bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, unsigned &ShiftAmount); bool parseLiteralValues(unsigned Size, SMLoc L); bool parseDirectiveThumb(SMLoc L); bool parseDirectiveARM(SMLoc L); bool parseDirectiveThumbFunc(SMLoc L); bool parseDirectiveCode(SMLoc L); bool parseDirectiveSyntax(SMLoc L); bool parseDirectiveReq(StringRef Name, SMLoc L); bool parseDirectiveUnreq(SMLoc L); bool parseDirectiveArch(SMLoc L); bool parseDirectiveEabiAttr(SMLoc L); bool parseDirectiveCPU(SMLoc L); bool parseDirectiveFPU(SMLoc L); bool parseDirectiveFnStart(SMLoc L); bool parseDirectiveFnEnd(SMLoc L); bool parseDirectiveCantUnwind(SMLoc L); bool parseDirectivePersonality(SMLoc L); bool parseDirectiveHandlerData(SMLoc L); bool parseDirectiveSetFP(SMLoc L); bool parseDirectivePad(SMLoc L); bool parseDirectiveRegSave(SMLoc L, bool IsVector); bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); bool parseDirectiveLtorg(SMLoc L); bool parseDirectiveEven(SMLoc L); bool parseDirectivePersonalityIndex(SMLoc L); bool parseDirectiveUnwindRaw(SMLoc L); bool parseDirectiveTLSDescSeq(SMLoc L); bool parseDirectiveMovSP(SMLoc L); bool parseDirectiveObjectArch(SMLoc L); bool parseDirectiveArchExtension(SMLoc L); bool parseDirectiveAlign(SMLoc L); bool parseDirectiveThumbSet(SMLoc L); bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide); bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide); bool parseDirectiveSEHSaveSP(SMLoc L); bool parseDirectiveSEHSaveFRegs(SMLoc L); bool parseDirectiveSEHSaveLR(SMLoc L); bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment); bool parseDirectiveSEHNop(SMLoc L, bool Wide); bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition); bool parseDirectiveSEHEpilogEnd(SMLoc L); bool parseDirectiveSEHCustom(SMLoc L); bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, unsigned &PredicationCode, unsigned &VPTPredicationCode, bool &CarrySetting, unsigned &ProcessorIMod, StringRef &ITMask); void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, StringRef FullInst, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode, bool &CanAcceptVPTPredicationCode); bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, OperandVector &Operands); bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); bool isThumb() const { // FIXME: Can tablegen auto-generate this? return getSTI().hasFeature(ARM::ModeThumb); } bool isThumbOne() const { return isThumb() && !getSTI().hasFeature(ARM::FeatureThumb2); } bool isThumbTwo() const { return isThumb() && getSTI().hasFeature(ARM::FeatureThumb2); } bool hasThumb() const { return getSTI().hasFeature(ARM::HasV4TOps); } bool hasThumb2() const { return getSTI().hasFeature(ARM::FeatureThumb2); } bool hasV6Ops() const { return getSTI().hasFeature(ARM::HasV6Ops); } bool hasV6T2Ops() const { return getSTI().hasFeature(ARM::HasV6T2Ops); } bool hasV6MOps() const { return getSTI().hasFeature(ARM::HasV6MOps); } bool hasV7Ops() const { return getSTI().hasFeature(ARM::HasV7Ops); } bool hasV8Ops() const { return getSTI().hasFeature(ARM::HasV8Ops); } bool hasV8MBaseline() const { return getSTI().hasFeature(ARM::HasV8MBaselineOps); } bool hasV8MMainline() const { return getSTI().hasFeature(ARM::HasV8MMainlineOps); } bool hasV8_1MMainline() const { return getSTI().hasFeature(ARM::HasV8_1MMainlineOps); } bool hasMVE() const { return getSTI().hasFeature(ARM::HasMVEIntegerOps); } bool hasMVEFloat() const { return getSTI().hasFeature(ARM::HasMVEFloatOps); } bool hasCDE() const { return getSTI().hasFeature(ARM::HasCDEOps); } bool has8MSecExt() const { return getSTI().hasFeature(ARM::Feature8MSecExt); } bool hasARM() const { return !getSTI().hasFeature(ARM::FeatureNoARM); } bool hasDSP() const { return getSTI().hasFeature(ARM::FeatureDSP); } bool hasD32() const { return getSTI().hasFeature(ARM::FeatureD32); } bool hasV8_1aOps() const { return getSTI().hasFeature(ARM::HasV8_1aOps); } bool hasRAS() const { return getSTI().hasFeature(ARM::FeatureRAS); } void SwitchMode() { MCSubtargetInfo &STI = copySTI(); auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); setAvailableFeatures(FB); } void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); bool isMClass() const { return getSTI().hasFeature(ARM::FeatureMClass); } /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARMGenAsmMatcher.inc" /// } ParseStatus parseITCondCode(OperandVector &); ParseStatus parseCoprocNumOperand(OperandVector &); ParseStatus parseCoprocRegOperand(OperandVector &); ParseStatus parseCoprocOptionOperand(OperandVector &); ParseStatus parseMemBarrierOptOperand(OperandVector &); ParseStatus parseTraceSyncBarrierOptOperand(OperandVector &); ParseStatus parseInstSyncBarrierOptOperand(OperandVector &); ParseStatus parseProcIFlagsOperand(OperandVector &); ParseStatus parseMSRMaskOperand(OperandVector &); ParseStatus parseBankedRegOperand(OperandVector &); ParseStatus parsePKHImm(OperandVector &O, StringRef Op, int Low, int High); ParseStatus parsePKHLSLImm(OperandVector &O) { return parsePKHImm(O, "lsl", 0, 31); } ParseStatus parsePKHASRImm(OperandVector &O) { return parsePKHImm(O, "asr", 1, 32); } ParseStatus parseSetEndImm(OperandVector &); ParseStatus parseShifterImm(OperandVector &); ParseStatus parseRotImm(OperandVector &); ParseStatus parseModImm(OperandVector &); ParseStatus parseBitfield(OperandVector &); ParseStatus parsePostIdxReg(OperandVector &); ParseStatus parseAM3Offset(OperandVector &); ParseStatus parseFPImm(OperandVector &); ParseStatus parseVectorList(OperandVector &); ParseStatus parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc); // Asm Match Converter Methods void cvtThumbMultiply(MCInst &Inst, const OperandVector &); void cvtThumbBranches(MCInst &Inst, const OperandVector &); void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); bool validateInstruction(MCInst &Inst, const OperandVector &Ops); bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); bool isITBlockTerminator(MCInst &Inst) const; void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, bool Load, bool ARMMode, bool Writeback); public: enum ARMMatchResultTy { Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, Match_RequiresNotITBlock, Match_RequiresV6, Match_RequiresThumb2, Match_RequiresV8, Match_RequiresFlagSetting, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "ARMGenAsmMatcher.inc" }; ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { MCAsmParserExtension::Initialize(Parser); // Cache the MCRegisterInfo. MRI = getContext().getRegisterInfo(); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); // Add build attributes based on the selected target. if (AddBuildAttributes) getTargetStreamer().emitTargetAttributes(STI); // Not in an ITBlock to start with. ITState.CurPosition = ~0U; VPTState.CurPosition = ~0U; NextSymbolIsThumb = false; } // Implementation of the MCTargetAsmParser interface: bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; unsigned checkTargetMatchPredicate(MCInst &Inst) override; bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, SmallVectorImpl &NearMisses, bool MatchingInlineAsm, bool &EmitInITBlock, MCStreamer &Out); struct NearMissMessage { SMLoc Loc; SmallString<128> Message; }; const char *getCustomOperandDiag(ARMMatchResultTy MatchError); void FilterNearMisses(SmallVectorImpl &NearMissesIn, SmallVectorImpl &NearMissesOut, SMLoc IDLoc, OperandVector &Operands); void ReportNearMisses(SmallVectorImpl &NearMisses, SMLoc IDLoc, OperandVector &Operands); void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) override; void onLabelParsed(MCSymbol *Symbol) override; }; /// ARMOperand - Instances of this class represent a parsed ARM machine /// operand. class ARMOperand : public MCParsedAsmOperand { enum KindTy { k_CondCode, k_VPTPred, k_CCOut, k_ITCondMask, k_CoprocNum, k_CoprocReg, k_CoprocOption, k_Immediate, k_MemBarrierOpt, k_InstSyncBarrierOpt, k_TraceSyncBarrierOpt, k_Memory, k_PostIndexRegister, k_MSRMask, k_BankedReg, k_ProcIFlags, k_VectorIndex, k_Register, k_RegisterList, k_RegisterListWithAPSR, k_DPRRegisterList, k_SPRRegisterList, k_FPSRegisterListWithVPR, k_FPDRegisterListWithVPR, k_VectorList, k_VectorListAllLanes, k_VectorListIndexed, k_ShiftedRegister, k_ShiftedImmediate, k_ShifterImmediate, k_RotateImmediate, k_ModifiedImmediate, k_ConstantPoolImmediate, k_BitfieldDescriptor, k_Token, } Kind; SMLoc StartLoc, EndLoc, AlignmentLoc; SmallVector Registers; struct CCOp { ARMCC::CondCodes Val; }; struct VCCOp { ARMVCC::VPTCodes Val; }; struct CopOp { unsigned Val; }; struct CoprocOptionOp { unsigned Val; }; struct ITMaskOp { unsigned Mask:4; }; struct MBOptOp { ARM_MB::MemBOpt Val; }; struct ISBOptOp { ARM_ISB::InstSyncBOpt Val; }; struct TSBOptOp { ARM_TSB::TraceSyncBOpt Val; }; struct IFlagsOp { ARM_PROC::IFlags Val; }; struct MMaskOp { unsigned Val; }; struct BankedRegOp { unsigned Val; }; struct TokOp { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; }; // A vector register list is a sequential list of 1 to 4 registers. struct VectorListOp { unsigned RegNum; unsigned Count; unsigned LaneIndex; bool isDoubleSpaced; }; struct VectorIndexOp { unsigned Val; }; struct ImmOp { const MCExpr *Val; }; /// Combined record for all forms of ARM address expressions. struct MemoryOp { unsigned BaseRegNum; // Offset is in OffsetReg or OffsetImm. If both are zero, no offset // was specified. const MCExpr *OffsetImm; // Offset immediate value unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg unsigned ShiftImm; // shift for OffsetReg. unsigned Alignment; // 0 = no alignment specified // n = alignment in bytes (2, 4, 8, 16, or 32) unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) }; struct PostIdxRegOp { unsigned RegNum; bool isAdd; ARM_AM::ShiftOpc ShiftTy; unsigned ShiftImm; }; struct ShifterImmOp { bool isASR; unsigned Imm; }; struct RegShiftedRegOp { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftReg; unsigned ShiftImm; }; struct RegShiftedImmOp { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftImm; }; struct RotImmOp { unsigned Imm; }; struct ModImmOp { unsigned Bits; unsigned Rot; }; struct BitfieldOp { unsigned LSB; unsigned Width; }; union { struct CCOp CC; struct VCCOp VCC; struct CopOp Cop; struct CoprocOptionOp CoprocOption; struct MBOptOp MBOpt; struct ISBOptOp ISBOpt; struct TSBOptOp TSBOpt; struct ITMaskOp ITMask; struct IFlagsOp IFlags; struct MMaskOp MMask; struct BankedRegOp BankedReg; struct TokOp Tok; struct RegOp Reg; struct VectorListOp VectorList; struct VectorIndexOp VectorIndex; struct ImmOp Imm; struct MemoryOp Memory; struct PostIdxRegOp PostIdxReg; struct ShifterImmOp ShifterImm; struct RegShiftedRegOp RegShiftedReg; struct RegShiftedImmOp RegShiftedImm; struct RotImmOp RotImm; struct ModImmOp ModImm; struct BitfieldOp Bitfield; }; public: ARMOperand(KindTy K) : Kind(K) {} /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } /// getLocRange - Get the range between the first and last token of this /// operand. SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } /// getAlignmentLoc - Get the location of the Alignment token of this operand. SMLoc getAlignmentLoc() const { assert(Kind == k_Memory && "Invalid access!"); return AlignmentLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == k_CondCode && "Invalid access!"); return CC.Val; } ARMVCC::VPTCodes getVPTPred() const { assert(isVPTPred() && "Invalid access!"); return VCC.Val; } unsigned getCoproc() const { assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); return Cop.Val; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const override { assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); return Reg.RegNum; } const SmallVectorImpl &getRegList() const { assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || Kind == k_FPSRegisterListWithVPR || Kind == k_FPDRegisterListWithVPR) && "Invalid access!"); return Registers; } const MCExpr *getImm() const { assert(isImm() && "Invalid access!"); return Imm.Val; } const MCExpr *getConstantPoolImm() const { assert(isConstantPoolImm() && "Invalid access!"); return Imm.Val; } unsigned getVectorIndex() const { assert(Kind == k_VectorIndex && "Invalid access!"); return VectorIndex.Val; } ARM_MB::MemBOpt getMemBarrierOpt() const { assert(Kind == k_MemBarrierOpt && "Invalid access!"); return MBOpt.Val; } ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); return ISBOpt.Val; } ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); return TSBOpt.Val; } ARM_PROC::IFlags getProcIFlags() const { assert(Kind == k_ProcIFlags && "Invalid access!"); return IFlags.Val; } unsigned getMSRMask() const { assert(Kind == k_MSRMask && "Invalid access!"); return MMask.Val; } unsigned getBankedReg() const { assert(Kind == k_BankedReg && "Invalid access!"); return BankedReg.Val; } bool isCoprocNum() const { return Kind == k_CoprocNum; } bool isCoprocReg() const { return Kind == k_CoprocReg; } bool isCoprocOption() const { return Kind == k_CoprocOption; } bool isCondCode() const { return Kind == k_CondCode; } bool isVPTPred() const { return Kind == k_VPTPred; } bool isCCOut() const { return Kind == k_CCOut; } bool isITMask() const { return Kind == k_ITCondMask; } bool isITCondCode() const { return Kind == k_CondCode; } bool isImm() const override { return Kind == k_Immediate; } bool isARMBranchTarget() const { if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(getImm())) return CE->getValue() % 4 == 0; return true; } bool isThumbBranchTarget() const { if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(getImm())) return CE->getValue() % 2 == 0; return true; } // checks whether this operand is an unsigned offset which fits is a field // of specified width and scaled by a specific number of bits template bool isUnsignedOffset() const { if (!isImm()) return false; if (isa(Imm.Val)) return true; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Align = 1LL << scale; int64_t Max = Align * ((1LL << width) - 1); return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); } return false; } // checks whether this operand is an signed offset which fits is a field // of specified width and scaled by a specific number of bits template bool isSignedOffset() const { if (!isImm()) return false; if (isa(Imm.Val)) return true; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Align = 1LL << scale; int64_t Max = Align * ((1LL << (width-1)) - 1); int64_t Min = -Align * (1LL << (width-1)); return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); } return false; } // checks whether this operand is an offset suitable for the LE / // LETP instructions in Arm v8.1M bool isLEOffset() const { if (!isImm()) return false; if (isa(Imm.Val)) return true; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); return Val < 0 && Val >= -4094 && (Val & 1) == 0; } return false; } // checks whether this operand is a memory operand computed as an offset // applied to PC. the offset may have 8 bits of magnitude and is represented // with two bits of shift. textually it may be either [pc, #imm], #imm or // relocable expression... bool isThumbMemPC() const { int64_t Val = 0; if (isImm()) { if (isa(Imm.Val)) return true; const MCConstantExpr *CE = dyn_cast(Imm.Val); if (!CE) return false; Val = CE->getValue(); } else if (isGPRMem()) { if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; if(Memory.BaseRegNum != ARM::PC) return false; if (const auto *CE = dyn_cast(Memory.OffsetImm)) Val = CE->getValue(); else return false; } else return false; return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); } bool isFPImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); return Val != -1; } template bool isImmediate() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= N && Value <= M; } template bool isImmediateS4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ((Value & 3) == 0) && Value >= N && Value <= M; } template bool isImmediateS2() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ((Value & 1) == 0) && Value >= N && Value <= M; } bool isFBits16() const { return isImmediate<0, 17>(); } bool isFBits32() const { return isImmediate<1, 33>(); } bool isImm8s4() const { return isImmediateS4<-1020, 1020>(); } bool isImm7s4() const { return isImmediateS4<-508, 508>(); } bool isImm7Shift0() const { return isImmediate<-127, 127>(); } bool isImm7Shift1() const { return isImmediateS2<-255, 255>(); } bool isImm7Shift2() const { return isImmediateS4<-511, 511>(); } bool isImm7() const { return isImmediate<-127, 127>(); } bool isImm0_1020s4() const { return isImmediateS4<0, 1020>(); } bool isImm0_508s4() const { return isImmediateS4<0, 508>(); } bool isImm0_508s4Neg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = -CE->getValue(); // explicitly exclude zero. we want that to use the normal 0_508 version. return ((Value & 3) == 0) && Value > 0 && Value <= 508; } bool isImm0_4095Neg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; // isImm0_4095Neg is used with 32-bit immediates only. // 32-bit immediates are zero extended to 64-bit when parsed, // thus simple -CE->getValue() results in a big negative number, // not a small positive number as intended if ((CE->getValue() >> 32) > 0) return false; uint32_t Value = -static_cast(CE->getValue()); return Value > 0 && Value < 4096; } bool isImm0_7() const { return isImmediate<0, 7>(); } bool isImm1_16() const { return isImmediate<1, 16>(); } bool isImm1_32() const { return isImmediate<1, 32>(); } bool isImm8_255() const { return isImmediate<8, 255>(); } bool isImm0_255Expr() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return isUInt<8>(Value); } bool isImm256_65535Expr() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return Value >= 256 && Value < 65536; } bool isImm0_65535Expr() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return Value >= 0 && Value < 65536; } bool isImm24bit() const { return isImmediate<0, 0xffffff + 1>(); } bool isImmThumbSR() const { return isImmediate<1, 33>(); } bool isPKHLSLImm() const { return isImmediate<0, 32>(); } bool isPKHASRImm() const { return isImmediate<0, 33>(); } bool isAdrLabel() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. if (isImm() && !isa(getImm())) return true; // If it is a constant, it must fit into a modified immediate encoding. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return (ARM_AM::getSOImmVal(Value) != -1 || ARM_AM::getSOImmVal(-Value) != -1); } bool isT2SOImm() const { // If we have an immediate that's not a constant, treat it as an expression // needing a fixup. if (isImm() && !isa(getImm())) { // We want to avoid matching :upper16: and :lower16: as we want these // expressions to match in isImm0_65535Expr() const ARMMCExpr *ARM16Expr = dyn_cast(getImm()); return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); } if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getT2SOImmVal(Value) != -1; } bool isT2SOImmNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getT2SOImmVal(Value) == -1 && ARM_AM::getT2SOImmVal(~Value) != -1; } bool isT2SOImmNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); // Only use this when not representable as a plain so_imm. return ARM_AM::getT2SOImmVal(Value) == -1 && ARM_AM::getT2SOImmVal(-Value) != -1; } bool isSetEndImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 1 || Value == 0; } bool isReg() const override { return Kind == k_Register; } bool isRegList() const { return Kind == k_RegisterList; } bool isRegListWithAPSR() const { return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; } bool isDPRRegList() const { return Kind == k_DPRRegisterList; } bool isSPRRegList() const { return Kind == k_SPRRegisterList; } bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } bool isToken() const override { return Kind == k_Token; } bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } bool isMem() const override { return isGPRMem() || isMVEMem(); } bool isMVEMem() const { if (Kind != k_Memory) return false; if (Memory.BaseRegNum && !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) return false; if (Memory.OffsetRegNum && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( Memory.OffsetRegNum)) return false; return true; } bool isGPRMem() const { if (Kind != k_Memory) return false; if (Memory.BaseRegNum && !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) return false; if (Memory.OffsetRegNum && !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) return false; return true; } bool isShifterImm() const { return Kind == k_ShifterImmediate; } bool isRegShiftedReg() const { return Kind == k_ShiftedRegister && ARMMCRegisterClasses[ARM::GPRRegClassID].contains( RegShiftedReg.SrcReg) && ARMMCRegisterClasses[ARM::GPRRegClassID].contains( RegShiftedReg.ShiftReg); } bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate && ARMMCRegisterClasses[ARM::GPRRegClassID].contains( RegShiftedImm.SrcReg); } bool isRotImm() const { return Kind == k_RotateImmediate; } template bool isPowerTwoInRange() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && llvm::popcount((uint64_t)Value) == 1 && Value >= Min && Value <= Max; } bool isModImm() const { return Kind == k_ModifiedImmediate; } bool isModImmNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getSOImmVal(~Value) != -1; } bool isModImmNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getSOImmVal(Value) == -1 && ARM_AM::getSOImmVal(-Value) != -1; } bool isThumbModImmNeg1_7() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int32_t Value = -(int32_t)CE->getValue(); return 0 < Value && Value < 8; } bool isThumbModImmNeg8_255() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int32_t Value = -(int32_t)CE->getValue(); return 7 < Value && Value < 256; } bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } bool isBitfield() const { return Kind == k_BitfieldDescriptor; } bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister && ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); } bool isPostIdxReg() const { return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; } bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { if (!isGPRMem()) return false; // No offset of any kind. return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && (alignOK || Memory.Alignment == Alignment); } bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { if (!isGPRMem()) return false; if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( Memory.BaseRegNum)) return false; // No offset of any kind. return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && (alignOK || Memory.Alignment == Alignment); } bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { if (!isGPRMem()) return false; if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( Memory.BaseRegNum)) return false; // No offset of any kind. return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && (alignOK || Memory.Alignment == Alignment); } bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { if (!isGPRMem()) return false; if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( Memory.BaseRegNum)) return false; // No offset of any kind. return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && (alignOK || Memory.Alignment == Alignment); } bool isMemPCRelImm12() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base register must be PC. if (Memory.BaseRegNum != ARM::PC) return false; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val > -4096 && Val < 4096) || (Val == std::numeric_limits::min()); } return false; } bool isAlignedMemory() const { return isMemNoOffset(true); } bool isAlignedMemoryNone() const { return isMemNoOffset(false, 0); } bool isDupAlignedMemoryNone() const { return isMemNoOffset(false, 0); } bool isAlignedMemory16() const { if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory16() const { if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory32() const { if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory32() const { if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory64() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64or128() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory64or128() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64or128or256() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. return true; return isMemNoOffset(false, 0); } bool isAddrMode2() const { if (!isGPRMem() || Memory.Alignment != 0) return false; // Check for register offset. if (Memory.OffsetRegNum) return true; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val > -4096 && Val < 4096; } return false; } bool isAM2OffsetImm() const { if (!isImm()) return false; // Immediate offset in range [-4095, 4095]. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return (Val == std::numeric_limits::min()) || (Val > -4096 && Val < 4096); } bool isAddrMode3() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.Alignment != 0) return false; // No shifts are legal for AM3. if (Memory.ShiftType != ARM_AM::no_shift) return false; // Check for register offset. if (Memory.OffsetRegNum) return true; // Immediate offset in range [-255, 255]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); // The #-0 offset is encoded as std::numeric_limits::min(), and // we have to check for this too. return (Val > -256 && Val < 256) || Val == std::numeric_limits::min(); } return false; } bool isAM3Offset() const { if (isPostIdxReg()) return true; if (!isImm()) return false; // Immediate offset in range [-255, 255]. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); // Special case, #-0 is std::numeric_limits::min(). return (Val > -256 && Val < 256) || Val == std::numeric_limits::min(); } bool isAddrMode5() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.Alignment != 0) return false; // Check for register offset. if (Memory.OffsetRegNum) return false; // Immediate offset in range [-1020, 1020] and a multiple of 4. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || Val == std::numeric_limits::min(); } return false; } bool isAddrMode5FP16() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.Alignment != 0) return false; // Check for register offset. if (Memory.OffsetRegNum) return false; // Immediate offset in range [-510, 510] and a multiple of 2. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == std::numeric_limits::min(); } return false; } bool isMemTBB() const { if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) return false; return true; } bool isMemTBH() const { if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || Memory.Alignment != 0 ) return false; return true; } bool isMemRegOffset() const { if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) return false; return true; } bool isT2MemRegOffset() const { if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) return false; // Only lsl #{0, 1, 2, 3} allowed. if (Memory.ShiftType == ARM_AM::no_shift) return true; if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) return false; return true; } bool isMemThumbRR() const { // Thumb reg+reg addressing is simple. Just two registers, a base and // an offset. No shifts, negations or any other complicating factors. if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) return false; return isARMLowRegister(Memory.BaseRegNum) && (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); } bool isMemThumbRIs4() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 124]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val <= 124 && (Val % 4) == 0; } return false; } bool isMemThumbRIs2() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 62]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val <= 62 && (Val % 2) == 0; } return false; } bool isMemThumbRIs1() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset in range [0, 31]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val <= 31; } return false; } bool isMemThumbSPI() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 1020]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val <= 1020 && (Val % 4) == 0; } return false; } bool isMemImm8s4Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset a multiple of 4 in range [-1020, 1020]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); // Special case, #-0 is std::numeric_limits::min(). return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == std::numeric_limits::min(); } return false; } bool isMemImm7s4Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( Memory.BaseRegNum)) return false; // Immediate offset a multiple of 4 in range [-508, 508]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); // Special case, #-0 is INT32_MIN. return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; } return false; } bool isMemImm0_1020s4Offset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset a multiple of 4 in range [0, 1020]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val <= 1020 && (Val & 3) == 0; } return false; } bool isMemImm8Offset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base reg of PC isn't allowed for these encodings. if (Memory.BaseRegNum == ARM::PC) return false; // Immediate offset in range [-255, 255]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val == std::numeric_limits::min()) || (Val > -256 && Val < 256); } return false; } template bool isMemImm7ShiftedOffset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) return false; // Expect an immediate offset equal to an element of the range // [-127, 127], shifted left by Bits. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); // INT32_MIN is a special-case value (indicating the encoding with // zero offset and the subtract bit set) if (Val == INT32_MIN) return true; unsigned Divisor = 1U << Bits; // Check that the low bits are zero if (Val % Divisor != 0) return false; // Check that the remaining offset is within range. Val /= Divisor; return (Val >= -127 && Val <= 127); } return false; } template bool isMemRegRQOffset() const { if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0) return false; if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( Memory.BaseRegNum)) return false; if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( Memory.OffsetRegNum)) return false; if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) return false; if (shift > 0 && (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) return false; return true; } template bool isMemRegQOffset() const { if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( Memory.BaseRegNum)) return false; if (!Memory.OffsetImm) return true; static_assert(shift < 56, "Such that we dont shift by a value higher than 62"); if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); // The value must be a multiple of (1 << shift) if ((Val & ((1U << shift) - 1)) != 0) return false; // And be in the right range, depending on the amount that it is shifted // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set // separately. int64_t Range = (1U << (7 + shift)) - 1; return (Val == INT32_MIN) || (Val > -Range && Val < Range); } return false; } bool isMemPosImm8Offset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [0, 255]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return Val >= 0 && Val < 256; } return false; } bool isMemNegImm8Offset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base reg of PC isn't allowed for these encodings. if (Memory.BaseRegNum == ARM::PC) return false; // Immediate offset in range [-255, -1]. if (!Memory.OffsetImm) return false; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val == std::numeric_limits::min()) || (Val > -256 && Val < 0); } return false; } bool isMemUImm12Offset() const { if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [0, 4095]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val >= 0 && Val < 4096); } return false; } bool isMemImm12Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa(getImm())) return true; if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int64_t Val = CE->getValue(); return (Val > -4096 && Val < 4096) || (Val == std::numeric_limits::min()); } // If we have an immediate that's not a constant, treat it as a // symbolic expression needing a fixup. return true; } bool isConstPoolAsmImm() const { // Delay processing of Constant Pool Immediate, this will turn into // a constant. Match no other operand return (isConstantPoolImm()); } bool isPostIdxImm8() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return (Val > -256 && Val < 256) || (Val == std::numeric_limits::min()); } bool isPostIdxImm8s4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || (Val == std::numeric_limits::min()); } bool isMSRMask() const { return Kind == k_MSRMask; } bool isBankedReg() const { return Kind == k_BankedReg; } bool isProcIFlags() const { return Kind == k_ProcIFlags; } // NEON operands. bool isSingleSpacedVectorList() const { return Kind == k_VectorList && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorList() const { return Kind == k_VectorList && VectorList.isDoubleSpaced; } bool isVecListOneD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 1; } bool isVecListTwoMQ() const { return isSingleSpacedVectorList() && VectorList.Count == 2 && ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( VectorList.RegNum); } bool isVecListDPair() const { if (!isSingleSpacedVectorList()) return false; return (ARMMCRegisterClasses[ARM::DPairRegClassID] .contains(VectorList.RegNum)); } bool isVecListThreeD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 3; } bool isVecListFourD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 4; } bool isVecListDPairSpaced() const { if (Kind != k_VectorList) return false; if (isSingleSpacedVectorList()) return false; return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] .contains(VectorList.RegNum)); } bool isVecListThreeQ() const { if (!isDoubleSpacedVectorList()) return false; return VectorList.Count == 3; } bool isVecListFourQ() const { if (!isDoubleSpacedVectorList()) return false; return VectorList.Count == 4; } bool isVecListFourMQ() const { return isSingleSpacedVectorList() && VectorList.Count == 4 && ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( VectorList.RegNum); } bool isSingleSpacedVectorAllLanes() const { return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorAllLanes() const { return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; } bool isVecListOneDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 1; } bool isVecListDPairAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return (ARMMCRegisterClasses[ARM::DPairRegClassID] .contains(VectorList.RegNum)); } bool isVecListDPairSpacedAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 2; } bool isVecListThreeDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 3; } bool isVecListThreeQAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 3; } bool isVecListFourDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 4; } bool isVecListFourQAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 4; } bool isSingleSpacedVectorIndexed() const { return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorIndexed() const { return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; } bool isVecListOneDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 7; } bool isVecListOneDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 3; } bool isVecListOneDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 1; } bool isVecListTwoDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 7; } bool isVecListTwoDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 3; } bool isVecListTwoQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 1; } bool isVecListTwoQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 3; } bool isVecListTwoDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 1; } bool isVecListThreeDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 7; } bool isVecListThreeDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 3; } bool isVecListThreeQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 1; } bool isVecListThreeQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 3; } bool isVecListThreeDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 1; } bool isVecListFourDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 7; } bool isVecListFourDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 3; } bool isVecListFourQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 1; } bool isVecListFourQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 3; } bool isVecListFourDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 1; } bool isVectorIndex() const { return Kind == k_VectorIndex; } template bool isVectorIndexInRange() const { if (Kind != k_VectorIndex) return false; return VectorIndex.Val < NumLanes; } bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } template bool isMVEPairVectorIndex() const { if (Kind != k_VectorIndex) return false; return VectorIndex.Val == PermittedValue || VectorIndex.Val == OtherPermittedValue; } bool isNEONi8splat() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = CE->getValue(); // i8 value splatted across 8 bytes. The immediate is just the 8 byte // value. return Value >= 0 && Value < 256; } bool isNEONi16splat() const { if (isNEONByteReplicate(2)) return false; // Leave that for bytes replication and forbid by default. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi16splat(Value); } bool isNEONi16splatNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi16splat(~Value & 0xffff); } bool isNEONi32splat() const { if (isNEONByteReplicate(4)) return false; // Leave that for bytes replication and forbid by default. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi32splat(Value); } bool isNEONi32splatNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi32splat(~Value); } static bool isValidNEONi32vmovImm(int64_t Value) { // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. return ((Value & 0xffffffffffffff00) == 0) || ((Value & 0xffffffffffff00ff) == 0) || ((Value & 0xffffffffff00ffff) == 0) || ((Value & 0xffffffff00ffffff) == 0) || ((Value & 0xffffffffffff00ff) == 0xff) || ((Value & 0xffffffffff00ffff) == 0xffff); } bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { assert((Width == 8 || Width == 16 || Width == 32) && "Invalid element width"); assert(NumElems * Width <= 64 && "Invalid result width"); if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = CE->getValue(); if (!Value) return false; // Don't bother with zero. if (Inv) Value = ~Value; uint64_t Mask = (1ull << Width) - 1; uint64_t Elem = Value & Mask; if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) return false; if (Width == 32 && !isValidNEONi32vmovImm(Elem)) return false; for (unsigned i = 1; i < NumElems; ++i) { Value >>= Width; if ((Value & Mask) != Elem) return false; } return true; } bool isNEONByteReplicate(unsigned NumBytes) const { return isNEONReplicate(8, NumBytes, false); } static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { assert((FromW == 8 || FromW == 16 || FromW == 32) && "Invalid source width"); assert((ToW == 16 || ToW == 32 || ToW == 64) && "Invalid destination width"); assert(FromW < ToW && "ToW is not less than FromW"); } template bool isNEONmovReplicate() const { checkNeonReplicateArgs(FromW, ToW); if (ToW == 64 && isNEONi64splat()) return false; return isNEONReplicate(FromW, ToW / FromW, false); } template bool isNEONinvReplicate() const { checkNeonReplicateArgs(FromW, ToW); return isNEONReplicate(FromW, ToW / FromW, true); } bool isNEONi32vmov() const { if (isNEONByteReplicate(4)) return false; // Let it to be classified as byte-replicate case. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; return isValidNEONi32vmovImm(CE->getValue()); } bool isNEONi32vmovNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; return isValidNEONi32vmovImm(~CE->getValue()); } bool isNEONi64splat() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; uint64_t Value = CE->getValue(); // i64 value with each byte being either 0 or 0xff. for (unsigned i = 0; i < 8; ++i, Value >>= 8) if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; return true; } template bool isComplexRotation() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; uint64_t Value = CE->getValue(); return (Value % Angle == Remainder && Value <= 270); } bool isMVELongShift() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); // Must be a constant. if (!CE) return false; uint64_t Value = CE->getValue(); return Value >= 1 && Value <= 32; } bool isMveSaturateOp() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; uint64_t Value = CE->getValue(); return Value == 48 || Value == 64; } bool isITCondCodeNoAL() const { if (!isITCondCode()) return false; ARMCC::CondCodes CC = getCondCode(); return CC != ARMCC::AL; } bool isITCondCodeRestrictedI() const { if (!isITCondCode()) return false; ARMCC::CondCodes CC = getCondCode(); return CC == ARMCC::EQ || CC == ARMCC::NE; } bool isITCondCodeRestrictedS() const { if (!isITCondCode()) return false; ARMCC::CondCodes CC = getCondCode(); return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; } bool isITCondCodeRestrictedU() const { if (!isITCondCode()) return false; ARMCC::CondCodes CC = getCondCode(); return CC == ARMCC::HS || CC == ARMCC::HI; } bool isITCondCodeRestrictedFP() const { if (!isITCondCode()) return false; ARMCC::CondCodes CC = getCondCode(); return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; Inst.addOperand(MCOperand::createReg(RegNum)); } void addVPTPredNOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; Inst.addOperand(MCOperand::createReg(RegNum)); Inst.addOperand(MCOperand::createReg(0)); } void addVPTPredROperands(MCInst &Inst, unsigned N) const { assert(N == 4 && "Invalid number of operands!"); addVPTPredNOperands(Inst, N-1); unsigned RegNum; if (getVPTPred() == ARMVCC::None) { RegNum = 0; } else { unsigned NextOpIndex = Inst.getNumOperands(); const MCInstrDesc &MCID = ARMDescs.Insts[ARM::INSTRUCTION_LIST_END - 1 - Inst.getOpcode()]; int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); assert(TiedOp >= 0 && "Inactive register in vpred_r is not tied to an output!"); RegNum = Inst.getOperand(TiedOp).getReg(); } Inst.addOperand(MCOperand::createReg(RegNum)); } void addCoprocNumOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCoproc())); } void addCoprocRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCoproc())); } void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); } void addITMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(ITMask.Mask)); } void addITCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); } void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); } void addCCOutOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); assert(isRegShiftedReg() && "addRegShiftedRegOperands() on non-RegShiftedReg!"); Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); Inst.addOperand(MCOperand::createImm( ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); } void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); assert(isRegShiftedImm() && "addRegShiftedImmOperands() on non-RegShiftedImm!"); Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); // Shift of #32 is encoded as 0 where permitted unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); Inst.addOperand(MCOperand::createImm( ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); } void addShifterImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | ShifterImm.Imm)); } void addRegListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const SmallVectorImpl &RegList = getRegList(); for (unsigned Reg : RegList) Inst.addOperand(MCOperand::createReg(Reg)); } void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const SmallVectorImpl &RegList = getRegList(); for (unsigned Reg : RegList) Inst.addOperand(MCOperand::createReg(Reg)); } void addDPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addSPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addRotImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Encoded as val>>3. The printer handles display as 8, 16, 24. Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); } void addModImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Support for fixups (MCFixup) if (isImm()) return addImmOperands(Inst, N); Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); } void addModImmNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); Inst.addOperand(MCOperand::createImm(Enc)); } void addModImmNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); Inst.addOperand(MCOperand::createImm(Enc)); } void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); uint32_t Val = -CE->getValue(); Inst.addOperand(MCOperand::createImm(Val)); } void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); uint32_t Val = -CE->getValue(); Inst.addOperand(MCOperand::createImm(Val)); } void addBitfieldOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Munge the lsb/width into a bitfield mask. unsigned lsb = Bitfield.LSB; unsigned width = Bitfield.Width; // Make a 32-bit mask w/ the referenced bits clear and all other bits set. uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> (32 - (lsb + width))); Inst.addOperand(MCOperand::createImm(Mask)); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addFBits16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); } void addFBits32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); } void addFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); Inst.addOperand(MCOperand::createImm(Val)); } void addImm8s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // FIXME: We really want to scale the value here, but the LDRD/STRD // instruction don't encode operands that way yet. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm7s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR // instruction don't encode operands that way yet. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm7Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); } void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); } void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); } void addImm1_16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); } void addImm1_32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); } void addImmThumbSROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate, except for 32, which encodes as // zero. const MCConstantExpr *CE = cast(getImm()); unsigned Imm = CE->getValue(); Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); } void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // An ASR value of 32 encodes as 0, so that's how we want to add it to // the instruction as well. const MCConstantExpr *CE = cast(getImm()); int Val = CE->getValue(); Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); } void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually a t2_so_imm, but we have its bitwise // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); } void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually a t2_so_imm, but we have its // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); } void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually an imm0_4095, but we have its // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); } void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { if(const MCConstantExpr *CE = dyn_cast(getImm())) { Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); return; } const MCSymbolRefExpr *SR = cast(Imm.Val); Inst.addOperand(MCOperand::createExpr(SR)); } void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (isImm()) { const MCConstantExpr *CE = dyn_cast(getImm()); if (CE) { Inst.addOperand(MCOperand::createImm(CE->getValue())); return; } const MCSymbolRefExpr *SR = cast(Imm.Val); Inst.addOperand(MCOperand::createExpr(SR)); return; } assert(isGPRMem() && "Unknown value type!"); assert(isa(Memory.OffsetImm) && "Unknown value type!"); if (const auto *CE = dyn_cast(Memory.OffsetImm)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); } void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); } void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); } void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); } void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); } void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); } void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); } void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const auto *CE = dyn_cast(Memory.OffsetImm)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addAdrLabelOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert(isImm() && "Not an immediate!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. if (!isa(getImm())) { Inst.addOperand(MCOperand::createExpr(getImm())); return; } const MCConstantExpr *CE = cast(getImm()); int Val = CE->getValue(); Inst.addOperand(MCOperand::createImm(Val)); } void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Memory.Alignment)); } void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAddrMode2Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); if (!Memory.OffsetRegNum) { if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); Inst.addOperand(MCOperand::createImm(Val)); } else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } else { // For register offset, we encode the shift type and negation flag // here. int32_t Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Memory.ShiftImm, Memory.ShiftType); Inst.addOperand(MCOperand::createImm(Val)); } } void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); assert(CE && "non-constant AM2OffsetImm operand!"); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(Val)); } void addAddrMode3Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(0)); return; } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); if (!Memory.OffsetRegNum) { if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); Inst.addOperand(MCOperand::createImm(Val)); } else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } else { // For register offset, we encode the shift type and negation flag // here. int32_t Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); Inst.addOperand(MCOperand::createImm(Val)); } } void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (Kind == k_PostIndexRegister) { int32_t Val = ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::createImm(Val)); return; } // Constant offset. const MCConstantExpr *CE = static_cast(getImm()); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(Val)); } void addAddrMode5Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) { // The lower two bits are always zero and as such are not encoded. int32_t Val = CE->getValue() / 4; ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM5Opc(AddSub, Val); Inst.addOperand(MCOperand::createImm(Val)); } else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); // The lower bit is always zero and as such is not encoded. if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) { int32_t Val = CE->getValue() / 2; ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == std::numeric_limits::min()) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM5FP16Opc(AddSub, Val); Inst.addOperand(MCOperand::createImm(Val)); } else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) // The lower two bits are always zero and as such are not encoded. Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If this is an immediate, it's a label reference. if (isImm()) { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::createImm(0)); return; } // Otherwise, it's a normal memory reg+offset. Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If this is an immediate, it's a label reference. if (isImm()) { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::createImm(0)); return; } // Otherwise, it's a normal memory reg+offset. Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // This is container for the immediate that we will create the constant // pool from addExpr(Inst, getConstantPoolImm()); } void addMemTBBOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemTBHOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); unsigned Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Memory.ShiftImm, Memory.ShiftType); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); } void addMemThumbRROperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) // The lower two bits are always zero and as such are not encoded. Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) Inst.addOperand(MCOperand::createImm(CE->getValue() / 2)); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); addExpr(Inst, Memory.OffsetImm); } void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); if (!Memory.OffsetImm) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Memory.OffsetImm)) // The lower two bits are always zero and as such are not encoded. Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); else Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); } void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); assert(CE && "non-constant post-idx-imm8 operand!"); int Imm = CE->getValue(); bool isAdd = Imm >= 0; if (Imm == std::numeric_limits::min()) Imm = 0; Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; Inst.addOperand(MCOperand::createImm(Imm)); } void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); assert(CE && "non-constant post-idx-imm8s4 operand!"); int Imm = CE->getValue(); bool isAdd = Imm >= 0; if (Imm == std::numeric_limits::min()) Imm = 0; // Immediate is scaled by 4. Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; Inst.addOperand(MCOperand::createImm(Imm)); } void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); } void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); // The sign, shift type, and shift amount are encoded in a single operand // using the AM2 encoding helpers. ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, PostIdxReg.ShiftTy); Inst.addOperand(MCOperand::createImm(Imm)); } void addPowerTwoOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addMSRMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); } void addBankedRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); } void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); } void addVecListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); } void addMVEVecListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // When we come here, the VectorList field will identify a range // of q-registers by its base register and length, and it will // have already been error-checked to be the expected length of // range and contain only q-regs in the range q0-q7. So we can // count on the base register being in the range q0-q6 (for 2 // regs) or q0-q4 (for 4) // // The MVE instructions taking a register range of this kind will // need an operand in the MQQPR or MQQQQPR class, representing the // entire range as a unit. So we must translate into that class, // by finding the index of the base register in the MQPR reg // class, and returning the super-register at the corresponding // index in the target class. const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; const MCRegisterClass *RC_out = (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; unsigned I, E = RC_out->getNumRegs(); for (I = 0; I < E; I++) if (RC_in->getRegister(I) == VectorList.RegNum) break; assert(I < E && "Invalid vector list start register!"); Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); } void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); } void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. // Mask in that this is an i8 splat. const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); } void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi16splat(Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi32splat(Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi32splat(~Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); assert((Inst.getOpcode() == ARM::VMOVv8i8 || Inst.getOpcode() == ARM::VMOVv16i8) && "All instructions that wants to replicate non-zero byte " "always must be replaced with VMOVv8i8 or VMOVv16i8."); unsigned Value = CE->getValue(); if (Inv) Value = ~Value; unsigned B = Value & 0xff; B |= 0xe00; // cmode = 0b1110 Inst.addOperand(MCOperand::createImm(B)); } void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addNEONi8ReplicateOperands(Inst, true); } static unsigned encodeNeonVMOVImmediate(unsigned Value) { if (Value >= 256 && Value <= 0xffff) Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); else if (Value > 0xffff && Value <= 0xffffff) Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); else if (Value > 0xffffff) Value = (Value >> 24) | 0x600; return Value; } void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addNEONi8ReplicateOperands(Inst, false); } void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); assert((Inst.getOpcode() == ARM::VMOVv4i16 || Inst.getOpcode() == ARM::VMOVv8i16 || Inst.getOpcode() == ARM::VMVNv4i16 || Inst.getOpcode() == ARM::VMVNv8i16) && "All instructions that want to replicate non-zero half-word " "always must be replaced with V{MOV,MVN}v{4,8}i16."); uint64_t Value = CE->getValue(); unsigned Elem = Value & 0xffff; if (Elem >= 256) Elem = (Elem >> 8) | 0x200; Inst.addOperand(MCOperand::createImm(Elem)); } void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); assert((Inst.getOpcode() == ARM::VMOVv2i32 || Inst.getOpcode() == ARM::VMOVv4i32 || Inst.getOpcode() == ARM::VMVNv2i32 || Inst.getOpcode() == ARM::VMVNv4i32) && "All instructions that want to replicate non-zero word " "always must be replaced with V{MOV,MVN}v{2,4}i32."); uint64_t Value = CE->getValue(); unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); Inst.addOperand(MCOperand::createImm(Elem)); } void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = cast(getImm()); uint64_t Value = CE->getValue(); unsigned Imm = 0; for (unsigned i = 0; i < 8; ++i, Value >>= 8) { Imm |= (Value & 1) << i; } Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); } void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); } void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); } void addMveSaturateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); unsigned Imm = CE->getValue(); assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); } void print(raw_ostream &OS) const override; static std::unique_ptr CreateITMask(unsigned Mask, SMLoc S) { auto Op = std::make_unique(k_ITCondMask); Op->ITMask.Mask = Mask; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { auto Op = std::make_unique(k_CondCode); Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateVPTPred(ARMVCC::VPTCodes CC, SMLoc S) { auto Op = std::make_unique(k_VPTPred); Op->VCC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateCoprocNum(unsigned CopVal, SMLoc S) { auto Op = std::make_unique(k_CoprocNum); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateCoprocReg(unsigned CopVal, SMLoc S) { auto Op = std::make_unique(k_CoprocReg); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_CoprocOption); Op->Cop.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateCCOut(unsigned RegNum, SMLoc S) { auto Op = std::make_unique(k_CCOut); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateToken(StringRef Str, SMLoc S) { auto Op = std::make_unique(k_Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Register); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftReg, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ShiftedRegister); Op->RegShiftedReg.ShiftTy = ShTy; Op->RegShiftedReg.SrcReg = SrcReg; Op->RegShiftedReg.ShiftReg = ShiftReg; Op->RegShiftedReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ShiftedImmediate); Op->RegShiftedImm.ShiftTy = ShTy; Op->RegShiftedImm.SrcReg = SrcReg; Op->RegShiftedImm.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateShifterImm(bool isASR, unsigned Imm, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ShifterImmediate); Op->ShifterImm.isASR = isASR; Op->ShifterImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_RotateImmediate); Op->RotImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateModImm(unsigned Bits, unsigned Rot, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ModifiedImmediate); Op->ModImm.Bits = Bits; Op->ModImm.Rot = Rot; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ConstantPoolImmediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_BitfieldDescriptor); Op->Bitfield.LSB = LSB; Op->Bitfield.Width = Width; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateRegList(SmallVectorImpl> &Regs, SMLoc StartLoc, SMLoc EndLoc) { assert(Regs.size() > 0 && "RegList contains no registers?"); KindTy Kind = k_RegisterList; if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( Regs.front().second)) { if (Regs.back().second == ARM::VPR) Kind = k_FPDRegisterListWithVPR; else Kind = k_DPRRegisterList; } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( Regs.front().second)) { if (Regs.back().second == ARM::VPR) Kind = k_FPSRegisterListWithVPR; else Kind = k_SPRRegisterList; } if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) Kind = k_RegisterListWithAPSR; assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); auto Op = std::make_unique(Kind); for (const auto &P : Regs) Op->Registers.push_back(P.second); Op->StartLoc = StartLoc; Op->EndLoc = EndLoc; return Op; } static std::unique_ptr CreateVectorList(unsigned RegNum, unsigned Count, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_VectorList); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_VectorListAllLanes); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_VectorListIndexed); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.LaneIndex = Index; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_VectorIndex); Op->VectorIndex.Val = Idx; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { auto Op = std::make_unique(k_Memory); Op->Memory.BaseRegNum = BaseRegNum; Op->Memory.OffsetImm = OffsetImm; Op->Memory.OffsetRegNum = OffsetRegNum; Op->Memory.ShiftType = ShiftType; Op->Memory.ShiftImm = ShiftImm; Op->Memory.Alignment = Alignment; Op->Memory.isNegative = isNegative; Op->StartLoc = S; Op->EndLoc = E; Op->AlignmentLoc = AlignmentLoc; return Op; } static std::unique_ptr CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_PostIndexRegister); Op->PostIdxReg.RegNum = RegNum; Op->PostIdxReg.isAdd = isAdd; Op->PostIdxReg.ShiftTy = ShiftTy; Op->PostIdxReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) { auto Op = std::make_unique(k_MemBarrierOpt); Op->MBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { auto Op = std::make_unique(k_InstSyncBarrierOpt); Op->ISBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { auto Op = std::make_unique(k_TraceSyncBarrierOpt); Op->TSBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) { auto Op = std::make_unique(k_ProcIFlags); Op->IFlags.Val = IFlags; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateMSRMask(unsigned MMask, SMLoc S) { auto Op = std::make_unique(k_MSRMask); Op->MMask.Val = MMask; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateBankedReg(unsigned Reg, SMLoc S) { auto Op = std::make_unique(k_BankedReg); Op->BankedReg.Val = Reg; Op->StartLoc = S; Op->EndLoc = S; return Op; } }; } // end anonymous namespace. void ARMOperand::print(raw_ostream &OS) const { auto RegName = [](MCRegister Reg) { if (Reg) return ARMInstPrinter::getRegisterName(Reg); else return "noreg"; }; switch (Kind) { case k_CondCode: OS << ""; break; case k_VPTPred: OS << ""; break; case k_CCOut: OS << ""; break; case k_ITCondMask: { static const char *const MaskStr[] = { "(invalid)", "(tttt)", "(ttt)", "(ttte)", "(tt)", "(ttet)", "(tte)", "(ttee)", "(t)", "(tett)", "(tet)", "(tete)", "(te)", "(teet)", "(tee)", "(teee)", }; assert((ITMask.Mask & 0xf) == ITMask.Mask); OS << ""; break; } case k_CoprocNum: OS << ""; break; case k_CoprocReg: OS << ""; break; case k_CoprocOption: OS << ""; break; case k_MSRMask: OS << ""; break; case k_BankedReg: OS << ""; break; case k_Immediate: OS << *getImm(); break; case k_MemBarrierOpt: OS << ""; break; case k_InstSyncBarrierOpt: OS << ""; break; case k_TraceSyncBarrierOpt: OS << ""; break; case k_Memory: OS << ""; break; case k_PostIndexRegister: OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") << RegName(PostIdxReg.RegNum); if (PostIdxReg.ShiftTy != ARM_AM::no_shift) OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " << PostIdxReg.ShiftImm; OS << ">"; break; case k_ProcIFlags: { OS << "= 0; --i) if (IFlags & (1 << i)) OS << ARM_PROC::IFlagsToString(1 << i); OS << ">"; break; } case k_Register: OS << ""; break; case k_ShifterImmediate: OS << ""; break; case k_ShiftedRegister: OS << ""; break; case k_ShiftedImmediate: OS << ""; break; case k_RotateImmediate: OS << ""; break; case k_ModifiedImmediate: OS << ""; break; case k_ConstantPoolImmediate: OS << ""; break; case k_RegisterList: case k_RegisterListWithAPSR: case k_DPRRegisterList: case k_SPRRegisterList: case k_FPSRegisterListWithVPR: case k_FPDRegisterListWithVPR: { OS << " &RegList = getRegList(); for (SmallVectorImpl::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ) { OS << RegName(*I); if (++I < E) OS << ", "; } OS << ">"; break; } case k_VectorList: OS << ""; break; case k_VectorListAllLanes: OS << ""; break; case k_VectorListIndexed: OS << ""; break; case k_Token: OS << "'" << getToken() << "'"; break; case k_VectorIndex: OS << ""; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } bool ARMAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = getParser().getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); Reg = tryParseRegister(); return Reg == (unsigned)-1; } ParseStatus ARMAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { if (parseRegister(Reg, StartLoc, EndLoc)) return ParseStatus::NoMatch; return ParseStatus::Success; } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name the token is eaten and the register number is /// returned. Otherwise return -1. int ARMAsmParser::tryParseRegister() { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return -1; std::string lowerCase = Tok.getString().lower(); unsigned RegNum = MatchRegisterName(lowerCase); if (!RegNum) { RegNum = StringSwitch(lowerCase) .Case("r13", ARM::SP) .Case("r14", ARM::LR) .Case("r15", ARM::PC) .Case("ip", ARM::R12) // Additional register name aliases for 'gas' compatibility. .Case("a1", ARM::R0) .Case("a2", ARM::R1) .Case("a3", ARM::R2) .Case("a4", ARM::R3) .Case("v1", ARM::R4) .Case("v2", ARM::R5) .Case("v3", ARM::R6) .Case("v4", ARM::R7) .Case("v5", ARM::R8) .Case("v6", ARM::R9) .Case("v7", ARM::R10) .Case("v8", ARM::R11) .Case("sb", ARM::R9) .Case("sl", ARM::R10) .Case("fp", ARM::R11) .Default(0); } if (!RegNum) { // Check for aliases registered via .req. Canonicalize to lower case. // That's more consistent since register names are case insensitive, and // it's how the original entry was passed in from MC/MCParser/AsmParser. StringMap::const_iterator Entry = RegisterReqs.find(lowerCase); // If no match, return failure. if (Entry == RegisterReqs.end()) return -1; Parser.Lex(); // Eat identifier token. return Entry->getValue(); } // Some FPUs only have 16 D registers, so D16-D31 are invalid if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } // Try to parse a shifter (e.g., "lsl "). On success, return 0. // If a recoverable error occurs, return 1. If an irrecoverable error // occurs, return -1. An irrecoverable error is one where tokens have been // consumed in the process of trying to parse the shifter (i.e., when it is // indeed a shifter operand, but malformed). int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return -1; std::string lowerCase = Tok.getString().lower(); ARM_AM::ShiftOpc ShiftTy = StringSwitch(lowerCase) .Case("asl", ARM_AM::lsl) .Case("lsl", ARM_AM::lsl) .Case("lsr", ARM_AM::lsr) .Case("asr", ARM_AM::asr) .Case("ror", ARM_AM::ror) .Case("rrx", ARM_AM::rrx) .Default(ARM_AM::no_shift); if (ShiftTy == ARM_AM::no_shift) return 1; Parser.Lex(); // Eat the operator. // The source register for the shift has already been added to the // operand list, so we need to pop it off and combine it into the shifted // register operand instead. std::unique_ptr PrevOp( (ARMOperand *)Operands.pop_back_val().release()); if (!PrevOp->isReg()) return Error(PrevOp->getStartLoc(), "shift must be of a register"); int SrcReg = PrevOp->getReg(); SMLoc EndLoc; int64_t Imm = 0; int ShiftReg = 0; if (ShiftTy == ARM_AM::rrx) { // RRX Doesn't have an explicit shift amount. The encoder expects // the shift register to be the same as the source register. Seems odd, // but OK. ShiftReg = SrcReg; } else { // Figure out if this is shifted by a constant or a register (for non-RRX). if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { Parser.Lex(); // Eat hash. SMLoc ImmLoc = Parser.getTok().getLoc(); const MCExpr *ShiftExpr = nullptr; if (getParser().parseExpression(ShiftExpr, EndLoc)) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // The expression must be evaluatable as an immediate. const MCConstantExpr *CE = dyn_cast(ShiftExpr); if (!CE) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // Range check the immediate. // lsl, ror: 0 <= imm <= 31 // lsr, asr: 0 <= imm <= 32 Imm = CE->getValue(); if (Imm < 0 || ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { Error(ImmLoc, "immediate shift value out of range"); return -1; } // shift by zero is a nop. Always send it through as lsl. // ('as' compatibility) if (Imm == 0) ShiftTy = ARM_AM::lsl; } else if (Parser.getTok().is(AsmToken::Identifier)) { SMLoc L = Parser.getTok().getLoc(); EndLoc = Parser.getTok().getEndLoc(); ShiftReg = tryParseRegister(); if (ShiftReg == -1) { Error(L, "expected immediate or register in shift operand"); return -1; } } else { Error(Parser.getTok().getLoc(), "expected immediate or register in shift operand"); return -1; } } if (ShiftReg && ShiftTy != ARM_AM::rrx) Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, ShiftReg, Imm, S, EndLoc)); else Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, S, EndLoc)); return 0; } /// Try to parse a register name. The token must be an Identifier when called. /// If it's a register, an AsmOperand is created. Another AsmOperand is created /// if there is a "writeback". 'true' if it's not a register. /// /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc RegStartLoc = Parser.getTok().getLoc(); SMLoc RegEndLoc = Parser.getTok().getEndLoc(); int RegNo = tryParseRegister(); if (RegNo == -1) return true; Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), ExclaimTok.getLoc())); Parser.Lex(); // Eat exclaim token return false; } // Also check for an index operand. This is only legal for vector registers, // but that'll get caught OK in operand matching, so we don't need to // explicitly filter everything else out here. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) return TokError("immediate value expected for vector index"); if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } /// MatchCoprocessorOperandName - Try to parse an coprocessor related /// instruction with a symbolic operand name. /// We accept "crN" syntax for GAS compatibility. /// ::= /// If CoprocOp is 'c', then: /// ::= c | cr /// If CoprocOp is 'p', then : /// ::= p /// ::= integer in range [0, 15] static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { // Use the same layout as the tablegen'erated register name matcher. Ugly, // but efficient. if (Name.size() < 2 || Name[0] != CoprocOp) return -1; Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); switch (Name.size()) { default: return -1; case 1: switch (Name[0]) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } case 2: if (Name[0] != '1') return -1; switch (Name[1]) { default: return -1; // CP10 and CP11 are VFP/NEON and so vector instructions should be used. // However, old cores (v5/v6) did use them in that way. case '0': return 10; case '1': return 11; case '2': return 12; case '3': return 13; case '4': return 14; case '5': return 15; } } } /// parseITCondCode - Try to parse a condition code for an IT instruction. ParseStatus ARMAsmParser::parseITCondCode(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return ParseStatus::NoMatch; unsigned CC = ARMCondCodeFromString(Tok.getString()); if (CC == ~0U) return ParseStatus::NoMatch; Parser.Lex(); // Eat the token. Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); return ParseStatus::Success; } /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ParseStatus ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return ParseStatus::NoMatch; int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); if (Num == -1) return ParseStatus::NoMatch; if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) return ParseStatus::NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); return ParseStatus::Success; } /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ParseStatus ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return ParseStatus::NoMatch; int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); if (Reg == -1) return ParseStatus::NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); return ParseStatus::Success; } /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. /// coproc_option : '{' imm0_255 '}' ParseStatus ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); // If this isn't a '{', this isn't a coprocessor immediate operand. if (Parser.getTok().isNot(AsmToken::LCurly)) return ParseStatus::NoMatch; Parser.Lex(); // Eat the '{' const MCExpr *Expr; SMLoc Loc = Parser.getTok().getLoc(); if (getParser().parseExpression(Expr)) return Error(Loc, "illegal expression"); const MCConstantExpr *CE = dyn_cast(Expr); if (!CE || CE->getValue() < 0 || CE->getValue() > 255) return Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); int Val = CE->getValue(); // Check for and consume the closing '}' if (Parser.getTok().isNot(AsmToken::RCurly)) return ParseStatus::Failure; SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the '}' Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); return ParseStatus::Success; } // For register list parsing, we need to map from raw GPR register numbering // to the enumeration values. The enumeration values aren't sorted by // register number due to our using "sp", "lr" and "pc" as canonical names. static unsigned getNextRegister(unsigned Reg) { // If this is a GPR, we need to do it manually, otherwise we can rely // on the sort ordering of the enumeration since the other reg-classes // are sane. if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) return Reg + 1; switch(Reg) { default: llvm_unreachable("Invalid GPR number!"); case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; } } // Insert an pair in an ordered vector. Return true on // success, or false, if duplicate encoding found. static bool insertNoDuplicates(SmallVectorImpl> &Regs, unsigned Enc, unsigned Reg) { Regs.emplace_back(Enc, Reg); for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { if (J->first == Enc) { Regs.erase(J.base()); return false; } if (J->first < Enc) break; std::swap(*I, *J); } return true; } /// Parse a register list. bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder, bool AllowRAAC) { MCAsmParser &Parser = getParser(); if (Parser.getTok().isNot(AsmToken::LCurly)) return TokError("Token is not a Left Curly Brace"); SMLoc S = Parser.getTok().getLoc(); Parser.Lex(); // Eat '{' token. SMLoc RegLoc = Parser.getTok().getLoc(); // Check the first register in the list to see what register class // this is a list of. int Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) return Error(RegLoc, "pseudo-register not allowed"); // The reglist instructions have at most 16 registers, so reserve // space for that many. int EReg = 0; SmallVector, 16> Registers; // Allow Q regs and just interpret them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); EReg = MRI->getEncodingValue(Reg); Registers.emplace_back(EReg, Reg); ++Reg; } const MCRegisterClass *RC; if (Reg == ARM::RA_AUTH_CODE || ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; else return Error(RegLoc, "invalid register in register list"); // Store the register. EReg = MRI->getEncodingValue(Reg); Registers.emplace_back(EReg, Reg); // This starts immediately after the first register token in the list, // so we can see either a comma or a minus (range separator) as a legal // next token. while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)) { if (Parser.getTok().is(AsmToken::Minus)) { if (Reg == ARM::RA_AUTH_CODE) return Error(RegLoc, "pseudo-register not allowed"); Parser.Lex(); // Eat the minus. SMLoc AfterMinusLoc = Parser.getTok().getLoc(); int EndReg = tryParseRegister(); if (EndReg == -1) return Error(AfterMinusLoc, "register expected"); if (EndReg == ARM::RA_AUTH_CODE) return Error(AfterMinusLoc, "pseudo-register not allowed"); // Allow Q regs and just interpret them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) EndReg = getDRegFromQReg(EndReg) + 1; // If the register is the same as the start reg, there's nothing // more to do. if (Reg == EndReg) continue; // The register must be in the same register class as the first. if (!RC->contains(Reg)) return Error(AfterMinusLoc, "invalid register in register list"); // Ranges must go from low to high. if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) return Error(AfterMinusLoc, "bad range in register list"); // Add all the registers in the range to the register list. while (Reg != EndReg) { Reg = getNextRegister(Reg); EReg = MRI->getEncodingValue(Reg); if (!insertNoDuplicates(Registers, EReg, Reg)) { Warning(AfterMinusLoc, StringRef("duplicated register (") + ARMInstPrinter::getRegisterName(Reg) + ") in register list"); } } continue; } Parser.Lex(); // Eat the comma. RegLoc = Parser.getTok().getLoc(); int OldReg = Reg; const AsmToken RegTok = Parser.getTok(); Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) return Error(RegLoc, "pseudo-register not allowed"); // Allow Q regs and just interpret them as the two D sub-registers. bool isQReg = false; if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); isQReg = true; } if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) && RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { // switch the register classes, as GPRwithAPSRnospRegClassID is a partial // subset of GPRRegClassId except it contains APSR as well. RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; } if (Reg == ARM::VPR && (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; EReg = MRI->getEncodingValue(Reg); if (!insertNoDuplicates(Registers, EReg, Reg)) { Warning(RegLoc, "duplicated register (" + RegTok.getString() + ") in register list"); } continue; } // The register must be in the same register class as the first. if ((Reg == ARM::RA_AUTH_CODE && RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) return Error(RegLoc, "invalid register in register list"); // In most cases, the list must be monotonically increasing. An // exception is CLRM, which is order-independent anyway, so // there's no potential for confusion if you write clrm {r2,r1} // instead of clrm {r1,r2}. if (EnforceOrder && MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) Warning(RegLoc, "register list not in ascending order"); else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) return Error(RegLoc, "register list not in ascending order"); } // VFP register lists must also be contiguous. if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && Reg != OldReg + 1) return Error(RegLoc, "non-contiguous register range"); EReg = MRI->getEncodingValue(Reg); if (!insertNoDuplicates(Registers, EReg, Reg)) { Warning(RegLoc, "duplicated register (" + RegTok.getString() + ") in register list"); } if (isQReg) { EReg = MRI->getEncodingValue(++Reg); Registers.emplace_back(EReg, Reg); } } if (Parser.getTok().isNot(AsmToken::RCurly)) return Error(Parser.getTok().getLoc(), "'}' expected"); SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat '}' token. // Push the register list operand. Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); // The ARM system instruction variants for LDM/STM have a '^' token here. if (Parser.getTok().is(AsmToken::Caret)) { Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); Parser.Lex(); // Eat '^' token. } return false; } // Helper function to parse the lane index for vector lists. ParseStatus ARMAsmParser::parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { MCAsmParser &Parser = getParser(); Index = 0; // Always return a defined index value. if (Parser.getTok().is(AsmToken::LBrac)) { Parser.Lex(); // Eat the '['. if (Parser.getTok().is(AsmToken::RBrac)) { // "Dn[]" is the 'all lanes' syntax. LaneKind = AllLanes; EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the ']'. return ParseStatus::Success; } // There's an optional '#' token here. Normally there wouldn't be, but // inline assemble puts one in, and it's friendly to accept that. if (Parser.getTok().is(AsmToken::Hash)) Parser.Lex(); // Eat '#' or '$'. const MCExpr *LaneIndex; SMLoc Loc = Parser.getTok().getLoc(); if (getParser().parseExpression(LaneIndex)) return Error(Loc, "illegal expression"); const MCConstantExpr *CE = dyn_cast(LaneIndex); if (!CE) return Error(Loc, "lane index must be empty or an integer"); if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the ']'. int64_t Val = CE->getValue(); // FIXME: Make this range check context sensitive for .8, .16, .32. if (Val < 0 || Val > 7) return Error(Parser.getTok().getLoc(), "lane index out of range"); Index = Val; LaneKind = IndexedLane; return ParseStatus::Success; } LaneKind = NoLanes; return ParseStatus::Success; } // parse a vector register list ParseStatus ARMAsmParser::parseVectorList(OperandVector &Operands) { MCAsmParser &Parser = getParser(); VectorLaneTy LaneKind; unsigned LaneIndex; SMLoc S = Parser.getTok().getLoc(); // As an extension (to match gas), support a plain D register or Q register // (without encosing curly braces) as a single or double entry list, // respectively. if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { SMLoc E = Parser.getTok().getEndLoc(); int Reg = tryParseRegister(); if (Reg == -1) return ParseStatus::NoMatch; if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { ParseStatus Res = parseVectorLane(LaneKind, LaneIndex, E); if (!Res.isSuccess()) return Res; switch (LaneKind) { case NoLanes: Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); break; case AllLanes: Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, S, E)); break; case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, LaneIndex, false, S, E)); break; } return ParseStatus::Success; } if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); ParseStatus Res = parseVectorLane(LaneKind, LaneIndex, E); if (!Res.isSuccess()) return Res; switch (LaneKind) { case NoLanes: Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, &ARMMCRegisterClasses[ARM::DPairRegClassID]); Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); break; case AllLanes: Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, &ARMMCRegisterClasses[ARM::DPairRegClassID]); Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, S, E)); break; case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, LaneIndex, false, S, E)); break; } return ParseStatus::Success; } return Error(S, "vector register expected"); } if (Parser.getTok().isNot(AsmToken::LCurly)) return ParseStatus::NoMatch; Parser.Lex(); // Eat '{' token. SMLoc RegLoc = Parser.getTok().getLoc(); int Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); unsigned Count = 1; int Spacing = 0; unsigned FirstReg = Reg; if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) return Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); // The list is of D registers, but we also allow Q regs and just interpret // them as the two D sub-registers. else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { FirstReg = Reg = getDRegFromQReg(Reg); Spacing = 1; // double-spacing requires explicit D registers, otherwise // it's ambiguous with four-register single spaced. ++Reg; ++Count; } SMLoc E; if (!parseVectorLane(LaneKind, LaneIndex, E).isSuccess()) return ParseStatus::Failure; while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)) { if (Parser.getTok().is(AsmToken::Minus)) { if (!Spacing) Spacing = 1; // Register range implies a single spaced list. else if (Spacing == 2) return Error(Parser.getTok().getLoc(), "sequential registers in double spaced list"); Parser.Lex(); // Eat the minus. SMLoc AfterMinusLoc = Parser.getTok().getLoc(); int EndReg = tryParseRegister(); if (EndReg == -1) return Error(AfterMinusLoc, "register expected"); // Allow Q regs and just interpret them as the two D sub-registers. if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) EndReg = getDRegFromQReg(EndReg) + 1; // If the register is the same as the start reg, there's nothing // more to do. if (Reg == EndReg) continue; // The register must be in the same register class as the first. if ((hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || (!hasMVE() && !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) return Error(AfterMinusLoc, "invalid register in register list"); // Ranges must go from low to high. if (Reg > EndReg) return Error(AfterMinusLoc, "bad range in register list"); // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; if (!parseVectorLane(NextLaneKind, NextLaneIndex, E).isSuccess()) return ParseStatus::Failure; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) return Error(AfterMinusLoc, "mismatched lane index in register list"); // Add all the registers in the range to the register list. Count += EndReg - Reg; Reg = EndReg; continue; } Parser.Lex(); // Eat the comma. RegLoc = Parser.getTok().getLoc(); int OldReg = Reg; Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); if (hasMVE()) { if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) return Error(RegLoc, "vector register in range Q0-Q7 expected"); Spacing = 1; } // vector register lists must be contiguous. // It's OK to use the enumeration values directly here rather, as the // VFP register classes have the enum sorted properly. // // The list is of D registers, but we also allow Q regs and just interpret // them as the two D sub-registers. else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { if (!Spacing) Spacing = 1; // Register range implies a single spaced list. else if (Spacing == 2) return Error( RegLoc, "invalid register in double-spaced list (must be 'D' register')"); Reg = getDRegFromQReg(Reg); if (Reg != OldReg + 1) return Error(RegLoc, "non-contiguous register range"); ++Reg; Count += 2; // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; SMLoc LaneLoc = Parser.getTok().getLoc(); if (!parseVectorLane(NextLaneKind, NextLaneIndex, E).isSuccess()) return ParseStatus::Failure; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) return Error(LaneLoc, "mismatched lane index in register list"); continue; } // Normal D register. // Figure out the register spacing (single or double) of the list if // we don't know it already. if (!Spacing) Spacing = 1 + (Reg == OldReg + 2); // Just check that it's contiguous and keep going. if (Reg != OldReg + Spacing) return Error(RegLoc, "non-contiguous register range"); ++Count; // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; SMLoc EndLoc = Parser.getTok().getLoc(); if (!parseVectorLane(NextLaneKind, NextLaneIndex, E).isSuccess()) return ParseStatus::Failure; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) return Error(EndLoc, "mismatched lane index in register list"); } if (Parser.getTok().isNot(AsmToken::RCurly)) return Error(Parser.getTok().getLoc(), "'}' expected"); E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat '}' token. switch (LaneKind) { case NoLanes: case AllLanes: { // Two-register operands have been converted to the // composite register classes. if (Count == 2 && !hasMVE()) { const MCRegisterClass *RC = (Spacing == 1) ? &ARMMCRegisterClasses[ARM::DPairRegClassID] : &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); } auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : ARMOperand::CreateVectorListAllLanes); Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); break; } case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, LaneIndex, (Spacing == 2), S, E)); break; } return ParseStatus::Success; } /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. ParseStatus ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); unsigned Opt; if (Tok.is(AsmToken::Identifier)) { StringRef OptStr = Tok.getString(); Opt = StringSwitch(OptStr.slice(0, OptStr.size()).lower()) .Case("sy", ARM_MB::SY) .Case("st", ARM_MB::ST) .Case("ld", ARM_MB::LD) .Case("sh", ARM_MB::ISH) .Case("ish", ARM_MB::ISH) .Case("shst", ARM_MB::ISHST) .Case("ishst", ARM_MB::ISHST) .Case("ishld", ARM_MB::ISHLD) .Case("nsh", ARM_MB::NSH) .Case("un", ARM_MB::NSH) .Case("nshst", ARM_MB::NSHST) .Case("nshld", ARM_MB::NSHLD) .Case("unst", ARM_MB::NSHST) .Case("osh", ARM_MB::OSH) .Case("oshst", ARM_MB::OSHST) .Case("oshld", ARM_MB::OSHLD) .Default(~0U); // ishld, oshld, nshld and ld are only available from ARMv8. if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) Opt = ~0U; if (Opt == ~0U) return ParseStatus::NoMatch; Parser.Lex(); // Eat identifier token. } else if (Tok.is(AsmToken::Hash) || Tok.is(AsmToken::Dollar) || Tok.is(AsmToken::Integer)) { if (Parser.getTok().isNot(AsmToken::Integer)) Parser.Lex(); // Eat '#' or '$'. SMLoc Loc = Parser.getTok().getLoc(); const MCExpr *MemBarrierID; if (getParser().parseExpression(MemBarrierID)) return Error(Loc, "illegal expression"); const MCConstantExpr *CE = dyn_cast(MemBarrierID); if (!CE) return Error(Loc, "constant expression expected"); int Val = CE->getValue(); if (Val & ~0xf) return Error(Loc, "immediate value out of range"); Opt = ARM_MB::RESERVED_0 + Val; } else return ParseStatus::Failure; Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return ParseStatus::NoMatch; if (!Tok.getString().equals_insensitive("csync")) return ParseStatus::NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); return ParseStatus::Success; } /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. ParseStatus ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); unsigned Opt; if (Tok.is(AsmToken::Identifier)) { StringRef OptStr = Tok.getString(); if (OptStr.equals_insensitive("sy")) Opt = ARM_ISB::SY; else return ParseStatus::NoMatch; Parser.Lex(); // Eat identifier token. } else if (Tok.is(AsmToken::Hash) || Tok.is(AsmToken::Dollar) || Tok.is(AsmToken::Integer)) { if (Parser.getTok().isNot(AsmToken::Integer)) Parser.Lex(); // Eat '#' or '$'. SMLoc Loc = Parser.getTok().getLoc(); const MCExpr *ISBarrierID; if (getParser().parseExpression(ISBarrierID)) return Error(Loc, "illegal expression"); const MCConstantExpr *CE = dyn_cast(ISBarrierID); if (!CE) return Error(Loc, "constant expression expected"); int Val = CE->getValue(); if (Val & ~0xf) return Error(Loc, "immediate value out of range"); Opt = ARM_ISB::RESERVED_0 + Val; } else return ParseStatus::Failure; Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( (ARM_ISB::InstSyncBOpt)Opt, S)); return ParseStatus::Success; } /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. ParseStatus ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return ParseStatus::NoMatch; StringRef IFlagsStr = Tok.getString(); // An iflags string of "none" is interpreted to mean that none of the AIF // bits are set. Not a terribly useful instruction, but a valid encoding. unsigned IFlags = 0; if (IFlagsStr != "none") { for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { unsigned Flag = StringSwitch(IFlagsStr.substr(i, 1).lower()) .Case("a", ARM_PROC::A) .Case("i", ARM_PROC::I) .Case("f", ARM_PROC::F) .Default(~0U); // If some specific iflag is already set, it means that some letter is // present more than once, this is not acceptable. if (Flag == ~0U || (IFlags & Flag)) return ParseStatus::NoMatch; IFlags |= Flag; } } Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); return ParseStatus::Success; } /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. ParseStatus ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Integer)) { int64_t Val = Tok.getIntVal(); if (Val > 255 || Val < 0) { return ParseStatus::NoMatch; } unsigned SYSmvalue = Val & 0xFF; Parser.Lex(); Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); return ParseStatus::Success; } if (!Tok.is(AsmToken::Identifier)) return ParseStatus::NoMatch; StringRef Mask = Tok.getString(); if (isMClass()) { auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) return ParseStatus::NoMatch; unsigned SYSmvalue = TheReg->Encoding & 0xFFF; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); return ParseStatus::Success; } // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" size_t Start = 0, Next = Mask.find('_'); StringRef Flags = ""; std::string SpecReg = Mask.slice(Start, Next).lower(); if (Next != StringRef::npos) Flags = Mask.slice(Next+1, Mask.size()); // FlagsVal contains the complete mask: // 3-0: Mask // 4: Special Reg (cpsr, apsr => 0; spsr => 1) unsigned FlagsVal = 0; if (SpecReg == "apsr") { FlagsVal = StringSwitch(Flags) .Case("nzcvq", 0x8) // same as CPSR_f .Case("g", 0x4) // same as CPSR_s .Case("nzcvqg", 0xc) // same as CPSR_fs .Default(~0U); if (FlagsVal == ~0U) { if (!Flags.empty()) return ParseStatus::NoMatch; else FlagsVal = 8; // No flag } } else if (SpecReg == "cpsr" || SpecReg == "spsr") { // cpsr_all is an alias for cpsr_fc, as is plain cpsr. if (Flags == "all" || Flags == "") Flags = "fc"; for (int i = 0, e = Flags.size(); i != e; ++i) { unsigned Flag = StringSwitch(Flags.substr(i, 1)) .Case("c", 1) .Case("x", 2) .Case("s", 4) .Case("f", 8) .Default(~0U); // If some specific flag is already set, it means that some letter is // present more than once, this is not acceptable. if (Flag == ~0U || (FlagsVal & Flag)) return ParseStatus::NoMatch; FlagsVal |= Flag; } } else // No match for special register. return ParseStatus::NoMatch; // Special register without flags is NOT equivalent to "fc" flags. // NOTE: This is a divergence from gas' behavior. Uncommenting the following // two lines would enable gas compatibility at the expense of breaking // round-tripping. // // if (!FlagsVal) // FlagsVal = 0x9; // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) if (SpecReg == "spsr") FlagsVal |= 16; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); return ParseStatus::Success; } /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for /// use in the MRS/MSR instructions added to support virtualization. ParseStatus ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return ParseStatus::NoMatch; StringRef RegName = Tok.getString(); auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); if (!TheReg) return ParseStatus::NoMatch; unsigned Encoding = TheReg->Encoding; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, int High) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), Op + " operand expected."); StringRef ShiftName = Tok.getString(); std::string LowerOp = Op.lower(); std::string UpperOp = Op.upper(); if (ShiftName != LowerOp && ShiftName != UpperOp) return Error(Parser.getTok().getLoc(), Op + " operand expected."); Parser.Lex(); // Eat shift type token. // There must be a '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return Error(Parser.getTok().getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. const MCExpr *ShiftAmount; SMLoc Loc = Parser.getTok().getLoc(); SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) return Error(Loc, "illegal expression"); const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) return Error(Loc, "constant expression expected"); int Val = CE->getValue(); if (Val < Low || Val > High) return Error(Loc, "immediate value out of range"); Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parseSetEndImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) return Error(S, "'be' or 'le' operand expected"); int Val = StringSwitch(Tok.getString().lower()) .Case("be", 1) .Case("le", 0) .Default(-1); Parser.Lex(); // Eat the token. if (Val == -1) return Error(S, "'be' or 'le' operand expected"); Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, Tok.getEndLoc())); return ParseStatus::Success; } /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT /// instructions. Legal values are: /// lsl #n 'n' in [0,31] /// asr #n 'n' in [1,32] /// n == 32 encoded as n == 0. ParseStatus ARMAsmParser::parseShifterImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) return Error(S, "shift operator 'asr' or 'lsl' expected"); StringRef ShiftName = Tok.getString(); bool isASR; if (ShiftName == "lsl" || ShiftName == "LSL") isASR = false; else if (ShiftName == "asr" || ShiftName == "ASR") isASR = true; else return Error(S, "shift operator 'asr' or 'lsl' expected"); Parser.Lex(); // Eat the operator. // A '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return Error(Parser.getTok().getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. SMLoc ExLoc = Parser.getTok().getLoc(); const MCExpr *ShiftAmount; SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) return Error(ExLoc, "malformed shift expression"); const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) return Error(ExLoc, "shift amount must be an immediate"); int64_t Val = CE->getValue(); if (isASR) { // Shift amount must be in [1,32] if (Val < 1 || Val > 32) return Error(ExLoc, "'asr' shift amount must be in range [1,32]"); // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. if (isThumb() && Val == 32) return Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); if (Val == 32) Val = 0; } else { // Shift amount must be in [1,32] if (Val < 0 || Val > 31) return Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); } Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); return ParseStatus::Success; } /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family /// of instructions. Legal values are: /// ror #n 'n' in {0, 8, 16, 24} ParseStatus ARMAsmParser::parseRotImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) return ParseStatus::NoMatch; StringRef ShiftName = Tok.getString(); if (ShiftName != "ror" && ShiftName != "ROR") return ParseStatus::NoMatch; Parser.Lex(); // Eat the operator. // A '#' and a rotate amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return Error(Parser.getTok().getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. SMLoc ExLoc = Parser.getTok().getLoc(); const MCExpr *ShiftAmount; SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) return Error(ExLoc, "malformed rotate expression"); const MCConstantExpr *CE = dyn_cast(ShiftAmount); if (!CE) return Error(ExLoc, "rotate amount must be an immediate"); int64_t Val = CE->getValue(); // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) // normally, zero is represented in asm by omitting the rotate operand // entirely. if (Val != 8 && Val != 16 && Val != 24 && Val != 0) return Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parseModImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); int64_t Imm1, Imm2; SMLoc S = Parser.getTok().getLoc(); // 1) A mod_imm operand can appear in the place of a register name: // add r0, #mod_imm // add r0, r0, #mod_imm // to correctly handle the latter, we bail out as soon as we see an // identifier. // // 2) Similarly, we do not want to parse into complex operands: // mov r0, #mod_imm // mov r0, :lower16:(_foo) if (Parser.getTok().is(AsmToken::Identifier) || Parser.getTok().is(AsmToken::Colon)) return ParseStatus::NoMatch; // Hash (dollar) is optional as per the ARMARM if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { // Avoid parsing into complex operands (#:) if (Lexer.peekTok().is(AsmToken::Colon)) return ParseStatus::NoMatch; // Eat the hash (dollar) Parser.Lex(); } SMLoc Sx1, Ex1; Sx1 = Parser.getTok().getLoc(); const MCExpr *Imm1Exp; if (getParser().parseExpression(Imm1Exp, Ex1)) return Error(Sx1, "malformed expression"); const MCConstantExpr *CE = dyn_cast(Imm1Exp); if (CE) { // Immediate must fit within 32-bits Imm1 = CE->getValue(); int Enc = ARM_AM::getSOImmVal(Imm1); if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { // We have a match! Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), (Enc & 0xF00) >> 7, Sx1, Ex1)); return ParseStatus::Success; } // We have parsed an immediate which is not for us, fallback to a plain // immediate. This can happen for instruction aliases. For an example, // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite // instruction with a mod_imm operand. The alias is defined such that the // parser method is shared, that's why we have to do this here. if (Parser.getTok().is(AsmToken::EndOfStatement)) { Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); return ParseStatus::Success; } } else { // Operands like #(l1 - l2) can only be evaluated at a later stage (via an // MCFixup). Fallback to a plain immediate. Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); return ParseStatus::Success; } // From this point onward, we expect the input to be a (#bits, #rot) pair if (Parser.getTok().isNot(AsmToken::Comma)) return Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); if (Imm1 & ~0xFF) return Error(Sx1, "immediate operand must a number in the range [0, 255]"); // Eat the comma Parser.Lex(); // Repeat for #rot SMLoc Sx2, Ex2; Sx2 = Parser.getTok().getLoc(); // Eat the optional hash (dollar) if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) Parser.Lex(); const MCExpr *Imm2Exp; if (getParser().parseExpression(Imm2Exp, Ex2)) return Error(Sx2, "malformed expression"); CE = dyn_cast(Imm2Exp); if (CE) { Imm2 = CE->getValue(); if (!(Imm2 & ~0x1E)) { // We have a match! Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); return ParseStatus::Success; } return Error(Sx2, "immediate operand must an even number in the range [0, 30]"); } else { return Error(Sx2, "constant expression expected"); } } ParseStatus ARMAsmParser::parseBitfield(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); // The bitfield descriptor is really two operands, the LSB and the width. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return Error(Parser.getTok().getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. const MCExpr *LSBExpr; SMLoc E = Parser.getTok().getLoc(); if (getParser().parseExpression(LSBExpr)) return Error(E, "malformed immediate expression"); const MCConstantExpr *CE = dyn_cast(LSBExpr); if (!CE) return Error(E, "'lsb' operand must be an immediate"); int64_t LSB = CE->getValue(); // The LSB must be in the range [0,31] if (LSB < 0 || LSB > 31) return Error(E, "'lsb' operand must be in the range [0,31]"); E = Parser.getTok().getLoc(); // Expect another immediate operand. if (Parser.getTok().isNot(AsmToken::Comma)) return Error(Parser.getTok().getLoc(), "too few operands"); Parser.Lex(); // Eat hash token. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return Error(Parser.getTok().getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. const MCExpr *WidthExpr; SMLoc EndLoc; if (getParser().parseExpression(WidthExpr, EndLoc)) return Error(E, "malformed immediate expression"); CE = dyn_cast(WidthExpr); if (!CE) return Error(E, "'width' operand must be an immediate"); int64_t Width = CE->getValue(); // The LSB must be in the range [1,32-lsb] if (Width < 1 || Width > 32 - LSB) return Error(E, "'width' operand must be in the range [1,32-lsb]"); Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { // Check for a post-index addressing register operand. Specifically: // postidx_reg := '+' register {, shift} // | '-' register {, shift} // | register {, shift} // This method must return ParseStatus::NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. MCAsmParser &Parser = getParser(); AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); bool haveEaten = false; bool isAdd = true; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } SMLoc E = Parser.getTok().getEndLoc(); int Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return ParseStatus::NoMatch; return Error(Parser.getTok().getLoc(), "register expected"); } ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; unsigned ShiftImm = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the ','. if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) return ParseStatus::Failure; // FIXME: Only approximates end...may include intervening whitespace. E = Parser.getTok().getLoc(); } Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, ShiftImm, S, E)); return ParseStatus::Success; } ParseStatus ARMAsmParser::parseAM3Offset(OperandVector &Operands) { // Check for a post-index addressing register operand. Specifically: // am3offset := '+' register // | '-' register // | register // | # imm // | # + imm // | # - imm // This method must return ParseStatus::NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. MCAsmParser &Parser = getParser(); AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); // Do immediates first, as we always parse those if we have a '#'. if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { Parser.Lex(); // Eat '#' or '$'. // Explicitly look for a '-', as we need to encode negative zero // differently. bool isNegative = Parser.getTok().is(AsmToken::Minus); const MCExpr *Offset; SMLoc E; if (getParser().parseExpression(Offset, E)) return ParseStatus::Failure; const MCConstantExpr *CE = dyn_cast(Offset); if (!CE) return Error(S, "constant expression expected"); // Negative zero is encoded as the flag value // std::numeric_limits::min(). int32_t Val = CE->getValue(); if (isNegative && Val == 0) Val = std::numeric_limits::min(); Operands.push_back( ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); return ParseStatus::Success; } bool haveEaten = false; bool isAdd = true; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } Tok = Parser.getTok(); int Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return ParseStatus::NoMatch; return Error(Tok.getLoc(), "register expected"); } Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 0, S, Tok.getEndLoc())); return ParseStatus::Success; } /// Convert parsed operands to MCInst. Needed here because this instruction /// only has two register operands, but multiplication is commutative so /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, const OperandVector &Operands) { ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); // If we have a three-operand form, make sure to set Rn to be the operand // that isn't the same as Rd. unsigned RegOp = 4; if (Operands.size() == 6 && ((ARMOperand &)*Operands[4]).getReg() == ((ARMOperand &)*Operands[3]).getReg()) RegOp = 5; ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); Inst.addOperand(Inst.getOperand(0)); ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); } void ARMAsmParser::cvtThumbBranches(MCInst &Inst, const OperandVector &Operands) { int CondOp = -1, ImmOp = -1; switch(Inst.getOpcode()) { case ARM::tB: case ARM::tBcc: CondOp = 1; ImmOp = 2; break; case ARM::t2B: case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); } // first decide whether or not the branch should be conditional // by looking at it's location relative to an IT block if(inITBlock()) { // inside an IT block we cannot have any conditional branches. any // such instructions needs to be converted to unconditional form switch(Inst.getOpcode()) { case ARM::tBcc: Inst.setOpcode(ARM::tB); break; case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; } } else { // outside IT blocks we can only have unconditional branches with AL // condition code or conditional branches with non-AL condition code unsigned Cond = static_cast(*Operands[CondOp]).getCondCode(); switch(Inst.getOpcode()) { case ARM::tB: case ARM::tBcc: Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); break; case ARM::t2B: case ARM::t2Bcc: Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); break; } } // now decide on encoding size based on branch target range switch(Inst.getOpcode()) { // classify tB as either t2B or t1B based on range of immediate operand case ARM::tB: { ARMOperand &op = static_cast(*Operands[ImmOp]); if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) Inst.setOpcode(ARM::t2B); break; } // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand case ARM::tBcc: { ARMOperand &op = static_cast(*Operands[ImmOp]); if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) Inst.setOpcode(ARM::t2Bcc); break; } } ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); } void ARMAsmParser::cvtMVEVMOVQtoDReg( MCInst &Inst, const OperandVector &Operands) { // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 assert(Operands.size() == 8); ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx // skip second copy of Qd in Operands[6] ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code } /// Parse an ARM memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. bool ARMAsmParser::parseMemory(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S, E; if (Parser.getTok().isNot(AsmToken::LBrac)) return TokError("Token is not a Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); int BaseRegNum = tryParseRegister(); if (BaseRegNum == -1) return Error(BaseRegTok.getLoc(), "register expected"); // The next token must either be a comma, a colon or a closing bracket. const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac)) return Error(Tok.getLoc(), "malformed memory operand"); if (Tok.is(AsmToken::RBrac)) { E = Tok.getEndLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, ARM_AM::no_shift, 0, 0, false, S, E)); // If there's a pre-indexing writeback marker, '!', just add it as a token // operand. It's rather odd, but syntactically valid. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); Parser.Lex(); // Eat the '!'. } return false; } assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && "Lost colon or comma in memory operand?!"); if (Tok.is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. } // If we have a ':', it's an alignment specifier. if (Parser.getTok().is(AsmToken::Colon)) { Parser.Lex(); // Eat the ':'. E = Parser.getTok().getLoc(); SMLoc AlignmentLoc = Tok.getLoc(); const MCExpr *Expr; if (getParser().parseExpression(Expr)) return true; // The expression has to be a constant. Memory references with relocations // don't come through here, as they use the