//===- MCSubtargetInfo.cpp - Subtarget Information ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include #include #include #include using namespace llvm; /// Find KV in array using binary search. template static const T *Find(StringRef S, ArrayRef A) { // Binary search the array auto F = llvm::lower_bound(A, S); // If not found then return NULL if (F == A.end() || StringRef(F->Key) != S) return nullptr; // Return the found array item return F; } /// For each feature that is (transitively) implied by this feature, set it. static void SetImpliedBits(FeatureBitset &Bits, const FeatureBitset &Implies, ArrayRef FeatureTable) { // OR the Implies bits in outside the loop. This allows the Implies for CPUs // which might imply features not in FeatureTable to use this. Bits |= Implies; for (const SubtargetFeatureKV &FE : FeatureTable) if (Implies.test(FE.Value)) SetImpliedBits(Bits, FE.Implies.getAsBitset(), FeatureTable); } /// For each feature that (transitively) implies this feature, clear it. static void ClearImpliedBits(FeatureBitset &Bits, unsigned Value, ArrayRef FeatureTable) { for (const SubtargetFeatureKV &FE : FeatureTable) { if (FE.Implies.getAsBitset().test(Value)) { Bits.reset(FE.Value); ClearImpliedBits(Bits, FE.Value, FeatureTable); } } } static void ApplyFeatureFlag(FeatureBitset &Bits, StringRef Feature, ArrayRef FeatureTable) { assert(SubtargetFeatures::hasFlag(Feature) && "Feature flags should start with '+' or '-'"); // Find feature in table. const SubtargetFeatureKV *FeatureEntry = Find(SubtargetFeatures::StripFlag(Feature), FeatureTable); // If there is a match if (FeatureEntry) { // Enable/disable feature in bits if (SubtargetFeatures::isEnabled(Feature)) { Bits.set(FeatureEntry->Value); // For each feature that this implies, set it. SetImpliedBits(Bits, FeatureEntry->Implies.getAsBitset(), FeatureTable); } else { Bits.reset(FeatureEntry->Value); // For each feature that implies this, clear it. ClearImpliedBits(Bits, FeatureEntry->Value, FeatureTable); } } else { errs() << "'" << Feature << "' is not a recognized feature for this target" << " (ignoring feature)\n"; } } /// Return the length of the longest entry in the table. template static size_t getLongestEntryLength(ArrayRef Table) { size_t MaxLen = 0; for (auto &I : Table) MaxLen = std::max(MaxLen, std::strlen(I.Key)); return MaxLen; } /// Display help for feature and mcpu choices. static void Help(ArrayRef CPUTable, ArrayRef FeatTable) { // the static variable ensures that the help information only gets // printed once even though a target machine creates multiple subtargets static bool PrintOnce = false; if (PrintOnce) { return; } // Determine the length of the longest CPU and Feature entries. unsigned MaxCPULen = getLongestEntryLength(CPUTable); unsigned MaxFeatLen = getLongestEntryLength(FeatTable); // Print the CPU table. errs() << "Available CPUs for this target:\n\n"; for (auto &CPU : CPUTable) errs() << format(" %-*s - Select the %s processor.\n", MaxCPULen, CPU.Key, CPU.Key); errs() << '\n'; // Print the Feature table. errs() << "Available features for this target:\n\n"; for (auto &Feature : FeatTable) errs() << format(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc); errs() << '\n'; errs() << "Use +feature to enable a feature, or -feature to disable it.\n" "For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n"; PrintOnce = true; } /// Display help for mcpu choices only static void cpuHelp(ArrayRef CPUTable) { // the static variable ensures that the help information only gets // printed once even though a target machine creates multiple subtargets static bool PrintOnce = false; if (PrintOnce) { return; } // Print the CPU table. errs() << "Available CPUs for this target:\n\n"; for (auto &CPU : CPUTable) errs() << "\t" << CPU.Key << "\n"; errs() << '\n'; errs() << "Use -mcpu or -mtune to specify the target's processor.\n" "For example, clang --target=aarch64-unknown-linux-gnu " "-mcpu=cortex-a35\n"; PrintOnce = true; } static FeatureBitset getFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS, ArrayRef ProcDesc, ArrayRef ProcFeatures) { SubtargetFeatures Features(FS); if (ProcDesc.empty() || ProcFeatures.empty()) return FeatureBitset(); assert(llvm::is_sorted(ProcDesc) && "CPU table is not sorted"); assert(llvm::is_sorted(ProcFeatures) && "CPU features table is not sorted"); // Resulting bits FeatureBitset Bits; // Check if help is needed if (CPU == "help") Help(ProcDesc, ProcFeatures); // Find CPU entry if CPU name is specified. else if (!CPU.empty()) { const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc); // If there is a match if (CPUEntry) { // Set the features implied by this CPU feature, if any. SetImpliedBits(Bits, CPUEntry->Implies.getAsBitset(), ProcFeatures); } else { errs() << "'" << CPU << "' is not a recognized processor for this target" << " (ignoring processor)\n"; } } if (!TuneCPU.empty()) { const SubtargetSubTypeKV *CPUEntry = Find(TuneCPU, ProcDesc); // If there is a match if (CPUEntry) { // Set the features implied by this CPU feature, if any. SetImpliedBits(Bits, CPUEntry->TuneImplies.getAsBitset(), ProcFeatures); } else if (TuneCPU != CPU) { errs() << "'" << TuneCPU << "' is not a recognized processor for this " << "target (ignoring processor)\n"; } } // Iterate through each feature for (const std::string &Feature : Features.getFeatures()) { // Check for help if (Feature == "+help") Help(ProcDesc, ProcFeatures); else if (Feature == "+cpuhelp") cpuHelp(ProcDesc); else ApplyFeatureFlag(Bits, Feature, ProcFeatures); } return Bits; } void MCSubtargetInfo::InitMCProcessorInfo(StringRef CPU, StringRef TuneCPU, StringRef FS) { FeatureBits = getFeatures(CPU, TuneCPU, FS, ProcDesc, ProcFeatures); FeatureString = std::string(FS); if (!TuneCPU.empty()) CPUSchedModel = &getSchedModelForCPU(TuneCPU); else CPUSchedModel = &MCSchedModel::Default; } void MCSubtargetInfo::setDefaultFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS) { FeatureBits = getFeatures(CPU, TuneCPU, FS, ProcDesc, ProcFeatures); FeatureString = std::string(FS); } MCSubtargetInfo::MCSubtargetInfo(const Triple &TT, StringRef C, StringRef TC, StringRef FS, ArrayRef PF, ArrayRef PD, const MCWriteProcResEntry *WPR, const MCWriteLatencyEntry *WL, const MCReadAdvanceEntry *RA, const InstrStage *IS, const unsigned *OC, const unsigned *FP) : TargetTriple(TT), CPU(std::string(C)), TuneCPU(std::string(TC)), ProcFeatures(PF), ProcDesc(PD), WriteProcResTable(WPR), WriteLatencyTable(WL), ReadAdvanceTable(RA), Stages(IS), OperandCycles(OC), ForwardingPaths(FP) { InitMCProcessorInfo(CPU, TuneCPU, FS); } FeatureBitset MCSubtargetInfo::ToggleFeature(uint64_t FB) { FeatureBits.flip(FB); return FeatureBits; } FeatureBitset MCSubtargetInfo::ToggleFeature(const FeatureBitset &FB) { FeatureBits ^= FB; return FeatureBits; } FeatureBitset MCSubtargetInfo::SetFeatureBitsTransitively( const FeatureBitset &FB) { SetImpliedBits(FeatureBits, FB, ProcFeatures); return FeatureBits; } FeatureBitset MCSubtargetInfo::ClearFeatureBitsTransitively( const FeatureBitset &FB) { for (unsigned I = 0, E = FB.size(); I < E; I++) { if (FB[I]) { FeatureBits.reset(I); ClearImpliedBits(FeatureBits, I, ProcFeatures); } } return FeatureBits; } FeatureBitset MCSubtargetInfo::ToggleFeature(StringRef Feature) { // Find feature in table. const SubtargetFeatureKV *FeatureEntry = Find(SubtargetFeatures::StripFlag(Feature), ProcFeatures); // If there is a match if (FeatureEntry) { if (FeatureBits.test(FeatureEntry->Value)) { FeatureBits.reset(FeatureEntry->Value); // For each feature that implies this, clear it. ClearImpliedBits(FeatureBits, FeatureEntry->Value, ProcFeatures); } else { FeatureBits.set(FeatureEntry->Value); // For each feature that this implies, set it. SetImpliedBits(FeatureBits, FeatureEntry->Implies.getAsBitset(), ProcFeatures); } } else { errs() << "'" << Feature << "' is not a recognized feature for this target" << " (ignoring feature)\n"; } return FeatureBits; } FeatureBitset MCSubtargetInfo::ApplyFeatureFlag(StringRef FS) { ::ApplyFeatureFlag(FeatureBits, FS, ProcFeatures); return FeatureBits; } bool MCSubtargetInfo::checkFeatures(StringRef FS) const { SubtargetFeatures T(FS); FeatureBitset Set, All; for (std::string F : T.getFeatures()) { ::ApplyFeatureFlag(Set, F, ProcFeatures); if (F[0] == '-') F[0] = '+'; ::ApplyFeatureFlag(All, F, ProcFeatures); } return (FeatureBits & All) == Set; } const MCSchedModel &MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const { assert(llvm::is_sorted(ProcDesc) && "Processor machine model table is not sorted"); // Find entry const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc); if (!CPUEntry) { if (CPU != "help") // Don't error if the user asked for help. errs() << "'" << CPU << "' is not a recognized processor for this target" << " (ignoring processor)\n"; return MCSchedModel::Default; } assert(CPUEntry->SchedModel && "Missing processor SchedModel value"); return *CPUEntry->SchedModel; } InstrItineraryData MCSubtargetInfo::getInstrItineraryForCPU(StringRef CPU) const { const MCSchedModel &SchedModel = getSchedModelForCPU(CPU); return InstrItineraryData(SchedModel, Stages, OperandCycles, ForwardingPaths); } void MCSubtargetInfo::initInstrItins(InstrItineraryData &InstrItins) const { InstrItins = InstrItineraryData(getSchedModel(), Stages, OperandCycles, ForwardingPaths); } std::optional MCSubtargetInfo::getCacheSize(unsigned Level) const { return std::nullopt; } std::optional MCSubtargetInfo::getCacheAssociativity(unsigned Level) const { return std::nullopt; } std::optional MCSubtargetInfo::getCacheLineSize(unsigned Level) const { return std::nullopt; } unsigned MCSubtargetInfo::getPrefetchDistance() const { return 0; } unsigned MCSubtargetInfo::getMaxPrefetchIterationsAhead() const { return UINT_MAX; } bool MCSubtargetInfo::enableWritePrefetching() const { return false; } unsigned MCSubtargetInfo::getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const { return 1; } bool MCSubtargetInfo::shouldPrefetchAddressSpace(unsigned AS) const { return !AS; }