//===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PhiValues.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Instructions.h" #include "llvm/InitializePasses.h" using namespace llvm; void PhiValues::PhiValuesCallbackVH::deleted() { PV->invalidateValue(getValPtr()); } void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { // We could potentially update the cached values we have with the new value, // but it's simpler to just treat the old value as invalidated. PV->invalidateValue(getValPtr()); } bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &) { // PhiValues is invalidated if it isn't preserved. auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>()); } // The goal here is to find all of the non-phi values reachable from this phi, // and to do the same for all of the phis reachable from this phi, as doing so // is necessary anyway in order to get the values for this phi. We do this using // Tarjan's algorithm with Nuutila's improvements to find the strongly connected // components of the phi graph rooted in this phi: // * All phis in a strongly connected component will have the same reachable // non-phi values. The SCC may not be the maximal subgraph for that set of // reachable values, but finding out that isn't really necessary (it would // only reduce the amount of memory needed to store the values). // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it // never completes a component before the components reachable from it have // been completed. This means that when we complete a component we have // everything we need to collect the values reachable from that component. // * We collect both the non-phi values reachable from each SCC, as that's what // we're ultimately interested in, and all of the reachable values, i.e. // including phis, as that makes invalidateValue easier. void PhiValues::processPhi(const PHINode *Phi, SmallVectorImpl &Stack) { // Initialize the phi with the next depth number. assert(DepthMap.lookup(Phi) == 0); assert(NextDepthNumber != UINT_MAX); unsigned int RootDepthNumber = ++NextDepthNumber; DepthMap[Phi] = RootDepthNumber; // Recursively process the incoming phis of this phi. TrackedValues.insert(PhiValuesCallbackVH(const_cast(Phi), this)); for (Value *PhiOp : Phi->incoming_values()) { if (PHINode *PhiPhiOp = dyn_cast(PhiOp)) { // Recurse if the phi has not yet been visited. unsigned int OpDepthNumber = DepthMap.lookup(PhiPhiOp); if (OpDepthNumber == 0) { processPhi(PhiPhiOp, Stack); OpDepthNumber = DepthMap.lookup(PhiPhiOp); assert(OpDepthNumber != 0); } // If the phi did not become part of a component then this phi and that // phi are part of the same component, so adjust the depth number. if (!ReachableMap.count(OpDepthNumber)) DepthMap[Phi] = std::min(DepthMap[Phi], OpDepthNumber); } else { TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this)); } } // Now that incoming phis have been handled, push this phi to the stack. Stack.push_back(Phi); // If the depth number has not changed then we've finished collecting the phis // of a strongly connected component. if (DepthMap[Phi] == RootDepthNumber) { // Collect the reachable values for this component. The phis of this // component will be those on top of the depth stack with the same or // greater depth number. ConstValueSet &Reachable = ReachableMap[RootDepthNumber]; while (true) { const PHINode *ComponentPhi = Stack.pop_back_val(); Reachable.insert(ComponentPhi); for (Value *Op : ComponentPhi->incoming_values()) { if (PHINode *PhiOp = dyn_cast(Op)) { // If this phi is not part of the same component then that component // is guaranteed to have been completed before this one. Therefore we // can just add its reachable values to the reachable values of this // component. unsigned int OpDepthNumber = DepthMap[PhiOp]; if (OpDepthNumber != RootDepthNumber) { auto It = ReachableMap.find(OpDepthNumber); if (It != ReachableMap.end()) Reachable.insert(It->second.begin(), It->second.end()); } } else Reachable.insert(Op); } if (Stack.empty()) break; unsigned int &ComponentDepthNumber = DepthMap[Stack.back()]; if (ComponentDepthNumber < RootDepthNumber) break; ComponentDepthNumber = RootDepthNumber; } // Filter out phis to get the non-phi reachable values. ValueSet &NonPhi = NonPhiReachableMap[RootDepthNumber]; for (const Value *V : Reachable) if (!isa(V)) NonPhi.insert(const_cast(V)); } } const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { unsigned int DepthNumber = DepthMap.lookup(PN); if (DepthNumber == 0) { SmallVector Stack; processPhi(PN, Stack); DepthNumber = DepthMap.lookup(PN); assert(Stack.empty()); assert(DepthNumber != 0); } return NonPhiReachableMap[DepthNumber]; } void PhiValues::invalidateValue(const Value *V) { // Components that can reach V are invalid. SmallVector InvalidComponents; for (auto &Pair : ReachableMap) if (Pair.second.count(V)) InvalidComponents.push_back(Pair.first); for (unsigned int N : InvalidComponents) { for (const Value *V : ReachableMap[N]) if (const PHINode *PN = dyn_cast(V)) DepthMap.erase(PN); NonPhiReachableMap.erase(N); ReachableMap.erase(N); } // This value is no longer tracked auto It = TrackedValues.find_as(V); if (It != TrackedValues.end()) TrackedValues.erase(It); } void PhiValues::releaseMemory() { DepthMap.clear(); NonPhiReachableMap.clear(); ReachableMap.clear(); } void PhiValues::print(raw_ostream &OS) const { // Iterate through the phi nodes of the function rather than iterating through // DepthMap in order to get predictable ordering. for (const BasicBlock &BB : F) { for (const PHINode &PN : BB.phis()) { OS << "PHI "; PN.printAsOperand(OS, false); OS << " has values:\n"; unsigned int N = DepthMap.lookup(&PN); auto It = NonPhiReachableMap.find(N); if (It == NonPhiReachableMap.end()) OS << " UNKNOWN\n"; else if (It->second.empty()) OS << " NONE\n"; else for (Value *V : It->second) // Printing of an instruction prints two spaces at the start, so // handle instructions and everything else slightly differently in // order to get consistent indenting. if (Instruction *I = dyn_cast(V)) OS << *I << "\n"; else OS << " " << *V << "\n"; } } } AnalysisKey PhiValuesAnalysis::Key; PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { return PhiValues(F); } PreservedAnalyses PhiValuesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "PHI Values for function: " << F.getName() << "\n"; PhiValues &PI = AM.getResult(F); for (const BasicBlock &BB : F) for (const PHINode &PN : BB.phis()) PI.getValuesForPhi(&PN); PI.print(OS); return PreservedAnalyses::all(); } PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); } bool PhiValuesWrapperPass::runOnFunction(Function &F) { Result.reset(new PhiValues(F)); return false; } void PhiValuesWrapperPass::releaseMemory() { Result->releaseMemory(); } void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } char PhiValuesWrapperPass::ID = 0; INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, true)