//===- X86_64.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Relocations.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MathExtras.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { class X86_64 : public TargetInfo { public: X86_64(); int getTlsGdRelaxSkip(RelType type) const override; RelExpr getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const override; RelType getDynRel(RelType type) const override; void writeGotPltHeader(uint8_t *buf) const override; void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const override; int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; void applyJumpInstrMod(uint8_t *loc, JumpModType type, unsigned size) const override; RelExpr adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *loc) const override; void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const override; bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, InputSection *nextIS) const override; bool relaxOnce(int pass) const override; }; } // namespace // This is vector of NOP instructions of sizes from 1 to 8 bytes. The // appropriately sized instructions are used to fill the gaps between sections // which are executed during fall through. static const std::vector> nopInstructions = { {0x90}, {0x66, 0x90}, {0x0f, 0x1f, 0x00}, {0x0f, 0x1f, 0x40, 0x00}, {0x0f, 0x1f, 0x44, 0x00, 0x00}, {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; X86_64::X86_64() { copyRel = R_X86_64_COPY; gotRel = R_X86_64_GLOB_DAT; pltRel = R_X86_64_JUMP_SLOT; relativeRel = R_X86_64_RELATIVE; iRelativeRel = R_X86_64_IRELATIVE; symbolicRel = R_X86_64_64; tlsDescRel = R_X86_64_TLSDESC; tlsGotRel = R_X86_64_TPOFF64; tlsModuleIndexRel = R_X86_64_DTPMOD64; tlsOffsetRel = R_X86_64_DTPOFF64; gotBaseSymInGotPlt = true; gotEntrySize = 8; pltHeaderSize = 16; pltEntrySize = 16; ipltEntrySize = 16; trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 nopInstrs = nopInstructions; // Align to the large page size (known as a superpage or huge page). // FreeBSD automatically promotes large, superpage-aligned allocations. defaultImageBase = 0x200000; } int X86_64::getTlsGdRelaxSkip(RelType type) const { // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1 : 2; } // Opcodes for the different X86_64 jmp instructions. enum JmpInsnOpcode : uint32_t { J_JMP_32, J_JNE_32, J_JE_32, J_JG_32, J_JGE_32, J_JB_32, J_JBE_32, J_JL_32, J_JLE_32, J_JA_32, J_JAE_32, J_UNKNOWN, }; // Given the first (optional) and second byte of the insn's opcode, this // returns the corresponding enum value. static JmpInsnOpcode getJmpInsnType(const uint8_t *first, const uint8_t *second) { if (*second == 0xe9) return J_JMP_32; if (first == nullptr) return J_UNKNOWN; if (*first == 0x0f) { switch (*second) { case 0x84: return J_JE_32; case 0x85: return J_JNE_32; case 0x8f: return J_JG_32; case 0x8d: return J_JGE_32; case 0x82: return J_JB_32; case 0x86: return J_JBE_32; case 0x8c: return J_JL_32; case 0x8e: return J_JLE_32; case 0x87: return J_JA_32; case 0x83: return J_JAE_32; } } return J_UNKNOWN; } // Return the relocation index for input section IS with a specific Offset. // Returns the maximum size of the vector if no such relocation is found. static unsigned getRelocationWithOffset(const InputSection &is, uint64_t offset) { unsigned size = is.relocs().size(); for (unsigned i = size - 1; i + 1 > 0; --i) { if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) return i; } return size; } // Returns true if R corresponds to a relocation used for a jump instruction. // TODO: Once special relocations for relaxable jump instructions are available, // this should be modified to use those relocations. static bool isRelocationForJmpInsn(Relocation &R) { return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || R.type == R_X86_64_PC8; } // Return true if Relocation R points to the first instruction in the // next section. // TODO: Delete this once psABI reserves a new relocation type for fall thru // jumps. static bool isFallThruRelocation(InputSection &is, InputFile *file, InputSection *nextIS, Relocation &r) { if (!isRelocationForJmpInsn(r)) return false; uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; uint64_t targetOffset = InputSectionBase::getRelocTargetVA( file, r.type, r.addend, addrLoc, *r.sym, r.expr); // If this jmp is a fall thru, the target offset is the beginning of the // next section. uint64_t nextSectionOffset = nextIS->getOutputSection()->addr + nextIS->outSecOff; return (addrLoc + 4 + targetOffset) == nextSectionOffset; } // Return the jmp instruction opcode that is the inverse of the given // opcode. For example, JE inverted is JNE. static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { switch (opcode) { case J_JE_32: return J_JNE_32; case J_JNE_32: return J_JE_32; case J_JG_32: return J_JLE_32; case J_JGE_32: return J_JL_32; case J_JB_32: return J_JAE_32; case J_JBE_32: return J_JA_32; case J_JL_32: return J_JGE_32; case J_JLE_32: return J_JG_32; case J_JA_32: return J_JBE_32; case J_JAE_32: return J_JB_32; default: return J_UNKNOWN; } } // Deletes direct jump instruction in input sections that jumps to the // following section as it is not required. If there are two consecutive jump // instructions, it checks if they can be flipped and one can be deleted. // For example: // .section .text // a.BB.foo: // ... // 10: jne aa.BB.foo // 16: jmp bar // aa.BB.foo: // ... // // can be converted to: // a.BB.foo: // ... // 10: je bar #jne flipped to je and the jmp is deleted. // aa.BB.foo: // ... bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, InputSection *nextIS) const { const unsigned sizeOfDirectJmpInsn = 5; if (nextIS == nullptr) return false; if (is.getSize() < sizeOfDirectJmpInsn) return false; // If this jmp insn can be removed, it is the last insn and the // relocation is 4 bytes before the end. unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4); if (rIndex == is.relocs().size()) return false; Relocation &r = is.relocs()[rIndex]; // Check if the relocation corresponds to a direct jmp. const uint8_t *secContents = is.content().data(); // If it is not a direct jmp instruction, there is nothing to do here. if (*(secContents + r.offset - 1) != 0xe9) return false; if (isFallThruRelocation(is, file, nextIS, r)) { // This is a fall thru and can be deleted. r.expr = R_NONE; r.offset = 0; is.drop_back(sizeOfDirectJmpInsn); is.nopFiller = true; return true; } // Now, check if flip and delete is possible. const unsigned sizeOfJmpCCInsn = 6; // To flip, there must be at least one JmpCC and one direct jmp. if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) return false; unsigned rbIndex = getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4)); if (rbIndex == is.relocs().size()) return false; Relocation &rB = is.relocs()[rbIndex]; const uint8_t *jmpInsnB = secContents + rB.offset - 1; JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB); if (jmpOpcodeB == J_UNKNOWN) return false; if (!isFallThruRelocation(is, file, nextIS, rB)) return false; // jmpCC jumps to the fall thru block, the branch can be flipped and the // jmp can be deleted. JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB); if (jInvert == J_UNKNOWN) return false; is.jumpInstrMod = make(); *is.jumpInstrMod = {rB.offset - 1, jInvert, 4}; // Move R's values to rB except the offset. rB = {r.expr, r.type, rB.offset, r.addend, r.sym}; // Cancel R r.expr = R_NONE; r.offset = 0; is.drop_back(sizeOfDirectJmpInsn); is.nopFiller = true; return true; } bool X86_64::relaxOnce(int pass) const { uint64_t minVA = UINT64_MAX, maxVA = 0; for (OutputSection *osec : outputSections) { minVA = std::min(minVA, osec->addr); maxVA = std::max(maxVA, osec->addr + osec->size); } // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow. if (isUInt<31>(maxVA - minVA)) return false; SmallVector storage; bool changed = false; for (OutputSection *osec : outputSections) { if (!(osec->flags & SHF_EXECINSTR)) continue; for (InputSection *sec : getInputSections(*osec, storage)) { for (Relocation &rel : sec->relocs()) { if (rel.expr != R_RELAX_GOT_PC) continue; uint64_t v = sec->getRelocTargetVA(sec->file, rel.type, rel.addend, sec->getOutputSection()->addr + sec->outSecOff + rel.offset, *rel.sym, rel.expr); if (isInt<32>(v)) continue; if (rel.sym->auxIdx == 0) { rel.sym->allocateAux(); addGotEntry(*rel.sym); changed = true; } rel.expr = R_GOT_PC; } } } return changed; } RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, const uint8_t *loc) const { switch (type) { case R_X86_64_8: case R_X86_64_16: case R_X86_64_32: case R_X86_64_32S: case R_X86_64_64: return R_ABS; case R_X86_64_DTPOFF32: case R_X86_64_DTPOFF64: return R_DTPREL; case R_X86_64_TPOFF32: case R_X86_64_TPOFF64: return R_TPREL; case R_X86_64_TLSDESC_CALL: return R_TLSDESC_CALL; case R_X86_64_TLSLD: return R_TLSLD_PC; case R_X86_64_TLSGD: return R_TLSGD_PC; case R_X86_64_SIZE32: case R_X86_64_SIZE64: return R_SIZE; case R_X86_64_PLT32: return R_PLT_PC; case R_X86_64_PC8: case R_X86_64_PC16: case R_X86_64_PC32: case R_X86_64_PC64: return R_PC; case R_X86_64_GOT32: case R_X86_64_GOT64: return R_GOTPLT; case R_X86_64_GOTPC32_TLSDESC: return R_TLSDESC_PC; case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_GOTTPOFF: return R_GOT_PC; case R_X86_64_GOTOFF64: return R_GOTPLTREL; case R_X86_64_PLTOFF64: return R_PLT_GOTPLT; case R_X86_64_GOTPC32: case R_X86_64_GOTPC64: return R_GOTPLTONLY_PC; case R_X86_64_NONE: return R_NONE; default: error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + ") against symbol " + toString(s)); return R_NONE; } } void X86_64::writeGotPltHeader(uint8_t *buf) const { // The first entry holds the link-time address of _DYNAMIC. It is documented // in the psABI and glibc before Aug 2021 used the entry to compute run-time // load address of the shared object (note that this is relevant for linking // ld.so, not any other program). write64le(buf, mainPart->dynamic->getVA()); } void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { // See comments in X86::writeGotPlt. write64le(buf, s.getPltVA() + 6); } void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { // An x86 entry is the address of the ifunc resolver function (for -z rel). if (config->writeAddends) write64le(buf, s.getVA()); } void X86_64::writePltHeader(uint8_t *buf) const { const uint8_t pltData[] = { 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 0x0f, 0x1f, 0x40, 0x00, // nop }; memcpy(buf, pltData, sizeof(pltData)); uint64_t gotPlt = in.gotPlt->getVA(); uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16 } void X86_64::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t inst[] = { 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 0x68, 0, 0, 0, 0, // pushq 0xe9, 0, 0, 0, 0, // jmpq plt[0] }; memcpy(buf, inst, sizeof(inst)); write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6); write32le(buf + 7, sym.getPltIdx()); write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16); } RelType X86_64::getDynRel(RelType type) const { if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || type == R_X86_64_SIZE64) return type; return R_X86_64_NONE; } static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { if (rel.type == R_X86_64_TLSGD) { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to the following two instructions. const uint8_t inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax }; memcpy(loc - 4, inst, sizeof(inst)); // The original code used a pc relative relocation and so we have to // compensate for the -4 in had in the addend. write32le(loc + 8, val + 4); } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || (loc[-1] & 0xc7) != 0x05) { errorOrWarn(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used " "in leaq x@tlsdesc(%rip), %REG"); return; } loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); loc[-2] = 0xc7; loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); write32le(loc, val + 4); } else { // Convert call *x@tlsdesc(%REG) to xchg ax, ax. assert(rel.type == R_X86_64_TLSDESC_CALL); loc[0] = 0x66; loc[1] = 0x90; } } static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) { if (rel.type == R_X86_64_TLSGD) { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to the following two instructions. const uint8_t inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax }; memcpy(loc - 4, inst, sizeof(inst)); // Both code sequences are PC relatives, but since we are moving the // constant forward by 8 bytes we have to subtract the value by 8. write32le(loc + 8, val - 8); } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. assert(rel.type == R_X86_64_GOTPC32_TLSDESC); if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || (loc[-1] & 0xc7) != 0x05) { errorOrWarn(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used " "in leaq x@tlsdesc(%rip), %REG"); return; } loc[-2] = 0x8b; write32le(loc, val); } else { // Convert call *x@tlsdesc(%rax) to xchg ax, ax. assert(rel.type == R_X86_64_TLSDESC_CALL); loc[0] = 0x66; loc[1] = 0x90; } } // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to // R_X86_64_TPOFF32 so that it does not use GOT. static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) { uint8_t *inst = loc - 3; uint8_t reg = loc[-1] >> 3; uint8_t *regSlot = loc - 1; // Note that ADD with RSP or R12 is converted to ADD instead of LEA // because LEA with these registers needs 4 bytes to encode and thus // wouldn't fit the space. if (memcmp(inst, "\x48\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" memcpy(inst, "\x48\x81\xc4", 3); } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" memcpy(inst, "\x49\x81\xc4", 3); } else if (memcmp(inst, "\x4c\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" memcpy(inst, "\x4d\x8d", 2); *regSlot = 0x80 | (reg << 3) | reg; } else if (memcmp(inst, "\x48\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" memcpy(inst, "\x48\x8d", 2); *regSlot = 0x80 | (reg << 3) | reg; } else if (memcmp(inst, "\x4c\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" memcpy(inst, "\x49\xc7", 2); *regSlot = 0xc0 | reg; } else if (memcmp(inst, "\x48\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" memcpy(inst, "\x48\xc7", 2); *regSlot = 0xc0 | reg; } else { error(getErrorLocation(loc - 3) + "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); } // The original code used a PC relative relocation. // Need to compensate for the -4 it had in the addend. write32le(loc, val + 4); } static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { const uint8_t inst[] = { 0x66, 0x66, // .word 0x6666 0x66, // .byte 0x66 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax }; if (loc[4] == 0xe8) { // Convert // leaq bar@tlsld(%rip), %rdi # 48 8d 3d // callq __tls_get_addr@PLT # e8 // leaq bar@dtpoff(%rax), %rcx // to // .word 0x6666 // .byte 0x66 // mov %fs:0,%rax // leaq bar@tpoff(%rax), %rcx memcpy(loc - 3, inst, sizeof(inst)); return; } if (loc[4] == 0xff && loc[5] == 0x15) { // Convert // leaq x@tlsld(%rip),%rdi # 48 8d 3d // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 // to // .long 0x66666666 // movq %fs:0,%rax // See "Table 11.9: LD -> LE Code Transition (LP64)" in // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf loc[-3] = 0x66; memcpy(loc - 2, inst, sizeof(inst)); return; } error(getErrorLocation(loc - 3) + "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD"); } // A JumpInstrMod at a specific offset indicates that the jump instruction // opcode at that offset must be modified. This is specifically used to relax // jump instructions with basic block sections. This function looks at the // JumpMod and effects the change. void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, unsigned size) const { switch (type) { case J_JMP_32: if (size == 4) *loc = 0xe9; else *loc = 0xeb; break; case J_JE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x84; } else *loc = 0x74; break; case J_JNE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x85; } else *loc = 0x75; break; case J_JG_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x8f; } else *loc = 0x7f; break; case J_JGE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x8d; } else *loc = 0x7d; break; case J_JB_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x82; } else *loc = 0x72; break; case J_JBE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x86; } else *loc = 0x76; break; case J_JL_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x8c; } else *loc = 0x7c; break; case J_JLE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x8e; } else *loc = 0x7e; break; case J_JA_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x87; } else *loc = 0x77; break; case J_JAE_32: if (size == 4) { loc[-1] = 0x0f; *loc = 0x83; } else *loc = 0x73; break; case J_UNKNOWN: llvm_unreachable("Unknown Jump Relocation"); } } int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { switch (type) { case R_X86_64_8: case R_X86_64_PC8: return SignExtend64<8>(*buf); case R_X86_64_16: case R_X86_64_PC16: return SignExtend64<16>(read16le(buf)); case R_X86_64_32: case R_X86_64_32S: case R_X86_64_TPOFF32: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPC32_TLSDESC: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PC32: case R_X86_64_GOTTPOFF: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_DTPOFF32: case R_X86_64_SIZE32: return SignExtend64<32>(read32le(buf)); case R_X86_64_64: case R_X86_64_TPOFF64: case R_X86_64_DTPOFF64: case R_X86_64_DTPMOD64: case R_X86_64_PC64: case R_X86_64_SIZE64: case R_X86_64_GLOB_DAT: case R_X86_64_GOT64: case R_X86_64_GOTOFF64: case R_X86_64_GOTPC64: case R_X86_64_PLTOFF64: case R_X86_64_IRELATIVE: case R_X86_64_RELATIVE: return read64le(buf); case R_X86_64_TLSDESC: return read64le(buf + 8); case R_X86_64_JUMP_SLOT: case R_X86_64_NONE: // These relocations are defined as not having an implicit addend. return 0; default: internalLinkerError(getErrorLocation(buf), "cannot read addend for relocation " + toString(type)); return 0; } } static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { switch (rel.type) { case R_X86_64_8: checkIntUInt(loc, val, 8, rel); *loc = val; break; case R_X86_64_PC8: checkInt(loc, val, 8, rel); *loc = val; break; case R_X86_64_16: checkIntUInt(loc, val, 16, rel); write16le(loc, val); break; case R_X86_64_PC16: checkInt(loc, val, 16, rel); write16le(loc, val); break; case R_X86_64_32: checkUInt(loc, val, 32, rel); write32le(loc, val); break; case R_X86_64_32S: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPCREL: case R_X86_64_PC32: case R_X86_64_PLT32: case R_X86_64_DTPOFF32: case R_X86_64_SIZE32: checkInt(loc, val, 32, rel); write32le(loc, val); break; case R_X86_64_64: case R_X86_64_TPOFF64: case R_X86_64_DTPOFF64: case R_X86_64_PC64: case R_X86_64_SIZE64: case R_X86_64_GOT64: case R_X86_64_GOTOFF64: case R_X86_64_GOTPC64: case R_X86_64_PLTOFF64: write64le(loc, val); break; case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: if (rel.expr != R_GOT_PC) { relaxGot(loc, rel, val); } else { checkInt(loc, val, 32, rel); write32le(loc, val); } break; case R_X86_64_GOTPC32_TLSDESC: case R_X86_64_TLSDESC_CALL: case R_X86_64_TLSGD: if (rel.expr == R_RELAX_TLS_GD_TO_LE) { relaxTlsGdToLe(loc, rel, val); } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { relaxTlsGdToIe(loc, rel, val); } else { checkInt(loc, val, 32, rel); write32le(loc, val); } break; case R_X86_64_TLSLD: if (rel.expr == R_RELAX_TLS_LD_TO_LE) { relaxTlsLdToLe(loc, rel, val); } else { checkInt(loc, val, 32, rel); write32le(loc, val); } break; case R_X86_64_GOTTPOFF: if (rel.expr == R_RELAX_TLS_IE_TO_LE) { relaxTlsIeToLe(loc, rel, val); } else { checkInt(loc, val, 32, rel); write32le(loc, val); } break; case R_X86_64_TPOFF32: checkInt(loc, val, 32, rel); write32le(loc, val); break; case R_X86_64_TLSDESC: // The addend is stored in the second 64-bit word. write64le(loc + 8, val); break; default: llvm_unreachable("unknown relocation"); } } RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *loc) const { // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX // with addend != -4. Such an instruction does not load the full GOT entry, so // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax // (addend=0) loads the high 32 bits of the GOT entry. if (!config->relax || addend != -4 || (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)) return R_GOT_PC; const uint8_t op = loc[-2]; const uint8_t modRm = loc[-1]; // FIXME: When PIC is disabled and foo is defined locally in the // lower 32 bit address space, memory operand in mov can be converted into // immediate operand. Otherwise, mov must be changed to lea. We support only // latter relaxation at this moment. if (op == 0x8b) return R_RELAX_GOT_PC; // Relax call and jmp. if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) return R_RELAX_GOT_PC; // We don't support test/binop instructions without a REX prefix. if (type == R_X86_64_GOTPCRELX) return R_GOT_PC; // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. // If PIC then no relaxation is available. return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; } // A subset of relaxations can only be applied for no-PIC. This method // handles such relaxations. Instructions encoding information was taken from: // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, uint8_t modRm) { const uint8_t rex = loc[-3]; // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". if (op == 0x85) { // See "TEST-Logical Compare" (4-428 Vol. 2B), // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). // ModR/M byte has form XX YYY ZZZ, where // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). // XX has different meanings: // 00: The operand's memory address is in reg1. // 01: The operand's memory address is reg1 + a byte-sized displacement. // 10: The operand's memory address is reg1 + a word-sized displacement. // 11: The operand is reg1 itself. // If an instruction requires only one operand, the unused reg2 field // holds extra opcode bits rather than a register code // 0xC0 == 11 000 000 binary. // 0x38 == 00 111 000 binary. // We transfer reg2 to reg1 here as operand. // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 // See "TEST-Logical Compare" (4-428 Vol. 2B). loc[-2] = 0xf7; // Move R bit to the B bit in REX byte. // REX byte is encoded as 0100WRXB, where // 0100 is 4bit fixed pattern. // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the // default operand size is used (which is 32-bit for most but not all // instructions). // REX.R This 1-bit value is an extension to the MODRM.reg field. // REX.X This 1-bit value is an extension to the SIB.index field. // REX.B This 1-bit value is an extension to the MODRM.rm field or the // SIB.base field. // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; write32le(loc, val); return; } // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub // or xor operations. // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". // Logic is close to one for test instruction above, but we also // write opcode extension here, see below for details. loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. // Primary opcode is 0x81, opcode extension is one of: // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. // This value was wrote to MODRM.reg in a line above. // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for // descriptions about each operation. loc[-2] = 0x81; loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; write32le(loc, val); } static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { assert(isInt<32>(val) && "GOTPCRELX should not have been relaxed if it overflows"); const uint8_t op = loc[-2]; const uint8_t modRm = loc[-1]; // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". if (op == 0x8b) { loc[-2] = 0x8d; write32le(loc, val); return; } if (op != 0xff) { // We are relaxing a rip relative to an absolute, so compensate // for the old -4 addend. assert(!config->isPic); relaxGotNoPic(loc, val + 4, op, modRm); return; } // Convert call/jmp instructions. if (modRm == 0x15) { // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". // Instead we convert to "addr32 call foo" where addr32 is an instruction // prefix. That makes result expression to be a single instruction. loc[-2] = 0x67; // addr32 prefix loc[-1] = 0xe8; // call write32le(loc, val); return; } // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". // jmp doesn't return, so it is fine to use nop here, it is just a stub. assert(modRm == 0x25); loc[-2] = 0xe9; // jmp loc[3] = 0x90; // nop write32le(loc - 1, val + 1); } // A split-stack prologue starts by checking the amount of stack remaining // in one of two ways: // A) Comparing of the stack pointer to a field in the tcb. // B) Or a load of a stack pointer offset with an lea to r10 or r11. bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const { if (!config->is64) { error("target doesn't support split stacks"); return false; } if (loc + 8 >= end) return false; // Replace "cmp %fs:0x70,%rsp" and subsequent branch // with "stc, nopl 0x0(%rax,%rax,1)" if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) { memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); return true; } // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could // be r10 or r11. The lea instruction feeds a subsequent compare which checks // if there is X available stack space. Making X larger effectively reserves // that much additional space. The stack grows downward so subtract the value. if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 || memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) { // The offset bytes are encoded four bytes after the start of the // instruction. write32le(loc + 4, read32le(loc + 4) - 0x4000); return true; } return false; } void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { uint64_t secAddr = sec.getOutputSection()->addr; if (auto *s = dyn_cast(&sec)) secAddr += s->outSecOff; else if (auto *ehIn = dyn_cast(&sec)) secAddr += ehIn->getParent()->outSecOff; for (const Relocation &rel : sec.relocs()) { if (rel.expr == R_NONE) // See deleteFallThruJmpInsn continue; uint8_t *loc = buf + rel.offset; const uint64_t val = sec.getRelocTargetVA(sec.file, rel.type, rel.addend, secAddr + rel.offset, *rel.sym, rel.expr); relocate(loc, rel, val); } if (sec.jumpInstrMod) { applyJumpInstrMod(buf + sec.jumpInstrMod->offset, sec.jumpInstrMod->original, sec.jumpInstrMod->size); } } // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT // entries containing endbr64 instructions. A PLT entry will be split into two // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). namespace { class IntelIBT : public X86_64 { public: IntelIBT(); void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; static const unsigned IBTPltHeaderSize = 16; }; } // namespace IntelIBT::IntelIBT() { pltHeaderSize = 0; } void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { uint64_t va = in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize; write64le(buf, va); } void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t Inst[] = { 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop }; memcpy(buf, Inst, sizeof(Inst)); write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10); } void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { writePltHeader(buf); buf += IBTPltHeaderSize; const uint8_t inst[] = { 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 0x68, 0, 0, 0, 0, // pushq 0xe9, 0, 0, 0, 0, // jmpq plt[0] 0x66, 0x90, // nop }; for (size_t i = 0; i < numEntries; ++i) { memcpy(buf, inst, sizeof(inst)); write32le(buf + 5, i); write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30); buf += sizeof(inst); } } // These nonstandard PLT entries are to migtigate Spectre v2 security // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT // entries, we use a CALL followed by MOV and RET to do the same thing as an // indirect jump. That instruction sequence is so-called "retpoline". // // We have two types of retpoline PLTs as a size optimization. If `-z now` // is specified, all dynamic symbols are resolved at load-time. Thus, when // that option is given, we can omit code for symbol lazy resolution. namespace { class Retpoline : public X86_64 { public: Retpoline(); void writeGotPlt(uint8_t *buf, const Symbol &s) const override; void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; }; class RetpolineZNow : public X86_64 { public: RetpolineZNow(); void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} void writePltHeader(uint8_t *buf) const override; void writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const override; }; } // namespace Retpoline::Retpoline() { pltHeaderSize = 48; pltEntrySize = 32; ipltEntrySize = 32; } void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { write64le(buf, s.getPltVA() + 17); } void Retpoline::writePltHeader(uint8_t *buf) const { const uint8_t insn[] = { 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next 0xf3, 0x90, // 12: loop: pause 0x0f, 0xae, 0xe8, // 14: lfence 0xeb, 0xf9, // 17: jmp loop 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) 0xc3, // 24: ret 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding }; memcpy(buf, insn, sizeof(insn)); uint64_t gotPlt = in.gotPlt->getVA(); uint64_t plt = in.plt->getVA(); write32le(buf + 2, gotPlt - plt - 6 + 8); write32le(buf + 9, gotPlt - plt - 13 + 16); } void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t insn[] = { 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 0x68, 0, 0, 0, 0, // 11: pushq 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding }; memcpy(buf, insn, sizeof(insn)); uint64_t off = pltEntryAddr - in.plt->getVA(); write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); write32le(buf + 8, -off - 12 + 32); write32le(buf + 13, -off - 17 + 18); write32le(buf + 18, sym.getPltIdx()); write32le(buf + 23, -off - 27); } RetpolineZNow::RetpolineZNow() { pltHeaderSize = 32; pltEntrySize = 16; ipltEntrySize = 16; } void RetpolineZNow::writePltHeader(uint8_t *buf) const { const uint8_t insn[] = { 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next 0xf3, 0x90, // 5: loop: pause 0x0f, 0xae, 0xe8, // 7: lfence 0xeb, 0xf9, // a: jmp loop 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) 0xc3, // 14: ret 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding 0xcc, // 1f: int3; padding }; memcpy(buf, insn, sizeof(insn)); } void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, uint64_t pltEntryAddr) const { const uint8_t insn[] = { 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 0xe9, 0, 0, 0, 0, // jmp plt+0 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding }; memcpy(buf, insn, sizeof(insn)); write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12); } static TargetInfo *getTargetInfo() { if (config->zRetpolineplt) { if (config->zNow) { static RetpolineZNow t; return &t; } static Retpoline t; return &t; } if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { static IntelIBT t; return &t; } static X86_64 t; return &t; } TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }