//===-- tsd_shared.h --------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef SCUDO_TSD_SHARED_H_ #define SCUDO_TSD_SHARED_H_ #include "tsd.h" #include "string_utils.h" #if SCUDO_HAS_PLATFORM_TLS_SLOT // This is a platform-provided header that needs to be on the include path when // Scudo is compiled. It must declare a function with the prototype: // uintptr_t *getPlatformAllocatorTlsSlot() // that returns the address of a thread-local word of storage reserved for // Scudo, that must be zero-initialized in newly created threads. #include "scudo_platform_tls_slot.h" #endif namespace scudo { template struct TSDRegistrySharedT { void init(Allocator *Instance) REQUIRES(Mutex) { DCHECK(!Initialized); Instance->init(); for (u32 I = 0; I < TSDsArraySize; I++) TSDs[I].init(Instance); const u32 NumberOfCPUs = getNumberOfCPUs(); setNumberOfTSDs((NumberOfCPUs == 0) ? DefaultTSDCount : Min(NumberOfCPUs, DefaultTSDCount)); Initialized = true; } void initOnceMaybe(Allocator *Instance) EXCLUDES(Mutex) { ScopedLock L(Mutex); if (LIKELY(Initialized)) return; init(Instance); // Sets Initialized. } void unmapTestOnly(Allocator *Instance) EXCLUDES(Mutex) { for (u32 I = 0; I < TSDsArraySize; I++) { TSDs[I].commitBack(Instance); TSDs[I] = {}; } setCurrentTSD(nullptr); ScopedLock L(Mutex); Initialized = false; } void drainCaches(Allocator *Instance) { ScopedLock L(MutexTSDs); for (uptr I = 0; I < NumberOfTSDs; ++I) { TSDs[I].lock(); Instance->drainCache(&TSDs[I]); TSDs[I].unlock(); } } ALWAYS_INLINE void initThreadMaybe(Allocator *Instance, UNUSED bool MinimalInit) { if (LIKELY(getCurrentTSD())) return; initThread(Instance); } // TSDs is an array of locks and which is not supported for marking // thread-safety capability. ALWAYS_INLINE TSD * getTSDAndLock(bool *UnlockRequired) NO_THREAD_SAFETY_ANALYSIS { TSD *TSD = getCurrentTSD(); DCHECK(TSD); *UnlockRequired = true; // Try to lock the currently associated context. if (TSD->tryLock()) return TSD; // If that fails, go down the slow path. if (TSDsArraySize == 1U) { // Only 1 TSD, not need to go any further. // The compiler will optimize this one way or the other. TSD->lock(); return TSD; } return getTSDAndLockSlow(TSD); } void disable() NO_THREAD_SAFETY_ANALYSIS { Mutex.lock(); for (u32 I = 0; I < TSDsArraySize; I++) TSDs[I].lock(); } void enable() NO_THREAD_SAFETY_ANALYSIS { for (s32 I = static_cast(TSDsArraySize - 1); I >= 0; I--) TSDs[I].unlock(); Mutex.unlock(); } bool setOption(Option O, sptr Value) { if (O == Option::MaxTSDsCount) return setNumberOfTSDs(static_cast(Value)); if (O == Option::ThreadDisableMemInit) setDisableMemInit(Value); // Not supported by the TSD Registry, but not an error either. return true; } bool getDisableMemInit() const { return *getTlsPtr() & 1; } void getStats(ScopedString *Str) EXCLUDES(MutexTSDs) { ScopedLock L(MutexTSDs); Str->append("Stats: SharedTSDs: %u available; total %u\n", NumberOfTSDs, TSDsArraySize); for (uptr I = 0; I < NumberOfTSDs; ++I) { TSDs[I].lock(); // Theoretically, we want to mark TSD::lock()/TSD::unlock() with proper // thread annotations. However, given the TSD is only locked on shared // path, do the assertion in a separate path to avoid confusing the // analyzer. TSDs[I].assertLocked(/*BypassCheck=*/true); Str->append(" Shared TSD[%zu]:\n", I); TSDs[I].getCache().getStats(Str); TSDs[I].unlock(); } } private: ALWAYS_INLINE uptr *getTlsPtr() const { #if SCUDO_HAS_PLATFORM_TLS_SLOT return reinterpret_cast(getPlatformAllocatorTlsSlot()); #else static thread_local uptr ThreadTSD; return &ThreadTSD; #endif } static_assert(alignof(TSD) >= 2, ""); ALWAYS_INLINE void setCurrentTSD(TSD *CurrentTSD) { *getTlsPtr() &= 1; *getTlsPtr() |= reinterpret_cast(CurrentTSD); } ALWAYS_INLINE TSD *getCurrentTSD() { return reinterpret_cast *>(*getTlsPtr() & ~1ULL); } bool setNumberOfTSDs(u32 N) EXCLUDES(MutexTSDs) { ScopedLock L(MutexTSDs); if (N < NumberOfTSDs) return false; if (N > TSDsArraySize) N = TSDsArraySize; NumberOfTSDs = N; NumberOfCoPrimes = 0; // Compute all the coprimes of NumberOfTSDs. This will be used to walk the // array of TSDs in a random order. For details, see: // https://lemire.me/blog/2017/09/18/visiting-all-values-in-an-array-exactly-once-in-random-order/ for (u32 I = 0; I < N; I++) { u32 A = I + 1; u32 B = N; // Find the GCD between I + 1 and N. If 1, they are coprimes. while (B != 0) { const u32 T = A; A = B; B = T % B; } if (A == 1) CoPrimes[NumberOfCoPrimes++] = I + 1; } return true; } void setDisableMemInit(bool B) { *getTlsPtr() &= ~1ULL; *getTlsPtr() |= B; } NOINLINE void initThread(Allocator *Instance) NO_THREAD_SAFETY_ANALYSIS { initOnceMaybe(Instance); // Initial context assignment is done in a plain round-robin fashion. const u32 Index = atomic_fetch_add(&CurrentIndex, 1U, memory_order_relaxed); setCurrentTSD(&TSDs[Index % NumberOfTSDs]); Instance->callPostInitCallback(); } // TSDs is an array of locks which is not supported for marking thread-safety // capability. NOINLINE TSD *getTSDAndLockSlow(TSD *CurrentTSD) EXCLUDES(MutexTSDs) { // Use the Precedence of the current TSD as our random seed. Since we are // in the slow path, it means that tryLock failed, and as a result it's // very likely that said Precedence is non-zero. const u32 R = static_cast(CurrentTSD->getPrecedence()); u32 N, Inc; { ScopedLock L(MutexTSDs); N = NumberOfTSDs; DCHECK_NE(NumberOfCoPrimes, 0U); Inc = CoPrimes[R % NumberOfCoPrimes]; } if (N > 1U) { u32 Index = R % N; uptr LowestPrecedence = UINTPTR_MAX; TSD *CandidateTSD = nullptr; // Go randomly through at most 4 contexts and find a candidate. for (u32 I = 0; I < Min(4U, N); I++) { if (TSDs[Index].tryLock()) { setCurrentTSD(&TSDs[Index]); return &TSDs[Index]; } const uptr Precedence = TSDs[Index].getPrecedence(); // A 0 precedence here means another thread just locked this TSD. if (Precedence && Precedence < LowestPrecedence) { CandidateTSD = &TSDs[Index]; LowestPrecedence = Precedence; } Index += Inc; if (Index >= N) Index -= N; } if (CandidateTSD) { CandidateTSD->lock(); setCurrentTSD(CandidateTSD); return CandidateTSD; } } // Last resort, stick with the current one. CurrentTSD->lock(); return CurrentTSD; } atomic_u32 CurrentIndex = {}; u32 NumberOfTSDs GUARDED_BY(MutexTSDs) = 0; u32 NumberOfCoPrimes GUARDED_BY(MutexTSDs) = 0; u32 CoPrimes[TSDsArraySize] GUARDED_BY(MutexTSDs) = {}; bool Initialized GUARDED_BY(Mutex) = false; HybridMutex Mutex; HybridMutex MutexTSDs; TSD TSDs[TSDsArraySize]; }; } // namespace scudo #endif // SCUDO_TSD_SHARED_H_