/* * Single-precision vector exp(x) - 1 function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "poly_advsimd_f32.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { float32x4_t poly[5]; float32x4_t invln2_and_ln2; float32x4_t shift; int32x4_t exponent_bias; #if WANT_SIMD_EXCEPT uint32x4_t thresh; #else float32x4_t oflow_bound; #endif } data = { /* Generated using fpminimax with degree=5 in [-log(2)/2, log(2)/2]. */ .poly = { V4 (0x1.fffffep-2), V4 (0x1.5554aep-3), V4 (0x1.555736p-5), V4 (0x1.12287cp-7), V4 (0x1.6b55a2p-10) }, /* Stores constants: invln2, ln2_hi, ln2_lo, 0. */ .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 }, .shift = V4 (0x1.8p23f), .exponent_bias = V4 (0x3f800000), #if !WANT_SIMD_EXCEPT /* Value above which expm1f(x) should overflow. Absolute value of the underflow bound is greater than this, so it catches both cases - there is a small window where fallbacks are triggered unnecessarily. */ .oflow_bound = V4 (0x1.5ebc4p+6), #else /* asuint(oflow_bound) - asuint(0x1p-23), shifted left by 1 for absolute compare. */ .thresh = V4 (0x1d5ebc40), #endif }; /* asuint(0x1p-23), shifted by 1 for abs compare. */ #define TinyBound v_u32 (0x34000000 << 1) static float32x4_t VPCS_ATTR NOINLINE special_case (float32x4_t x, float32x4_t y, uint32x4_t special) { return v_call_f32 (expm1f, x, y, special); } /* Single-precision vector exp(x) - 1 function. The maximum error is 1.51 ULP: _ZGVnN4v_expm1f (0x1.8baa96p-2) got 0x1.e2fb9p-2 want 0x1.e2fb94p-2. */ float32x4_t VPCS_ATTR V_NAME_F1 (expm1) (float32x4_t x) { const struct data *d = ptr_barrier (&data); uint32x4_t ix = vreinterpretq_u32_f32 (x); #if WANT_SIMD_EXCEPT /* If fp exceptions are to be triggered correctly, fall back to scalar for |x| < 2^-23, |x| > oflow_bound, Inf & NaN. Add ix to itself for shift-left by 1, and compare with thresh which was left-shifted offline - this is effectively an absolute compare. */ uint32x4_t special = vcgeq_u32 (vsubq_u32 (vaddq_u32 (ix, ix), TinyBound), d->thresh); if (unlikely (v_any_u32 (special))) x = v_zerofy_f32 (x, special); #else /* Handles very large values (+ve and -ve), +/-NaN, +/-Inf. */ uint32x4_t special = vcagtq_f32 (x, d->oflow_bound); #endif /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ float32x4_t j = vsubq_f32 ( vfmaq_laneq_f32 (d->shift, x, d->invln2_and_ln2, 0), d->shift); int32x4_t i = vcvtq_s32_f32 (j); float32x4_t f = vfmsq_laneq_f32 (x, j, d->invln2_and_ln2, 1); f = vfmsq_laneq_f32 (f, j, d->invln2_and_ln2, 2); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ float32x4_t p = v_horner_4_f32 (f, d->poly); p = vfmaq_f32 (f, vmulq_f32 (f, f), p); /* Assemble the result. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^i. */ int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias); float32x4_t t = vreinterpretq_f32_s32 (u); if (unlikely (v_any_u32 (special))) return special_case (vreinterpretq_f32_u32 (ix), vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t), special); /* expm1(x) ~= p * t + (t - 1). */ return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t); } PL_SIG (V, F, 1, expm1, -9.9, 9.9) PL_TEST_ULP (V_NAME_F1 (expm1), 1.02) PL_TEST_EXPECT_FENV (V_NAME_F1 (expm1), WANT_SIMD_EXCEPT) PL_TEST_SYM_INTERVAL (V_NAME_F1 (expm1), 0, 0x1p-23, 1000) PL_TEST_INTERVAL (V_NAME_F1 (expm1), -0x1p-23, 0x1.5ebc4p+6, 1000000) PL_TEST_INTERVAL (V_NAME_F1 (expm1), -0x1p-23, -0x1.9bbabcp+6, 1000000) PL_TEST_INTERVAL (V_NAME_F1 (expm1), 0x1.5ebc4p+6, inf, 1000) PL_TEST_INTERVAL (V_NAME_F1 (expm1), -0x1.9bbabcp+6, -inf, 1000)