//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes support the generation of LLVM IR for cleanups. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGCLEANUP_H #define CLANG_CODEGEN_CGCLEANUP_H /// EHScopeStack is defined in CodeGenFunction.h, but its /// implementation is in this file and in CGCleanup.cpp. #include "CodeGenFunction.h" namespace llvm { class Value; class BasicBlock; } namespace clang { namespace CodeGen { /// A protected scope for zero-cost EH handling. class EHScope { llvm::BasicBlock *CachedLandingPad; unsigned K : 2; protected: enum { BitsRemaining = 30 }; public: enum Kind { Cleanup, Catch, Terminate, Filter }; EHScope(Kind K) : CachedLandingPad(0), K(K) {} Kind getKind() const { return static_cast(K); } llvm::BasicBlock *getCachedLandingPad() const { return CachedLandingPad; } void setCachedLandingPad(llvm::BasicBlock *Block) { CachedLandingPad = Block; } }; /// A scope which attempts to handle some, possibly all, types of /// exceptions. /// /// Objective C @finally blocks are represented using a cleanup scope /// after the catch scope. class EHCatchScope : public EHScope { unsigned NumHandlers : BitsRemaining; // In effect, we have a flexible array member // Handler Handlers[0]; // But that's only standard in C99, not C++, so we have to do // annoying pointer arithmetic instead. public: struct Handler { /// A type info value, or null (C++ null, not an LLVM null pointer) /// for a catch-all. llvm::Value *Type; /// The catch handler for this type. llvm::BasicBlock *Block; /// The unwind destination index for this handler. unsigned Index; }; private: friend class EHScopeStack; Handler *getHandlers() { return reinterpret_cast(this+1); } const Handler *getHandlers() const { return reinterpret_cast(this+1); } public: static size_t getSizeForNumHandlers(unsigned N) { return sizeof(EHCatchScope) + N * sizeof(Handler); } EHCatchScope(unsigned NumHandlers) : EHScope(Catch), NumHandlers(NumHandlers) { } unsigned getNumHandlers() const { return NumHandlers; } void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) { setHandler(I, /*catchall*/ 0, Block); } void setHandler(unsigned I, llvm::Value *Type, llvm::BasicBlock *Block) { assert(I < getNumHandlers()); getHandlers()[I].Type = Type; getHandlers()[I].Block = Block; } const Handler &getHandler(unsigned I) const { assert(I < getNumHandlers()); return getHandlers()[I]; } typedef const Handler *iterator; iterator begin() const { return getHandlers(); } iterator end() const { return getHandlers() + getNumHandlers(); } static bool classof(const EHScope *Scope) { return Scope->getKind() == Catch; } }; /// A cleanup scope which generates the cleanup blocks lazily. class EHCleanupScope : public EHScope { /// Whether this cleanup needs to be run along normal edges. bool IsNormalCleanup : 1; /// Whether this cleanup needs to be run along exception edges. bool IsEHCleanup : 1; /// Whether this cleanup is currently active. bool IsActive : 1; /// Whether the normal cleanup should test the activation flag. bool TestFlagInNormalCleanup : 1; /// Whether the EH cleanup should test the activation flag. bool TestFlagInEHCleanup : 1; /// The amount of extra storage needed by the Cleanup. /// Always a multiple of the scope-stack alignment. unsigned CleanupSize : 12; /// The number of fixups required by enclosing scopes (not including /// this one). If this is the top cleanup scope, all the fixups /// from this index onwards belong to this scope. unsigned FixupDepth : BitsRemaining - 17; // currently 13 /// The nearest normal cleanup scope enclosing this one. EHScopeStack::stable_iterator EnclosingNormal; /// The nearest EH cleanup scope enclosing this one. EHScopeStack::stable_iterator EnclosingEH; /// The dual entry/exit block along the normal edge. This is lazily /// created if needed before the cleanup is popped. llvm::BasicBlock *NormalBlock; /// The dual entry/exit block along the EH edge. This is lazily /// created if needed before the cleanup is popped. llvm::BasicBlock *EHBlock; /// An optional i1 variable indicating whether this cleanup has been /// activated yet. llvm::AllocaInst *ActiveFlag; /// Extra information required for cleanups that have resolved /// branches through them. This has to be allocated on the side /// because everything on the cleanup stack has be trivially /// movable. struct ExtInfo { /// The destinations of normal branch-afters and branch-throughs. llvm::SmallPtrSet Branches; /// Normal branch-afters. llvm::SmallVector, 4> BranchAfters; /// The destinations of EH branch-afters and branch-throughs. /// TODO: optimize for the extremely common case of a single /// branch-through. llvm::SmallPtrSet EHBranches; /// EH branch-afters. llvm::SmallVector, 4> EHBranchAfters; }; mutable struct ExtInfo *ExtInfo; struct ExtInfo &getExtInfo() { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } const struct ExtInfo &getExtInfo() const { if (!ExtInfo) ExtInfo = new struct ExtInfo(); return *ExtInfo; } public: /// Gets the size required for a lazy cleanup scope with the given /// cleanup-data requirements. static size_t getSizeForCleanupSize(size_t Size) { return sizeof(EHCleanupScope) + Size; } size_t getAllocatedSize() const { return sizeof(EHCleanupScope) + CleanupSize; } EHCleanupScope(bool IsNormal, bool IsEH, bool IsActive, unsigned CleanupSize, unsigned FixupDepth, EHScopeStack::stable_iterator EnclosingNormal, EHScopeStack::stable_iterator EnclosingEH) : EHScope(EHScope::Cleanup), IsNormalCleanup(IsNormal), IsEHCleanup(IsEH), IsActive(IsActive), TestFlagInNormalCleanup(false), TestFlagInEHCleanup(false), CleanupSize(CleanupSize), FixupDepth(FixupDepth), EnclosingNormal(EnclosingNormal), EnclosingEH(EnclosingEH), NormalBlock(0), EHBlock(0), ActiveFlag(0), ExtInfo(0) { assert(this->CleanupSize == CleanupSize && "cleanup size overflow"); } ~EHCleanupScope() { delete ExtInfo; } bool isNormalCleanup() const { return IsNormalCleanup; } llvm::BasicBlock *getNormalBlock() const { return NormalBlock; } void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; } bool isEHCleanup() const { return IsEHCleanup; } llvm::BasicBlock *getEHBlock() const { return EHBlock; } void setEHBlock(llvm::BasicBlock *BB) { EHBlock = BB; } bool isActive() const { return IsActive; } void setActive(bool A) { IsActive = A; } llvm::AllocaInst *getActiveFlag() const { return ActiveFlag; } void setActiveFlag(llvm::AllocaInst *Var) { ActiveFlag = Var; } void setTestFlagInNormalCleanup() { TestFlagInNormalCleanup = true; } bool shouldTestFlagInNormalCleanup() const { return TestFlagInNormalCleanup; } void setTestFlagInEHCleanup() { TestFlagInEHCleanup = true; } bool shouldTestFlagInEHCleanup() const { return TestFlagInEHCleanup; } unsigned getFixupDepth() const { return FixupDepth; } EHScopeStack::stable_iterator getEnclosingNormalCleanup() const { return EnclosingNormal; } EHScopeStack::stable_iterator getEnclosingEHCleanup() const { return EnclosingEH; } size_t getCleanupSize() const { return CleanupSize; } void *getCleanupBuffer() { return this + 1; } EHScopeStack::Cleanup *getCleanup() { return reinterpret_cast(getCleanupBuffer()); } /// True if this cleanup scope has any branch-afters or branch-throughs. bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); } /// Add a branch-after to this cleanup scope. A branch-after is a /// branch from a point protected by this (normal) cleanup to a /// point in the normal cleanup scope immediately containing it. /// For example, /// for (;;) { A a; break; } /// contains a branch-after. /// /// Branch-afters each have their own destination out of the /// cleanup, guaranteed distinct from anything else threaded through /// it. Therefore branch-afters usually force a switch after the /// cleanup. void addBranchAfter(llvm::ConstantInt *Index, llvm::BasicBlock *Block) { struct ExtInfo &ExtInfo = getExtInfo(); if (ExtInfo.Branches.insert(Block)) ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index)); } /// Return the number of unique branch-afters on this scope. unsigned getNumBranchAfters() const { return ExtInfo ? ExtInfo->BranchAfters.size() : 0; } llvm::BasicBlock *getBranchAfterBlock(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].first; } llvm::ConstantInt *getBranchAfterIndex(unsigned I) const { assert(I < getNumBranchAfters()); return ExtInfo->BranchAfters[I].second; } /// Add a branch-through to this cleanup scope. A branch-through is /// a branch from a scope protected by this (normal) cleanup to an /// enclosing scope other than the immediately-enclosing normal /// cleanup scope. /// /// In the following example, the branch through B's scope is a /// branch-through, while the branch through A's scope is a /// branch-after: /// for (;;) { A a; B b; break; } /// /// All branch-throughs have a common destination out of the /// cleanup, one possibly shared with the fall-through. Therefore /// branch-throughs usually don't force a switch after the cleanup. /// /// \return true if the branch-through was new to this scope bool addBranchThrough(llvm::BasicBlock *Block) { return getExtInfo().Branches.insert(Block); } /// Determines if this cleanup scope has any branch throughs. bool hasBranchThroughs() const { if (!ExtInfo) return false; return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size()); } // Same stuff, only for EH branches instead of normal branches. // It's quite possible that we could find a better representation // for this. bool hasEHBranches() const { return ExtInfo && !ExtInfo->EHBranches.empty(); } void addEHBranchAfter(llvm::ConstantInt *Index, llvm::BasicBlock *Block) { struct ExtInfo &ExtInfo = getExtInfo(); if (ExtInfo.EHBranches.insert(Block)) ExtInfo.EHBranchAfters.push_back(std::make_pair(Block, Index)); } unsigned getNumEHBranchAfters() const { return ExtInfo ? ExtInfo->EHBranchAfters.size() : 0; } llvm::BasicBlock *getEHBranchAfterBlock(unsigned I) const { assert(I < getNumEHBranchAfters()); return ExtInfo->EHBranchAfters[I].first; } llvm::ConstantInt *getEHBranchAfterIndex(unsigned I) const { assert(I < getNumEHBranchAfters()); return ExtInfo->EHBranchAfters[I].second; } bool addEHBranchThrough(llvm::BasicBlock *Block) { return getExtInfo().EHBranches.insert(Block); } bool hasEHBranchThroughs() const { if (!ExtInfo) return false; return (ExtInfo->EHBranchAfters.size() != ExtInfo->EHBranches.size()); } static bool classof(const EHScope *Scope) { return (Scope->getKind() == Cleanup); } }; /// An exceptions scope which filters exceptions thrown through it. /// Only exceptions matching the filter types will be permitted to be /// thrown. /// /// This is used to implement C++ exception specifications. class EHFilterScope : public EHScope { unsigned NumFilters : BitsRemaining; // Essentially ends in a flexible array member: // llvm::Value *FilterTypes[0]; llvm::Value **getFilters() { return reinterpret_cast(this+1); } llvm::Value * const *getFilters() const { return reinterpret_cast(this+1); } public: EHFilterScope(unsigned NumFilters) : EHScope(Filter), NumFilters(NumFilters) {} static size_t getSizeForNumFilters(unsigned NumFilters) { return sizeof(EHFilterScope) + NumFilters * sizeof(llvm::Value*); } unsigned getNumFilters() const { return NumFilters; } void setFilter(unsigned I, llvm::Value *FilterValue) { assert(I < getNumFilters()); getFilters()[I] = FilterValue; } llvm::Value *getFilter(unsigned I) const { assert(I < getNumFilters()); return getFilters()[I]; } static bool classof(const EHScope *Scope) { return Scope->getKind() == Filter; } }; /// An exceptions scope which calls std::terminate if any exception /// reaches it. class EHTerminateScope : public EHScope { unsigned DestIndex : BitsRemaining; public: EHTerminateScope(unsigned Index) : EHScope(Terminate), DestIndex(Index) {} static size_t getSize() { return sizeof(EHTerminateScope); } unsigned getDestIndex() const { return DestIndex; } static bool classof(const EHScope *Scope) { return Scope->getKind() == Terminate; } }; /// A non-stable pointer into the scope stack. class EHScopeStack::iterator { char *Ptr; friend class EHScopeStack; explicit iterator(char *Ptr) : Ptr(Ptr) {} public: iterator() : Ptr(0) {} EHScope *get() const { return reinterpret_cast(Ptr); } EHScope *operator->() const { return get(); } EHScope &operator*() const { return *get(); } iterator &operator++() { switch (get()->getKind()) { case EHScope::Catch: Ptr += EHCatchScope::getSizeForNumHandlers( static_cast(get())->getNumHandlers()); break; case EHScope::Filter: Ptr += EHFilterScope::getSizeForNumFilters( static_cast(get())->getNumFilters()); break; case EHScope::Cleanup: Ptr += static_cast(get()) ->getAllocatedSize(); break; case EHScope::Terminate: Ptr += EHTerminateScope::getSize(); break; } return *this; } iterator next() { iterator copy = *this; ++copy; return copy; } iterator operator++(int) { iterator copy = *this; operator++(); return copy; } bool encloses(iterator other) const { return Ptr >= other.Ptr; } bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; } bool operator==(iterator other) const { return Ptr == other.Ptr; } bool operator!=(iterator other) const { return Ptr != other.Ptr; } }; inline EHScopeStack::iterator EHScopeStack::begin() const { return iterator(StartOfData); } inline EHScopeStack::iterator EHScopeStack::end() const { return iterator(EndOfBuffer); } inline void EHScopeStack::popCatch() { assert(!empty() && "popping exception stack when not empty"); assert(isa(*begin())); StartOfData += EHCatchScope::getSizeForNumHandlers( cast(*begin()).getNumHandlers()); if (empty()) NextEHDestIndex = FirstEHDestIndex; assert(CatchDepth > 0 && "mismatched catch/terminate push/pop"); CatchDepth--; } inline void EHScopeStack::popTerminate() { assert(!empty() && "popping exception stack when not empty"); assert(isa(*begin())); StartOfData += EHTerminateScope::getSize(); if (empty()) NextEHDestIndex = FirstEHDestIndex; assert(CatchDepth > 0 && "mismatched catch/terminate push/pop"); CatchDepth--; } inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const { assert(sp.isValid() && "finding invalid savepoint"); assert(sp.Size <= stable_begin().Size && "finding savepoint after pop"); return iterator(EndOfBuffer - sp.Size); } inline EHScopeStack::stable_iterator EHScopeStack::stabilize(iterator ir) const { assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer); return stable_iterator(EndOfBuffer - ir.Ptr); } inline EHScopeStack::stable_iterator EHScopeStack::getInnermostActiveNormalCleanup() const { for (EHScopeStack::stable_iterator I = getInnermostNormalCleanup(), E = stable_end(); I != E; ) { EHCleanupScope &S = cast(*find(I)); if (S.isActive()) return I; I = S.getEnclosingNormalCleanup(); } return stable_end(); } inline EHScopeStack::stable_iterator EHScopeStack::getInnermostActiveEHCleanup() const { for (EHScopeStack::stable_iterator I = getInnermostEHCleanup(), E = stable_end(); I != E; ) { EHCleanupScope &S = cast(*find(I)); if (S.isActive()) return I; I = S.getEnclosingEHCleanup(); } return stable_end(); } } } #endif