//===--- CGBlocks.cpp - Emit LLVM Code for declarations -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit blocks. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CodeGenFunction.h" #include "CGObjCRuntime.h" #include "CodeGenModule.h" #include "CGBlocks.h" #include "clang/AST/DeclObjC.h" #include "llvm/Module.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Target/TargetData.h" #include using namespace clang; using namespace CodeGen; CGBlockInfo::CGBlockInfo(const BlockExpr *blockExpr, const char *N) : Name(N), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), HasCXXObject(false), StructureType(0), Block(blockExpr) { // Skip asm prefix, if any. if (Name && Name[0] == '\01') ++Name; } /// Build the given block as a global block. static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn); /// Build the helper function to copy a block. static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); } /// Build the helper function to dipose of a block. static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); } /// Build the block descriptor constant for a block. static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { ASTContext &C = CGM.getContext(); const llvm::Type *ulong = CGM.getTypes().ConvertType(C.UnsignedLongTy); const llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); llvm::SmallVector elements; // reserved elements.push_back(llvm::ConstantInt::get(ulong, 0)); // Size // FIXME: What is the right way to say this doesn't fit? We should give // a user diagnostic in that case. Better fix would be to change the // API to size_t. elements.push_back(llvm::ConstantInt::get(ulong, blockInfo.BlockSize.getQuantity())); // Optional copy/dispose helpers. if (blockInfo.NeedsCopyDispose) { // copy_func_helper_decl elements.push_back(buildCopyHelper(CGM, blockInfo)); // destroy_func_decl elements.push_back(buildDisposeHelper(CGM, blockInfo)); } // Signature. Mandatory ObjC-style method descriptor @encode sequence. std::string typeAtEncoding = CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); elements.push_back(llvm::ConstantExpr::getBitCast( CGM.GetAddrOfConstantCString(typeAtEncoding), i8p)); // GC layout. if (C.getLangOptions().ObjC1) elements.push_back(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); else elements.push_back(llvm::Constant::getNullValue(i8p)); llvm::Constant *init = llvm::ConstantStruct::get(CGM.getLLVMContext(), elements.data(), elements.size(), false); llvm::GlobalVariable *global = new llvm::GlobalVariable(CGM.getModule(), init->getType(), true, llvm::GlobalValue::InternalLinkage, init, "__block_descriptor_tmp"); return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); } static BlockFlags computeBlockFlag(CodeGenModule &CGM, const BlockExpr *BE, BlockFlags flags) { const FunctionType *ftype = BE->getFunctionType(); // This is a bit overboard. CallArgList args; const CGFunctionInfo &fnInfo = CGM.getTypes().getFunctionInfo(ftype->getResultType(), args, ftype->getExtInfo()); if (CGM.ReturnTypeUsesSRet(fnInfo)) flags |= BLOCK_USE_STRET; return flags; } /* Purely notional variadic template describing the layout of a block. template struct Block_literal { /// Initialized to one of: /// extern void *_NSConcreteStackBlock[]; /// extern void *_NSConcreteGlobalBlock[]; /// /// In theory, we could start one off malloc'ed by setting /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using /// this isa: /// extern void *_NSConcreteMallocBlock[]; struct objc_class *isa; /// These are the flags (with corresponding bit number) that the /// compiler is actually supposed to know about. /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block /// descriptor provides copy and dispose helper functions /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured /// object with a nontrivial destructor or copy constructor /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated /// as global memory /// 29. BLOCK_USE_STRET - indicates that the block function /// uses stret, which objc_msgSend needs to know about /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an /// @encoded signature string /// And we're not supposed to manipulate these: /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved /// to malloc'ed memory /// 27. BLOCK_IS_GC - indicates that the block has been moved to /// to GC-allocated memory /// Additionally, the bottom 16 bits are a reference count which /// should be zero on the stack. int flags; /// Reserved; should be zero-initialized. int reserved; /// Function pointer generated from block literal. _ResultType (*invoke)(Block_literal *, _ParamTypes...); /// Block description metadata generated from block literal. struct Block_descriptor *block_descriptor; /// Captured values follow. _CapturesTypes captures...; }; */ /// The number of fields in a block header. const unsigned BlockHeaderSize = 5; namespace { /// A chunk of data that we actually have to capture in the block. struct BlockLayoutChunk { CharUnits Alignment; CharUnits Size; const BlockDecl::Capture *Capture; // null for 'this' const llvm::Type *Type; BlockLayoutChunk(CharUnits align, CharUnits size, const BlockDecl::Capture *capture, const llvm::Type *type) : Alignment(align), Size(size), Capture(capture), Type(type) {} /// Tell the block info that this chunk has the given field index. void setIndex(CGBlockInfo &info, unsigned index) { if (!Capture) info.CXXThisIndex = index; else info.Captures[Capture->getVariable()] = CGBlockInfo::Capture::makeIndex(index); } }; /// Order by descending alignment. bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { return left.Alignment > right.Alignment; } } /// Determines if the given record type has a mutable field. static bool hasMutableField(const CXXRecordDecl *record) { for (CXXRecordDecl::field_iterator i = record->field_begin(), e = record->field_end(); i != e; ++i) if ((*i)->isMutable()) return true; for (CXXRecordDecl::base_class_const_iterator i = record->bases_begin(), e = record->bases_end(); i != e; ++i) { const RecordType *record = i->getType()->castAs(); if (hasMutableField(cast(record->getDecl()))) return true; } return false; } /// Determines if the given type is safe for constant capture in C++. static bool isSafeForCXXConstantCapture(QualType type) { const RecordType *recordType = type->getBaseElementTypeUnsafe()->getAs(); // Only records can be unsafe. if (!recordType) return true; const CXXRecordDecl *record = cast(recordType->getDecl()); // Maintain semantics for classes with non-trivial dtors or copy ctors. if (!record->hasTrivialDestructor()) return false; if (!record->hasTrivialCopyConstructor()) return false; // Otherwise, we just have to make sure there aren't any mutable // fields that might have changed since initialization. return !hasMutableField(record); } /// It is illegal to modify a const object after initialization. /// Therefore, if a const object has a constant initializer, we don't /// actually need to keep storage for it in the block; we'll just /// rematerialize it at the start of the block function. This is /// acceptable because we make no promises about address stability of /// captured variables. static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, const VarDecl *var) { QualType type = var->getType(); // We can only do this if the variable is const. if (!type.isConstQualified()) return 0; // Furthermore, in C++ we have to worry about mutable fields: // C++ [dcl.type.cv]p4: // Except that any class member declared mutable can be // modified, any attempt to modify a const object during its // lifetime results in undefined behavior. if (CGM.getLangOptions().CPlusPlus && !isSafeForCXXConstantCapture(type)) return 0; // If the variable doesn't have any initializer (shouldn't this be // invalid?), it's not clear what we should do. Maybe capture as // zero? const Expr *init = var->getInit(); if (!init) return 0; return CGM.EmitConstantExpr(init, var->getType()); } /// Get the low bit of a nonzero character count. This is the /// alignment of the nth byte if the 0th byte is universally aligned. static CharUnits getLowBit(CharUnits v) { return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); } static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, std::vector &elementTypes) { ASTContext &C = CGM.getContext(); // The header is basically a 'struct { void *; int; int; void *; void *; }'. CharUnits ptrSize, ptrAlign, intSize, intAlign; llvm::tie(ptrSize, ptrAlign) = C.getTypeInfoInChars(C.VoidPtrTy); llvm::tie(intSize, intAlign) = C.getTypeInfoInChars(C.IntTy); // Are there crazy embedded platforms where this isn't true? assert(intSize <= ptrSize && "layout assumptions horribly violated"); CharUnits headerSize = ptrSize; if (2 * intSize < ptrAlign) headerSize += ptrSize; else headerSize += 2 * intSize; headerSize += 2 * ptrSize; info.BlockAlign = ptrAlign; info.BlockSize = headerSize; assert(elementTypes.empty()); const llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); const llvm::Type *intTy = CGM.getTypes().ConvertType(C.IntTy); elementTypes.push_back(i8p); elementTypes.push_back(intTy); elementTypes.push_back(intTy); elementTypes.push_back(i8p); elementTypes.push_back(CGM.getBlockDescriptorType()); assert(elementTypes.size() == BlockHeaderSize); } /// Compute the layout of the given block. Attempts to lay the block /// out with minimal space requirements. static void computeBlockInfo(CodeGenModule &CGM, CGBlockInfo &info) { ASTContext &C = CGM.getContext(); const BlockDecl *block = info.getBlockDecl(); std::vector elementTypes; initializeForBlockHeader(CGM, info, elementTypes); if (!block->hasCaptures()) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } // Collect the layout chunks. llvm::SmallVector layout; layout.reserve(block->capturesCXXThis() + (block->capture_end() - block->capture_begin())); CharUnits maxFieldAlign; // First, 'this'. if (block->capturesCXXThis()) { const DeclContext *DC = block->getDeclContext(); for (; isa(DC); DC = cast(DC)->getDeclContext()) ; QualType thisType = cast(DC)->getThisType(C); const llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); std::pair tinfo = CGM.getContext().getTypeInfoInChars(thisType); maxFieldAlign = std::max(maxFieldAlign, tinfo.second); layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, 0, llvmType)); } // Next, all the block captures. for (BlockDecl::capture_const_iterator ci = block->capture_begin(), ce = block->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); if (ci->isByRef()) { // We have to copy/dispose of the __block reference. info.NeedsCopyDispose = true; // Just use void* instead of a pointer to the byref type. QualType byRefPtrTy = C.VoidPtrTy; const llvm::Type *llvmType = CGM.getTypes().ConvertType(byRefPtrTy); std::pair tinfo = CGM.getContext().getTypeInfoInChars(byRefPtrTy); maxFieldAlign = std::max(maxFieldAlign, tinfo.second); layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, &*ci, llvmType)); continue; } // Otherwise, build a layout chunk with the size and alignment of // the declaration. if (llvm::Constant *constant = tryCaptureAsConstant(CGM, variable)) { info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); continue; } // Block pointers require copy/dispose. if (variable->getType()->isBlockPointerType()) { info.NeedsCopyDispose = true; // So do Objective-C pointers. } else if (variable->getType()->isObjCObjectPointerType() || C.isObjCNSObjectType(variable->getType())) { info.NeedsCopyDispose = true; // So do types that require non-trivial copy construction. } else if (ci->hasCopyExpr()) { info.NeedsCopyDispose = true; info.HasCXXObject = true; // And so do types with destructors. } else if (CGM.getLangOptions().CPlusPlus) { if (const CXXRecordDecl *record = variable->getType()->getAsCXXRecordDecl()) { if (!record->hasTrivialDestructor()) { info.HasCXXObject = true; info.NeedsCopyDispose = true; } } } CharUnits size = C.getTypeSizeInChars(variable->getType()); CharUnits align = C.getDeclAlign(variable); maxFieldAlign = std::max(maxFieldAlign, align); const llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(variable->getType()); layout.push_back(BlockLayoutChunk(align, size, &*ci, llvmType)); } // If that was everything, we're done here. if (layout.empty()) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } // Sort the layout by alignment. We have to use a stable sort here // to get reproducible results. There should probably be an // llvm::array_pod_stable_sort. std::stable_sort(layout.begin(), layout.end()); CharUnits &blockSize = info.BlockSize; info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); // Assuming that the first byte in the header is maximally aligned, // get the alignment of the first byte following the header. CharUnits endAlign = getLowBit(blockSize); // If the end of the header isn't satisfactorily aligned for the // maximum thing, look for things that are okay with the header-end // alignment, and keep appending them until we get something that's // aligned right. This algorithm is only guaranteed optimal if // that condition is satisfied at some point; otherwise we can get // things like: // header // next byte has alignment 4 // something_with_size_5; // next byte has alignment 1 // something_with_alignment_8; // which has 7 bytes of padding, as opposed to the naive solution // which might have less (?). if (endAlign < maxFieldAlign) { llvm::SmallVectorImpl::iterator li = layout.begin() + 1, le = layout.end(); // Look for something that the header end is already // satisfactorily aligned for. for (; li != le && endAlign < li->Alignment; ++li) ; // If we found something that's naturally aligned for the end of // the header, keep adding things... if (li != le) { llvm::SmallVectorImpl::iterator first = li; for (; li != le; ++li) { assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size()); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); // ...until we get to the alignment of the maximum field. if (endAlign >= maxFieldAlign) break; } // Don't re-append everything we just appended. layout.erase(first, li); } } // At this point, we just have to add padding if the end align still // isn't aligned right. if (endAlign < maxFieldAlign) { CharUnits padding = maxFieldAlign - endAlign; elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, padding.getQuantity())); blockSize += padding; endAlign = getLowBit(blockSize); assert(endAlign >= maxFieldAlign); } // Slam everything else on now. This works because they have // strictly decreasing alignment and we expect that size is always a // multiple of alignment. for (llvm::SmallVectorImpl::iterator li = layout.begin(), le = layout.end(); li != le; ++li) { assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size()); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); } info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); } /// Emit a block literal expression in the current function. llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) { std::string Name = CurFn->getName(); CGBlockInfo blockInfo(blockExpr, Name.c_str()); // Compute information about the layout, etc., of this block. computeBlockInfo(CGM, blockInfo); // Using that metadata, generate the actual block function. llvm::Constant *blockFn = CodeGenFunction(CGM).GenerateBlockFunction(CurGD, blockInfo, CurFuncDecl, LocalDeclMap); blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); // If there is nothing to capture, we can emit this as a global block. if (blockInfo.CanBeGlobal) return buildGlobalBlock(CGM, blockInfo, blockFn); // Otherwise, we have to emit this as a local block. llvm::Constant *isa = CGM.getNSConcreteStackBlock(); isa = llvm::ConstantExpr::getBitCast(isa, VoidPtrTy); // Build the block descriptor. llvm::Constant *descriptor = buildBlockDescriptor(CGM, blockInfo); const llvm::Type *intTy = ConvertType(getContext().IntTy); llvm::AllocaInst *blockAddr = CreateTempAlloca(blockInfo.StructureType, "block"); blockAddr->setAlignment(blockInfo.BlockAlign.getQuantity()); // Compute the initial on-stack block flags. BlockFlags flags = BLOCK_HAS_SIGNATURE; if (blockInfo.NeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE; if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ; flags = computeBlockFlag(CGM, blockInfo.getBlockExpr(), flags); // Initialize the block literal. Builder.CreateStore(isa, Builder.CreateStructGEP(blockAddr, 0, "block.isa")); Builder.CreateStore(llvm::ConstantInt::get(intTy, flags.getBitMask()), Builder.CreateStructGEP(blockAddr, 1, "block.flags")); Builder.CreateStore(llvm::ConstantInt::get(intTy, 0), Builder.CreateStructGEP(blockAddr, 2, "block.reserved")); Builder.CreateStore(blockFn, Builder.CreateStructGEP(blockAddr, 3, "block.invoke")); Builder.CreateStore(descriptor, Builder.CreateStructGEP(blockAddr, 4, "block.descriptor")); // Finally, capture all the values into the block. const BlockDecl *blockDecl = blockInfo.getBlockDecl(); // First, 'this'. if (blockDecl->capturesCXXThis()) { llvm::Value *addr = Builder.CreateStructGEP(blockAddr, blockInfo.CXXThisIndex, "block.captured-this.addr"); Builder.CreateStore(LoadCXXThis(), addr); } // Next, captured variables. for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), ce = blockDecl->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); // Ignore constant captures. if (capture.isConstant()) continue; QualType type = variable->getType(); // This will be a [[type]]*, except that a byref entry will just be // an i8**. llvm::Value *blockField = Builder.CreateStructGEP(blockAddr, capture.getIndex(), "block.captured"); // Compute the address of the thing we're going to move into the // block literal. llvm::Value *src; if (ci->isNested()) { // We need to use the capture from the enclosing block. const CGBlockInfo::Capture &enclosingCapture = BlockInfo->getCapture(variable); // This is a [[type]]*, except that a byref entry wil just be an i8**. src = Builder.CreateStructGEP(LoadBlockStruct(), enclosingCapture.getIndex(), "block.capture.addr"); } else { // This is a [[type]]*. src = LocalDeclMap[variable]; } // For byrefs, we just write the pointer to the byref struct into // the block field. There's no need to chase the forwarding // pointer at this point, since we're building something that will // live a shorter life than the stack byref anyway. if (ci->isByRef()) { // Get a void* that points to the byref struct. if (ci->isNested()) src = Builder.CreateLoad(src, "byref.capture"); else src = Builder.CreateBitCast(src, VoidPtrTy); // Write that void* into the capture field. Builder.CreateStore(src, blockField); // If we have a copy constructor, evaluate that into the block field. } else if (const Expr *copyExpr = ci->getCopyExpr()) { EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); // If it's a reference variable, copy the reference into the block field. } else if (type->isReferenceType()) { Builder.CreateStore(Builder.CreateLoad(src, "ref.val"), blockField); // Otherwise, fake up a POD copy into the block field. } else { // We use one of these or the other depending on whether the // reference is nested. DeclRefExpr notNested(const_cast(variable), type, VK_LValue, SourceLocation()); BlockDeclRefExpr nested(const_cast(variable), type, VK_LValue, SourceLocation(), /*byref*/ false); Expr *declRef = (ci->isNested() ? static_cast(&nested) : ¬Nested); ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, declRef, VK_RValue); EmitAnyExprToMem(&l2r, blockField, /*volatile*/ false, /*init*/ true); } // Push a destructor if necessary. The semantics for when this // actually gets run are really obscure. if (!ci->isByRef() && CGM.getLangOptions().CPlusPlus) PushDestructorCleanup(type, blockField); } // Cast to the converted block-pointer type, which happens (somewhat // unfortunately) to be a pointer to function type. llvm::Value *result = Builder.CreateBitCast(blockAddr, ConvertType(blockInfo.getBlockExpr()->getType())); return result; } const llvm::Type *CodeGenModule::getBlockDescriptorType() { if (BlockDescriptorType) return BlockDescriptorType; const llvm::Type *UnsignedLongTy = getTypes().ConvertType(getContext().UnsignedLongTy); // struct __block_descriptor { // unsigned long reserved; // unsigned long block_size; // // // later, the following will be added // // struct { // void (*copyHelper)(); // void (*copyHelper)(); // } helpers; // !!! optional // // const char *signature; // the block signature // const char *layout; // reserved // }; BlockDescriptorType = llvm::StructType::get(UnsignedLongTy->getContext(), UnsignedLongTy, UnsignedLongTy, NULL); getModule().addTypeName("struct.__block_descriptor", BlockDescriptorType); // Now form a pointer to that. BlockDescriptorType = llvm::PointerType::getUnqual(BlockDescriptorType); return BlockDescriptorType; } const llvm::Type *CodeGenModule::getGenericBlockLiteralType() { if (GenericBlockLiteralType) return GenericBlockLiteralType; const llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); // struct __block_literal_generic { // void *__isa; // int __flags; // int __reserved; // void (*__invoke)(void *); // struct __block_descriptor *__descriptor; // }; GenericBlockLiteralType = llvm::StructType::get(getLLVMContext(), VoidPtrTy, IntTy, IntTy, VoidPtrTy, BlockDescPtrTy, NULL); getModule().addTypeName("struct.__block_literal_generic", GenericBlockLiteralType); return GenericBlockLiteralType; } RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr* E, ReturnValueSlot ReturnValue) { const BlockPointerType *BPT = E->getCallee()->getType()->getAs(); llvm::Value *Callee = EmitScalarExpr(E->getCallee()); // Get a pointer to the generic block literal. const llvm::Type *BlockLiteralTy = llvm::PointerType::getUnqual(CGM.getGenericBlockLiteralType()); // Bitcast the callee to a block literal. llvm::Value *BlockLiteral = Builder.CreateBitCast(Callee, BlockLiteralTy, "block.literal"); // Get the function pointer from the literal. llvm::Value *FuncPtr = Builder.CreateStructGEP(BlockLiteral, 3, "tmp"); BlockLiteral = Builder.CreateBitCast(BlockLiteral, VoidPtrTy, "tmp"); // Add the block literal. QualType VoidPtrTy = getContext().getPointerType(getContext().VoidTy); CallArgList Args; Args.push_back(std::make_pair(RValue::get(BlockLiteral), VoidPtrTy)); QualType FnType = BPT->getPointeeType(); // And the rest of the arguments. EmitCallArgs(Args, FnType->getAs(), E->arg_begin(), E->arg_end()); // Load the function. llvm::Value *Func = Builder.CreateLoad(FuncPtr, "tmp"); const FunctionType *FuncTy = FnType->getAs(); QualType ResultType = FuncTy->getResultType(); const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(ResultType, Args, FuncTy->getExtInfo()); // Cast the function pointer to the right type. const llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo, false); const llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); Func = Builder.CreateBitCast(Func, BlockFTyPtr); // And call the block. return EmitCall(FnInfo, Func, ReturnValue, Args); } llvm::Value *CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable, bool isByRef) { assert(BlockInfo && "evaluating block ref without block information?"); const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); // Handle constant captures. if (capture.isConstant()) return LocalDeclMap[variable]; llvm::Value *addr = Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), "block.capture.addr"); if (isByRef) { // addr should be a void** right now. Load, then cast the result // to byref*. addr = Builder.CreateLoad(addr); const llvm::PointerType *byrefPointerType = llvm::PointerType::get(BuildByRefType(variable), 0); addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr"); // Follow the forwarding pointer. addr = Builder.CreateStructGEP(addr, 1, "byref.forwarding"); addr = Builder.CreateLoad(addr, "byref.addr.forwarded"); // Cast back to byref* and GEP over to the actual object. addr = Builder.CreateBitCast(addr, byrefPointerType); addr = Builder.CreateStructGEP(addr, getByRefValueLLVMField(variable), variable->getNameAsString()); } if (variable->getType()->isReferenceType()) addr = Builder.CreateLoad(addr, "ref.tmp"); return addr; } llvm::Constant * CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *blockExpr, const char *name) { CGBlockInfo blockInfo(blockExpr, name); // Compute information about the layout, etc., of this block. computeBlockInfo(*this, blockInfo); // Using that metadata, generate the actual block function. llvm::Constant *blockFn; { llvm::DenseMap LocalDeclMap; blockFn = CodeGenFunction(*this).GenerateBlockFunction(GlobalDecl(), blockInfo, 0, LocalDeclMap); } blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); return buildGlobalBlock(*this, blockInfo, blockFn); } static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn) { assert(blockInfo.CanBeGlobal); // Generate the constants for the block literal initializer. llvm::Constant *fields[BlockHeaderSize]; // isa fields[0] = CGM.getNSConcreteGlobalBlock(); // __flags BlockFlags flags = computeBlockFlag(CGM, blockInfo.getBlockExpr(), BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE); fields[1] = llvm::ConstantInt::get(CGM.IntTy, flags.getBitMask()); // Reserved fields[2] = llvm::Constant::getNullValue(CGM.IntTy); // Function fields[3] = blockFn; // Descriptor fields[4] = buildBlockDescriptor(CGM, blockInfo); llvm::Constant *init = llvm::ConstantStruct::get(CGM.getLLVMContext(), fields, BlockHeaderSize, /*packed*/ false); llvm::GlobalVariable *literal = new llvm::GlobalVariable(CGM.getModule(), init->getType(), /*constant*/ true, llvm::GlobalVariable::InternalLinkage, init, "__block_literal_global"); literal->setAlignment(blockInfo.BlockAlign.getQuantity()); // Return a constant of the appropriately-casted type. const llvm::Type *requiredType = CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); return llvm::ConstantExpr::getBitCast(literal, requiredType); } llvm::Function * CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &blockInfo, const Decl *outerFnDecl, const DeclMapTy &ldm) { const BlockDecl *blockDecl = blockInfo.getBlockDecl(); DebugInfo = CGM.getDebugInfo(); BlockInfo = &blockInfo; // Arrange for local static and local extern declarations to appear // to be local to this function as well, in case they're directly // referenced in a block. for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { const VarDecl *var = dyn_cast(i->first); if (var && !var->hasLocalStorage()) LocalDeclMap[var] = i->second; } // Begin building the function declaration. // Build the argument list. FunctionArgList args; // The first argument is the block pointer. Just take it as a void* // and cast it later. QualType selfTy = getContext().VoidPtrTy; IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); // FIXME: this leaks, and we only need it very temporarily. ImplicitParamDecl *selfDecl = ImplicitParamDecl::Create(getContext(), const_cast(blockDecl), SourceLocation(), II, selfTy); args.push_back(std::make_pair(selfDecl, selfTy)); // Now add the rest of the parameters. for (BlockDecl::param_const_iterator i = blockDecl->param_begin(), e = blockDecl->param_end(); i != e; ++i) args.push_back(std::make_pair(*i, (*i)->getType())); // Create the function declaration. const FunctionProtoType *fnType = cast(blockInfo.getBlockExpr()->getFunctionType()); const CGFunctionInfo &fnInfo = CGM.getTypes().getFunctionInfo(fnType->getResultType(), args, fnType->getExtInfo()); const llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo, fnType->isVariadic()); MangleBuffer name; CGM.getBlockMangledName(GD, name, blockDecl); llvm::Function *fn = llvm::Function::Create(fnLLVMType, llvm::GlobalValue::InternalLinkage, name.getString(), &CGM.getModule()); CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); // Begin generating the function. StartFunction(blockDecl, fnType->getResultType(), fn, args, blockInfo.getBlockExpr()->getBody()->getLocEnd()); CurFuncDecl = outerFnDecl; // StartFunction sets this to blockDecl // Okay. Undo some of what StartFunction did. We really don't need // an alloca for the block address; in theory we could remove it, // but that might do unpleasant things to debug info. llvm::AllocaInst *blockAddrAlloca = cast(LocalDeclMap[selfDecl]); llvm::Value *blockAddr = Builder.CreateLoad(blockAddrAlloca); BlockPointer = Builder.CreateBitCast(blockAddr, blockInfo.StructureType->getPointerTo(), "block"); // If we have a C++ 'this' reference, go ahead and force it into // existence now. if (blockDecl->capturesCXXThis()) { llvm::Value *addr = Builder.CreateStructGEP(BlockPointer, blockInfo.CXXThisIndex, "block.captured-this"); CXXThisValue = Builder.CreateLoad(addr, "this"); } // LoadObjCSelf() expects there to be an entry for 'self' in LocalDeclMap; // appease it. if (const ObjCMethodDecl *method = dyn_cast_or_null(CurFuncDecl)) { const VarDecl *self = method->getSelfDecl(); // There might not be a capture for 'self', but if there is... if (blockInfo.Captures.count(self)) { const CGBlockInfo::Capture &capture = blockInfo.getCapture(self); llvm::Value *selfAddr = Builder.CreateStructGEP(BlockPointer, capture.getIndex(), "block.captured-self"); LocalDeclMap[self] = selfAddr; } } // Also force all the constant captures. for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), ce = blockDecl->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (!capture.isConstant()) continue; unsigned align = getContext().getDeclAlign(variable).getQuantity(); llvm::AllocaInst *alloca = CreateMemTemp(variable->getType(), "block.captured-const"); alloca->setAlignment(align); Builder.CreateStore(capture.getConstant(), alloca, align); LocalDeclMap[variable] = alloca; } // Save a spot to insert the debug information for all the BlockDeclRefDecls. llvm::BasicBlock *entry = Builder.GetInsertBlock(); llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); --entry_ptr; EmitStmt(blockDecl->getBody()); // Remember where we were... llvm::BasicBlock *resume = Builder.GetInsertBlock(); // Go back to the entry. ++entry_ptr; Builder.SetInsertPoint(entry, entry_ptr); // Emit debug information for all the BlockDeclRefDecls. // FIXME: also for 'this' if (CGDebugInfo *DI = getDebugInfo()) { for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), ce = blockDecl->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); DI->setLocation(variable->getLocation()); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) { DI->EmitDeclareOfAutoVariable(variable, LocalDeclMap[variable], Builder); continue; } DI->EmitDeclareOfBlockDeclRefVariable(variable, blockAddrAlloca, Builder, blockInfo); } } // And resume where we left off. if (resume == 0) Builder.ClearInsertionPoint(); else Builder.SetInsertPoint(resume); FinishFunction(cast(blockDecl->getBody())->getRBracLoc()); return fn; } /* notes.push_back(HelperInfo()); HelperInfo ¬e = notes.back(); note.index = capture.getIndex(); note.RequiresCopying = (ci->hasCopyExpr() || BlockRequiresCopying(type)); note.cxxbar_import = ci->getCopyExpr(); if (ci->isByRef()) { note.flag = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) note.flag |= BLOCK_FIELD_IS_WEAK; } else if (type->isBlockPointerType()) { note.flag = BLOCK_FIELD_IS_BLOCK; } else { note.flag = BLOCK_FIELD_IS_OBJECT; } */ llvm::Constant * CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { ASTContext &C = getContext(); FunctionArgList args; // FIXME: This leaks ImplicitParamDecl *dstDecl = ImplicitParamDecl::Create(C, 0, SourceLocation(), 0, C.VoidPtrTy); args.push_back(std::make_pair(dstDecl, dstDecl->getType())); ImplicitParamDecl *srcDecl = ImplicitParamDecl::Create(C, 0, SourceLocation(), 0, C.VoidPtrTy); args.push_back(std::make_pair(srcDecl, srcDecl->getType())); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(C.VoidTy, args, FunctionType::ExtInfo()); // FIXME: it would be nice if these were mergeable with things with // identical semantics. const llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI, false); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_block_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__copy_helper_block_"); FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), SourceLocation(), II, C.VoidTy, 0, SC_Static, SC_None, false, true); StartFunction(FD, C.VoidTy, Fn, args, SourceLocation()); const llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); llvm::Value *src = GetAddrOfLocalVar(srcDecl); src = Builder.CreateLoad(src); src = Builder.CreateBitCast(src, structPtrTy, "block.source"); llvm::Value *dst = GetAddrOfLocalVar(dstDecl); dst = Builder.CreateLoad(dst); dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); const BlockDecl *blockDecl = blockInfo.getBlockDecl(); for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), ce = blockDecl->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); QualType type = variable->getType(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) continue; const Expr *copyExpr = ci->getCopyExpr(); unsigned flags = 0; if (copyExpr) { assert(!ci->isByRef()); // don't bother computing flags } else if (ci->isByRef()) { flags = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; } else if (type->isBlockPointerType()) { flags = BLOCK_FIELD_IS_BLOCK; } else if (type->isObjCObjectPointerType() || C.isObjCNSObjectType(type)) { flags = BLOCK_FIELD_IS_OBJECT; } if (!copyExpr && !flags) continue; unsigned index = capture.getIndex(); llvm::Value *srcField = Builder.CreateStructGEP(src, index); llvm::Value *dstField = Builder.CreateStructGEP(dst, index); // If there's an explicit copy expression, we do that. if (copyExpr) { EmitSynthesizedCXXCopyCtor(dstField, srcField, copyExpr); } else { llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); llvm::Value *dstAddr = Builder.CreateBitCast(dstField, VoidPtrTy); Builder.CreateCall3(CGM.getBlockObjectAssign(), dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags)); } } FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } llvm::Constant * CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { ASTContext &C = getContext(); FunctionArgList args; // FIXME: This leaks ImplicitParamDecl *srcDecl = ImplicitParamDecl::Create(C, 0, SourceLocation(), 0, C.VoidPtrTy); args.push_back(std::make_pair(srcDecl, srcDecl->getType())); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(C.VoidTy, args, FunctionType::ExtInfo()); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. const llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI, false); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__destroy_helper_block_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__destroy_helper_block_"); FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), SourceLocation(), II, C.VoidTy, 0, SC_Static, SC_None, false, true); StartFunction(FD, C.VoidTy, Fn, args, SourceLocation()); const llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); llvm::Value *src = GetAddrOfLocalVar(srcDecl); src = Builder.CreateLoad(src); src = Builder.CreateBitCast(src, structPtrTy, "block"); const BlockDecl *blockDecl = blockInfo.getBlockDecl(); CodeGenFunction::RunCleanupsScope cleanups(*this); for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), ce = blockDecl->capture_end(); ci != ce; ++ci) { const VarDecl *variable = ci->getVariable(); QualType type = variable->getType(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) continue; BlockFieldFlags flags; const CXXDestructorDecl *dtor = 0; if (ci->isByRef()) { flags = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; } else if (type->isBlockPointerType()) { flags = BLOCK_FIELD_IS_BLOCK; } else if (type->isObjCObjectPointerType() || C.isObjCNSObjectType(type)) { flags = BLOCK_FIELD_IS_OBJECT; } else if (C.getLangOptions().CPlusPlus) { if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) if (!record->hasTrivialDestructor()) dtor = record->getDestructor(); } if (!dtor && flags.empty()) continue; unsigned index = capture.getIndex(); llvm::Value *srcField = Builder.CreateStructGEP(src, index); // If there's an explicit copy expression, we do that. if (dtor) { PushDestructorCleanup(dtor, srcField); // Otherwise we call _Block_object_dispose. It wouldn't be too // hard to just emit this as a cleanup if we wanted to make sure // that things were done in reverse. } else { llvm::Value *value = Builder.CreateLoad(srcField); value = Builder.CreateBitCast(value, VoidPtrTy); BuildBlockRelease(value, flags); } } cleanups.ForceCleanup(); FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } llvm::Constant *CodeGenFunction:: GeneratebyrefCopyHelperFunction(const llvm::Type *T, BlockFieldFlags flags, const VarDecl *variable) { QualType R = getContext().VoidTy; FunctionArgList Args; // FIXME: This leaks ImplicitParamDecl *Dst = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 0, getContext().getPointerType(getContext().VoidTy)); Args.push_back(std::make_pair(Dst, Dst->getType())); // FIXME: This leaks ImplicitParamDecl *Src = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 0, getContext().getPointerType(getContext().VoidTy)); Args.push_back(std::make_pair(Src, Src->getType())); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(R, Args, FunctionType::ExtInfo()); CodeGenTypes &Types = CGM.getTypes(); const llvm::FunctionType *LTy = Types.GetFunctionType(FI, false); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_copy_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__Block_byref_object_copy_"); FunctionDecl *FD = FunctionDecl::Create(getContext(), getContext().getTranslationUnitDecl(), SourceLocation(), II, R, 0, SC_Static, SC_None, false, true); StartFunction(FD, R, Fn, Args, SourceLocation()); // dst->x llvm::Value *V = GetAddrOfLocalVar(Dst); V = Builder.CreateBitCast(V, llvm::PointerType::get(T, 0)); V = Builder.CreateLoad(V); V = Builder.CreateStructGEP(V, 6, "x"); llvm::Value *DstObj = V; // src->x V = GetAddrOfLocalVar(Src); V = Builder.CreateLoad(V); V = Builder.CreateBitCast(V, T); V = Builder.CreateStructGEP(V, 6, "x"); if (Expr *copyExpr = getContext().getBlockVarCopyInits(variable)) { llvm::Value *SrcObj = V; EmitSynthesizedCXXCopyCtor(DstObj, SrcObj, copyExpr); } else { DstObj = Builder.CreateBitCast(DstObj, VoidPtrTy); V = Builder.CreateBitCast(V, VoidPtrPtrTy); llvm::Value *SrcObj = Builder.CreateLoad(V); flags |= BLOCK_BYREF_CALLER; llvm::Value *N = llvm::ConstantInt::get(Int32Ty, flags.getBitMask()); llvm::Value *F = CGM.getBlockObjectAssign(); Builder.CreateCall3(F, DstObj, SrcObj, N); } FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, Int8PtrTy); } llvm::Constant * CodeGenFunction::GeneratebyrefDestroyHelperFunction(const llvm::Type *T, BlockFieldFlags flags, const VarDecl *variable) { QualType R = getContext().VoidTy; FunctionArgList Args; // FIXME: This leaks ImplicitParamDecl *Src = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 0, getContext().getPointerType(getContext().VoidTy)); Args.push_back(std::make_pair(Src, Src->getType())); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(R, Args, FunctionType::ExtInfo()); CodeGenTypes &Types = CGM.getTypes(); const llvm::FunctionType *LTy = Types.GetFunctionType(FI, false); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_dispose_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__Block_byref_object_dispose_"); FunctionDecl *FD = FunctionDecl::Create(getContext(), getContext().getTranslationUnitDecl(), SourceLocation(), II, R, 0, SC_Static, SC_None, false, true); StartFunction(FD, R, Fn, Args, SourceLocation()); llvm::Value *V = GetAddrOfLocalVar(Src); V = Builder.CreateBitCast(V, llvm::PointerType::get(T, 0)); V = Builder.CreateLoad(V); V = Builder.CreateStructGEP(V, 6, "x"); // If it's not any kind of special object, it must have a destructor // or something. if (!flags.isSpecialPointer()) { EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin(); PushDestructorCleanup(variable->getType(), V); PopCleanupBlocks(CleanupDepth); // Otherwise, call _Block_object_dispose. } else { V = Builder.CreateBitCast(V, llvm::PointerType::get(Int8PtrTy, 0)); V = Builder.CreateLoad(V); flags |= BLOCK_BYREF_CALLER; BuildBlockRelease(V, flags); } FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, Int8PtrTy); } llvm::Constant *CodeGenModule::BuildbyrefCopyHelper(const llvm::Type *T, BlockFieldFlags flags, unsigned align, const VarDecl *var) { // All alignments below that of pointer alignment collapse down to just // pointer alignment, as we always have at least that much alignment to begin // with. align /= unsigned(getTarget().getPointerAlign(0) / 8); // As an optimization, we only generate a single function of each kind we // might need. We need a different one for each alignment and for each // setting of flags. We mix Align and flag to get the kind. uint64_t Kind = (uint64_t)align*BLOCK_BYREF_CURRENT_MAX + flags.getBitMask(); llvm::Constant *&Entry = AssignCache[Kind]; if (!Entry) Entry = CodeGenFunction(*this). GeneratebyrefCopyHelperFunction(T, flags, var); return Entry; } llvm::Constant *CodeGenModule::BuildbyrefDestroyHelper(const llvm::Type *T, BlockFieldFlags flags, unsigned align, const VarDecl *var) { // All alignments below that of pointer alignment collpase down to just // pointer alignment, as we always have at least that much alignment to begin // with. align /= unsigned(getTarget().getPointerAlign(0) / 8); // As an optimization, we only generate a single function of each kind we // might need. We need a different one for each alignment and for each // setting of flags. We mix Align and flag to get the kind. uint64_t Kind = (uint64_t)align*BLOCK_BYREF_CURRENT_MAX + flags.getBitMask(); llvm::Constant *&Entry = DestroyCache[Kind]; if (!Entry) Entry = CodeGenFunction(*this). GeneratebyrefDestroyHelperFunction(T, flags, var); return Entry; } void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) { llvm::Value *F = CGM.getBlockObjectDispose(); llvm::Value *N; V = Builder.CreateBitCast(V, Int8PtrTy); N = llvm::ConstantInt::get(Int32Ty, flags.getBitMask()); Builder.CreateCall2(F, V, N); }