//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the C++ Decl subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLCXX_H #define LLVM_CLANG_AST_DECLCXX_H #include "clang/AST/Decl.h" #include "llvm/ADT/SmallVector.h" namespace clang { class ClassTemplateDecl; class CXXRecordDecl; class CXXConstructorDecl; class CXXDestructorDecl; class CXXConversionDecl; class CXXMethodDecl; class ClassTemplateSpecializationDecl; /// OverloadedFunctionDecl - An instance of this class represents a /// set of overloaded functions. All of the functions have the same /// name and occur within the same scope. /// /// An OverloadedFunctionDecl has no ownership over the FunctionDecl /// nodes it contains. Rather, the FunctionDecls are owned by the /// enclosing scope (which also owns the OverloadedFunctionDecl /// node). OverloadedFunctionDecl is used primarily to store a set of /// overloaded functions for name lookup. class OverloadedFunctionDecl : public NamedDecl { protected: OverloadedFunctionDecl(DeclContext *DC, DeclarationName N) : NamedDecl(OverloadedFunction, DC, SourceLocation(), N) { } /// Functions - the set of overloaded functions contained in this /// overload set. llvm::SmallVector Functions; // FIXME: This should go away when we stop using // OverloadedFunctionDecl to store conversions in CXXRecordDecl. friend class CXXRecordDecl; public: typedef llvm::SmallVector::iterator function_iterator; typedef llvm::SmallVector::const_iterator function_const_iterator; static OverloadedFunctionDecl *Create(ASTContext &C, DeclContext *DC, DeclarationName N); /// addOverload - Add an overloaded function FD to this set of /// overloaded functions. void addOverload(FunctionDecl *FD) { assert((FD->getDeclName() == getDeclName() || isa(FD) || isa(FD)) && "Overloaded functions must have the same name"); Functions.push_back(FD); // An overloaded function declaration always has the location of // the most-recently-added function declaration. if (FD->getLocation().isValid()) this->setLocation(FD->getLocation()); } function_iterator function_begin() { return Functions.begin(); } function_iterator function_end() { return Functions.end(); } function_const_iterator function_begin() const { return Functions.begin(); } function_const_iterator function_end() const { return Functions.end(); } /// getNumFunctions - the number of overloaded functions stored in /// this set. unsigned getNumFunctions() const { return Functions.size(); } /// getFunction - retrieve the ith function in the overload set. const FunctionDecl *getFunction(unsigned i) const { assert(i < getNumFunctions() && "Illegal function #"); return Functions[i]; } FunctionDecl *getFunction(unsigned i) { assert(i < getNumFunctions() && "Illegal function #"); return Functions[i]; } // getDeclContext - Get the context of these overloaded functions. DeclContext *getDeclContext() { assert(getNumFunctions() > 0 && "Context of an empty overload set"); return getFunction(0)->getDeclContext(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == OverloadedFunction; } static bool classof(const OverloadedFunctionDecl *D) { return true; } }; /// CXXBaseSpecifier - A base class of a C++ class. /// /// Each CXXBaseSpecifier represents a single, direct base class (or /// struct) of a C++ class (or struct). It specifies the type of that /// base class, whether it is a virtual or non-virtual base, and what /// level of access (public, protected, private) is used for the /// derivation. For example: /// /// @code /// class A { }; /// class B { }; /// class C : public virtual A, protected B { }; /// @endcode /// /// In this code, C will have two CXXBaseSpecifiers, one for "public /// virtual A" and the other for "protected B". class CXXBaseSpecifier { /// Range - The source code range that covers the full base /// specifier, including the "virtual" (if present) and access /// specifier (if present). SourceRange Range; /// Virtual - Whether this is a virtual base class or not. bool Virtual : 1; /// BaseOfClass - Whether this is the base of a class (true) or of a /// struct (false). This determines the mapping from the access /// specifier as written in the source code to the access specifier /// used for semantic analysis. bool BaseOfClass : 1; /// Access - Access specifier as written in the source code (which /// may be AS_none). The actual type of data stored here is an /// AccessSpecifier, but we use "unsigned" here to work around a /// VC++ bug. unsigned Access : 2; /// BaseType - The type of the base class. This will be a class or /// struct (or a typedef of such). QualType BaseType; public: CXXBaseSpecifier() { } CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, QualType T) : Range(R), Virtual(V), BaseOfClass(BC), Access(A), BaseType(T) { } /// getSourceRange - Retrieves the source range that contains the /// entire base specifier. SourceRange getSourceRange() const { return Range; } /// isVirtual - Determines whether the base class is a virtual base /// class (or not). bool isVirtual() const { return Virtual; } /// getAccessSpecifier - Returns the access specifier for this base /// specifier. This is the actual base specifier as used for /// semantic analysis, so the result can never be AS_none. To /// retrieve the access specifier as written in the source code, use /// getAccessSpecifierAsWritten(). AccessSpecifier getAccessSpecifier() const { if ((AccessSpecifier)Access == AS_none) return BaseOfClass? AS_private : AS_public; else return (AccessSpecifier)Access; } /// getAccessSpecifierAsWritten - Retrieves the access specifier as /// written in the source code (which may mean that no access /// specifier was explicitly written). Use getAccessSpecifier() to /// retrieve the access specifier for use in semantic analysis. AccessSpecifier getAccessSpecifierAsWritten() const { return (AccessSpecifier)Access; } /// getType - Retrieves the type of the base class. This type will /// always be an unqualified class type. QualType getType() const { return BaseType; } }; /// CXXRecordDecl - Represents a C++ struct/union/class. /// FIXME: This class will disappear once we've properly taught RecordDecl /// to deal with C++-specific things. class CXXRecordDecl : public RecordDecl { /// UserDeclaredConstructor - True when this class has a /// user-declared constructor. bool UserDeclaredConstructor : 1; /// UserDeclaredCopyConstructor - True when this class has a /// user-declared copy constructor. bool UserDeclaredCopyConstructor : 1; /// UserDeclaredCopyAssignment - True when this class has a /// user-declared copy assignment operator. bool UserDeclaredCopyAssignment : 1; /// UserDeclaredDestructor - True when this class has a /// user-declared destructor. bool UserDeclaredDestructor : 1; /// Aggregate - True when this class is an aggregate. bool Aggregate : 1; /// PlainOldData - True when this class is a POD-type. bool PlainOldData : 1; /// Polymorphic - True when this class is polymorphic, i.e. has at least one /// virtual member or derives from a polymorphic class. bool Polymorphic : 1; /// Abstract - True when this class is abstract, i.e. has at least one /// pure virtual function, (that can come from a base class). bool Abstract : 1; /// HasTrivialConstructor - True when this class has a trivial constructor bool HasTrivialConstructor : 1; /// HasTrivialDestructor - True when this class has a trivial destructor bool HasTrivialDestructor : 1; /// Bases - Base classes of this class. /// FIXME: This is wasted space for a union. CXXBaseSpecifier *Bases; /// NumBases - The number of base class specifiers in Bases. unsigned NumBases; /// Conversions - Overload set containing the conversion functions /// of this C++ class (but not its inherited conversion /// functions). Each of the entries in this overload set is a /// CXXConversionDecl. OverloadedFunctionDecl Conversions; /// \brief The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be NULL. For record /// declarations that describe a class template, this will be a /// pointer to a ClassTemplateDecl. For member /// classes of class template specializations, this will be the /// RecordDecl from which the member class was instantiated. llvm::PointerUnion TemplateOrInstantiation; protected: CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id); ~CXXRecordDecl(); public: /// base_class_iterator - Iterator that traverses the base classes /// of a clas. typedef CXXBaseSpecifier* base_class_iterator; /// base_class_const_iterator - Iterator that traverses the base /// classes of a clas. typedef const CXXBaseSpecifier* base_class_const_iterator; static CXXRecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0, bool DelayTypeCreation = false); /// setBases - Sets the base classes of this struct or class. void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); /// getNumBases - Retrieves the number of base classes of this /// class. unsigned getNumBases() const { return NumBases; } base_class_iterator bases_begin() { return Bases; } base_class_const_iterator bases_begin() const { return Bases; } base_class_iterator bases_end() { return Bases + NumBases; } base_class_const_iterator bases_end() const { return Bases + NumBases; } /// hasConstCopyConstructor - Determines whether this class has a /// copy constructor that accepts a const-qualified argument. bool hasConstCopyConstructor(ASTContext &Context) const; /// getCopyConstructor - Returns the copy constructor for this class CXXConstructorDecl *getCopyConstructor(ASTContext &Context, unsigned TypeQuals) const; /// hasConstCopyAssignment - Determines whether this class has a /// copy assignment operator that accepts a const-qualified argument. bool hasConstCopyAssignment(ASTContext &Context) const; /// addedConstructor - Notify the class that another constructor has /// been added. This routine helps maintain information about the /// class based on which constructors have been added. void addedConstructor(ASTContext &Context, CXXConstructorDecl *ConDecl); /// hasUserDeclaredConstructor - Whether this class has any /// user-declared constructors. When true, a default constructor /// will not be implicitly declared. bool hasUserDeclaredConstructor() const { return UserDeclaredConstructor; } /// hasUserDeclaredCopyConstructor - Whether this class has a /// user-declared copy constructor. When false, a copy constructor /// will be implicitly declared. bool hasUserDeclaredCopyConstructor() const { return UserDeclaredCopyConstructor; } /// addedAssignmentOperator - Notify the class that another assignment /// operator has been added. This routine helps maintain information about the /// class based on which operators have been added. void addedAssignmentOperator(ASTContext &Context, CXXMethodDecl *OpDecl); /// hasUserDeclaredCopyAssignment - Whether this class has a /// user-declared copy assignment operator. When false, a copy /// assigment operator will be implicitly declared. bool hasUserDeclaredCopyAssignment() const { return UserDeclaredCopyAssignment; } /// hasUserDeclaredDestructor - Whether this class has a /// user-declared destructor. When false, a destructor will be /// implicitly declared. bool hasUserDeclaredDestructor() const { return UserDeclaredDestructor; } /// setUserDeclaredDestructor - Set whether this class has a /// user-declared destructor. If not set by the time the class is /// fully defined, a destructor will be implicitly declared. void setUserDeclaredDestructor(bool UCD) { UserDeclaredDestructor = UCD; } /// getConversions - Retrieve the overload set containing all of the /// conversion functions in this class. OverloadedFunctionDecl *getConversionFunctions() { return &Conversions; } const OverloadedFunctionDecl *getConversionFunctions() const { return &Conversions; } /// addConversionFunction - Add a new conversion function to the /// list of conversion functions. void addConversionFunction(ASTContext &Context, CXXConversionDecl *ConvDecl); /// isAggregate - Whether this class is an aggregate (C++ /// [dcl.init.aggr]), which is a class with no user-declared /// constructors, no private or protected non-static data members, /// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1). bool isAggregate() const { return Aggregate; } /// setAggregate - Set whether this class is an aggregate (C++ /// [dcl.init.aggr]). void setAggregate(bool Agg) { Aggregate = Agg; } /// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class /// that is an aggregate that has no non-static non-POD data members, no /// reference data members, no user-defined copy assignment operator and no /// user-defined destructor. bool isPOD() const { return PlainOldData; } /// setPOD - Set whether this class is a POD-type (C++ [class]p4). void setPOD(bool POD) { PlainOldData = POD; } /// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]), /// which means that the class contains or inherits a virtual function. bool isPolymorphic() const { return Polymorphic; } /// setPolymorphic - Set whether this class is polymorphic (C++ /// [class.virtual]). void setPolymorphic(bool Poly) { Polymorphic = Poly; } /// isAbstract - Whether this class is abstract (C++ [class.abstract]), /// which means that the class contains or inherits a pure virtual function. bool isAbstract() const { return Abstract; } /// setAbstract - Set whether this class is abstract (C++ [class.abstract]) void setAbstract(bool Abs) { Abstract = Abs; } // hasTrivialConstructor - Whether this class has a trivial constructor // (C++ [class.ctor]p5) bool hasTrivialConstructor() const { return HasTrivialConstructor; } // setHasTrivialConstructor - Set whether this class has a trivial constructor // (C++ [class.ctor]p5) void setHasTrivialConstructor(bool TC) { HasTrivialConstructor = TC; } // hasTrivialDestructor - Whether this class has a trivial destructor // (C++ [class.dtor]p3) bool hasTrivialDestructor() const { return HasTrivialDestructor; } // setHasTrivialDestructor - Set whether this class has a trivial destructor // (C++ [class.dtor]p3) void setHasTrivialDestructor(bool TC) { HasTrivialDestructor = TC; } /// \brief If this record is an instantiation of a member class, /// retrieves the member class from which it was instantiated. /// /// This routine will return non-NULL for (non-templated) member /// classes of class templates. For example, given: /// /// \code /// template /// struct X { /// struct A { }; /// }; /// \endcode /// /// The declaration for X::A is a (non-templated) CXXRecordDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromMemberClass() will return /// the CXXRecordDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberClass(). CXXRecordDecl *getInstantiatedFromMemberClass() const { return TemplateOrInstantiation.dyn_cast(); } /// \brief Specify that this record is an instantiation of the /// member class RD. void setInstantiationOfMemberClass(CXXRecordDecl *RD) { TemplateOrInstantiation = RD; } /// \brief Retrieves the class template that is described by this /// class declaration. /// /// Every class template is represented as a ClassTemplateDecl and a /// CXXRecordDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the /// CXXRecordDecl that from a ClassTemplateDecl, while /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from /// a CXXRecordDecl. ClassTemplateDecl *getDescribedClassTemplate() const { return TemplateOrInstantiation.dyn_cast(); } void setDescribedClassTemplate(ClassTemplateDecl *Template) { TemplateOrInstantiation = Template; } /// getDefaultConstructor - Returns the default constructor for this class CXXConstructorDecl *getDefaultConstructor(ASTContext &Context); /// getDestructor - Returns the destructor decl for this class. const CXXDestructorDecl *getDestructor(ASTContext &Context); /// viewInheritance - Renders and displays an inheritance diagram /// for this C++ class and all of its base classes (transitively) using /// GraphViz. void viewInheritance(ASTContext& Context) const; static bool classof(const Decl *D) { return D->getKind() == CXXRecord || D->getKind() == ClassTemplateSpecialization || D->getKind() == ClassTemplatePartialSpecialization; } static bool classof(const CXXRecordDecl *D) { return true; } static bool classof(const ClassTemplateSpecializationDecl *D) { return true; } }; /// CXXMethodDecl - Represents a static or instance method of a /// struct/union/class. class CXXMethodDecl : public FunctionDecl { protected: CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isStatic, bool isInline) : FunctionDecl(DK, RD, L, N, T, (isStatic ? Static : None), isInline) {} public: static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isStatic = false, bool isInline = false); bool isStatic() const { return getStorageClass() == Static; } bool isInstance() const { return !isStatic(); } bool isVirtual() const { return isVirtualAsWritten() || (begin_overridden_methods() != end_overridden_methods()); } /// void addOverriddenMethod(const CXXMethodDecl *MD); typedef const CXXMethodDecl ** method_iterator; method_iterator begin_overridden_methods() const; method_iterator end_overridden_methods() const; /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. const CXXRecordDecl *getParent() const { return cast(FunctionDecl::getParent()); } /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. CXXRecordDecl *getParent() { return const_cast( cast(FunctionDecl::getParent())); } /// getThisType - Returns the type of 'this' pointer. /// Should only be called for instance methods. QualType getThisType(ASTContext &C) const; unsigned getTypeQualifiers() const { return getType()->getAsFunctionProtoType()->getTypeQuals(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() >= CXXMethod && D->getKind() <= CXXConversion; } static bool classof(const CXXMethodDecl *D) { return true; } }; /// CXXBaseOrMemberInitializer - Represents a C++ base or member /// initializer, which is part of a constructor initializer that /// initializes one non-static member variable or one base class. For /// example, in the following, both 'A(a)' and 'f(3.14159)' are member /// initializers: /// /// @code /// class A { }; /// class B : public A { /// float f; /// public: /// B(A& a) : A(a), f(3.14159) { } /// }; /// @endcode class CXXBaseOrMemberInitializer { /// BaseOrMember - This points to the entity being initialized, /// which is either a base class (a Type) or a non-static data /// member. When the low bit is 1, it's a base /// class; when the low bit is 0, it's a member. uintptr_t BaseOrMember; /// Args - The arguments used to initialize the base or member. Expr **Args; unsigned NumArgs; public: /// CXXBaseOrMemberInitializer - Creates a new base-class initializer. explicit CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs); /// CXXBaseOrMemberInitializer - Creates a new member initializer. explicit CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs); /// ~CXXBaseOrMemberInitializer - Destroy the base or member initializer. ~CXXBaseOrMemberInitializer(); /// arg_iterator - Iterates through the member initialization /// arguments. typedef Expr **arg_iterator; /// arg_const_iterator - Iterates through the member initialization /// arguments. typedef Expr * const * arg_const_iterator; /// isBaseInitializer - Returns true when this initializer is /// initializing a base class. bool isBaseInitializer() const { return (BaseOrMember & 0x1) != 0; } /// isMemberInitializer - Returns true when this initializer is /// initializing a non-static data member. bool isMemberInitializer() const { return (BaseOrMember & 0x1) == 0; } /// getBaseClass - If this is a base class initializer, returns the /// type used to specify the initializer. The resulting type will be /// a class type or a typedef of a class type. If this is not a base /// class initializer, returns NULL. Type *getBaseClass() { if (isBaseInitializer()) return reinterpret_cast(BaseOrMember & ~0x01); else return 0; } /// getBaseClass - If this is a base class initializer, returns the /// type used to specify the initializer. The resulting type will be /// a class type or a typedef of a class type. If this is not a base /// class initializer, returns NULL. const Type *getBaseClass() const { if (isBaseInitializer()) return reinterpret_cast(BaseOrMember & ~0x01); else return 0; } /// getMember - If this is a member initializer, returns the /// declaration of the non-static data member being /// initialized. Otherwise, returns NULL. FieldDecl *getMember() { if (isMemberInitializer()) return reinterpret_cast(BaseOrMember); else return 0; } /// begin() - Retrieve an iterator to the first initializer argument. arg_iterator begin() { return Args; } /// begin() - Retrieve an iterator to the first initializer argument. arg_const_iterator begin() const { return Args; } /// end() - Retrieve an iterator past the last initializer argument. arg_iterator end() { return Args + NumArgs; } /// end() - Retrieve an iterator past the last initializer argument. arg_const_iterator end() const { return Args + NumArgs; } /// getNumArgs - Determine the number of arguments used to /// initialize the member or base. unsigned getNumArgs() const { return NumArgs; } }; /// CXXConstructorDecl - Represents a C++ constructor within a /// class. For example: /// /// @code /// class X { /// public: /// explicit X(int); // represented by a CXXConstructorDecl. /// }; /// @endcode class CXXConstructorDecl : public CXXMethodDecl { /// Explicit - Whether this constructor is explicit. bool Explicit : 1; /// ImplicitlyDefined - Whether this constructor was implicitly /// defined by the compiler. When false, the constructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a constructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; /// FIXME: Add support for base and member initializers. CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isExplicit, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXConstructor, RD, L, N, T, false, isInline), Explicit(isExplicit), ImplicitlyDefined(false) { setImplicit(isImplicitlyDeclared); } public: static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isExplicit, bool isInline, bool isImplicitlyDeclared); /// isExplicit - Whether this constructor was marked "explicit" or not. bool isExplicit() const { return Explicit; } /// isImplicitlyDefined - Whether this constructor was implicitly /// defined. If false, then this constructor was defined by the /// user. This operation can only be invoked if the constructor has /// already been defined. bool isImplicitlyDefined(ASTContext &C) const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the constructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this constructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the constructor has been defined"); ImplicitlyDefined = ID; } /// isDefaultConstructor - Whether this constructor is a default /// constructor (C++ [class.ctor]p5), which can be used to /// default-initialize a class of this type. bool isDefaultConstructor() const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. @p TypeQuals will be set to the qualifiers on the /// argument type. For example, @p TypeQuals would be set to @c /// QualType::Const for the following copy constructor: /// /// @code /// class X { /// public: /// X(const X&); /// }; /// @endcode bool isCopyConstructor(ASTContext &Context, unsigned &TypeQuals) const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. bool isCopyConstructor(ASTContext &Context) const { unsigned TypeQuals = 0; return isCopyConstructor(Context, TypeQuals); } /// isConvertingConstructor - Whether this constructor is a /// converting constructor (C++ [class.conv.ctor]), which can be /// used for user-defined conversions. bool isConvertingConstructor() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXConstructor; } static bool classof(const CXXConstructorDecl *D) { return true; } }; /// CXXDestructorDecl - Represents a C++ destructor within a /// class. For example: /// /// @code /// class X { /// public: /// ~X(); // represented by a CXXDestructorDecl. /// }; /// @endcode class CXXDestructorDecl : public CXXMethodDecl { /// ImplicitlyDefined - Whether this destructor was implicitly /// defined by the compiler. When false, the destructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a destructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXDestructor, RD, L, N, T, false, isInline), ImplicitlyDefined(false) { setImplicit(isImplicitlyDeclared); } public: static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isImplicitlyDeclared); /// isImplicitlyDefined - Whether this destructor was implicitly /// defined. If false, then this destructor was defined by the /// user. This operation can only be invoked if the destructor has /// already been defined. bool isImplicitlyDefined() const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the destructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this destructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the destructor has been defined"); ImplicitlyDefined = ID; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXDestructor; } static bool classof(const CXXDestructorDecl *D) { return true; } }; /// CXXConversionDecl - Represents a C++ conversion function within a /// class. For example: /// /// @code /// class X { /// public: /// operator bool(); /// }; /// @endcode class CXXConversionDecl : public CXXMethodDecl { /// Explicit - Whether this conversion function is marked /// "explicit", meaning that it can only be applied when the user /// explicitly wrote a cast. This is a C++0x feature. bool Explicit : 1; CXXConversionDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isExplicit) : CXXMethodDecl(CXXConversion, RD, L, N, T, false, isInline), Explicit(isExplicit) { } public: static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isExplicit); /// isExplicit - Whether this is an explicit conversion operator /// (C++0x only). Explicit conversion operators are only considered /// when the user has explicitly written a cast. bool isExplicit() const { return Explicit; } /// getConversionType - Returns the type that this conversion /// function is converting to. QualType getConversionType() const { return getType()->getAsFunctionType()->getResultType(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXConversion; } static bool classof(const CXXConversionDecl *D) { return true; } }; /// LinkageSpecDecl - This represents a linkage specification. For example: /// extern "C" void foo(); /// class LinkageSpecDecl : public Decl, public DeclContext { public: /// LanguageIDs - Used to represent the language in a linkage /// specification. The values are part of the serialization abi for /// ASTs and cannot be changed without altering that abi. To help /// ensure a stable abi for this, we choose the DW_LANG_ encodings /// from the dwarf standard. enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002, lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 }; private: /// Language - The language for this linkage specification. LanguageIDs Language; /// HadBraces - Whether this linkage specification had curly braces or not. bool HadBraces : 1; LinkageSpecDecl(DeclContext *DC, SourceLocation L, LanguageIDs lang, bool Braces) : Decl(LinkageSpec, DC, L), DeclContext(LinkageSpec), Language(lang), HadBraces(Braces) { } public: static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, LanguageIDs Lang, bool Braces); LanguageIDs getLanguage() const { return Language; } /// hasBraces - Determines whether this linkage specification had /// braces in its syntactic form. bool hasBraces() const { return HadBraces; } static bool classof(const Decl *D) { return D->getKind() == LinkageSpec; } static bool classof(const LinkageSpecDecl *D) { return true; } static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { return static_cast(const_cast(D)); } static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// UsingDirectiveDecl - Represents C++ using-directive. For example: /// /// using namespace std; /// // NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide // artificial name, for all using-directives in order to store // them in DeclContext effectively. class UsingDirectiveDecl : public NamedDecl { /// SourceLocation - Location of 'namespace' token. SourceLocation NamespaceLoc; /// \brief The source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange QualifierRange; /// \brief The nested-name-specifier that precedes the namespace /// name, if any. NestedNameSpecifier *Qualifier; /// IdentLoc - Location of nominated namespace-name identifier. // FIXME: We don't store location of scope specifier. SourceLocation IdentLoc; /// NominatedNamespace - Namespace nominated by using-directive. NamespaceDecl *NominatedNamespace; /// Enclosing context containing both using-directive and nomintated /// namespace. DeclContext *CommonAncestor; /// getUsingDirectiveName - Returns special DeclarationName used by /// using-directives. This is only used by DeclContext for storing /// UsingDirectiveDecls in its lookup structure. static DeclarationName getName() { return DeclarationName::getUsingDirectiveName(); } UsingDirectiveDecl(DeclContext *DC, SourceLocation L, SourceLocation NamespcLoc, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamespaceDecl *Nominated, DeclContext *CommonAncestor) : NamedDecl(Decl::UsingDirective, DC, L, getName()), NamespaceLoc(NamespcLoc), QualifierRange(QualifierRange), Qualifier(Qualifier), IdentLoc(IdentLoc), NominatedNamespace(Nominated? Nominated->getOriginalNamespace() : 0), CommonAncestor(CommonAncestor) { } public: /// \brief Retrieve the source range of the nested-name-specifier /// that qualifiers the namespace name. SourceRange getQualifierRange() const { return QualifierRange; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return Qualifier; } /// getNominatedNamespace - Returns namespace nominated by using-directive. NamespaceDecl *getNominatedNamespace() { return NominatedNamespace; } const NamespaceDecl *getNominatedNamespace() const { return const_cast(this)->getNominatedNamespace(); } /// getCommonAncestor - returns common ancestor context of using-directive, /// and nominated by it namespace. DeclContext *getCommonAncestor() { return CommonAncestor; } const DeclContext *getCommonAncestor() const { return CommonAncestor; } /// getNamespaceKeyLocation - Returns location of namespace keyword. SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } /// getIdentLocation - Returns location of identifier. SourceLocation getIdentLocation() const { return IdentLoc; } static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation NamespaceLoc, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamespaceDecl *Nominated, DeclContext *CommonAncestor); static bool classof(const Decl *D) { return D->getKind() == Decl::UsingDirective; } static bool classof(const UsingDirectiveDecl *D) { return true; } // Friend for getUsingDirectiveName. friend class DeclContext; }; /// NamespaceAliasDecl - Represents a C++ namespace alias. For example: /// /// @code /// namespace Foo = Bar; /// @endcode class NamespaceAliasDecl : public NamedDecl { SourceLocation AliasLoc; /// \brief The source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange QualifierRange; /// \brief The nested-name-specifier that precedes the namespace /// name, if any. NestedNameSpecifier *Qualifier; /// IdentLoc - Location of namespace identifier. SourceLocation IdentLoc; /// Namespace - The Decl that this alias points to. Can either be a /// NamespaceDecl or a NamespaceAliasDecl. NamedDecl *Namespace; NamespaceAliasDecl(DeclContext *DC, SourceLocation L, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Namespace) : NamedDecl(Decl::NamespaceAlias, DC, L, Alias), AliasLoc(AliasLoc), QualifierRange(QualifierRange), Qualifier(Qualifier), IdentLoc(IdentLoc), Namespace(Namespace) { } public: /// \brief Retrieve the source range of the nested-name-specifier /// that qualifiers the namespace name. SourceRange getQualifierRange() const { return QualifierRange; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return Qualifier; } NamespaceDecl *getNamespace() { if (NamespaceAliasDecl *AD = dyn_cast(Namespace)) return AD->getNamespace(); return cast(Namespace); } const NamespaceDecl *getNamespace() const { return const_cast(this)->getNamespace(); } /// \brief Retrieve the namespace that this alias refers to, which /// may either be a NamespaceDecl or a NamespaceAliasDecl. NamedDecl *getAliasedNamespace() const { return Namespace; } static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Namespace); static bool classof(const Decl *D) { return D->getKind() == Decl::NamespaceAlias; } static bool classof(const NamespaceAliasDecl *D) { return true; } }; /// UsingDecl - Represents a C++ using-declaration. For example: /// using someNameSpace::someIdentifier; class UsingDecl : public NamedDecl { /// \brief The source range that covers the nested-name-specifier /// preceding the declaration name. SourceRange NestedNameRange; /// \brief The source location of the target declaration name. SourceLocation TargetNameLocation; /// \brief The source location of the "using" location itself. SourceLocation UsingLocation; /// \brief Target declaration. NamedDecl* TargetDecl; /// \brief Target declaration. NestedNameSpecifier* TargetNestedNameDecl; // Had 'typename' keyword. bool IsTypeName; UsingDecl(DeclContext *DC, SourceLocation L, SourceRange NNR, SourceLocation TargetNL, SourceLocation UL, NamedDecl* Target, NestedNameSpecifier* TargetNNS, bool IsTypeNameArg) : NamedDecl(Decl::Using, DC, L, Target->getDeclName()), NestedNameRange(NNR), TargetNameLocation(TargetNL), UsingLocation(UL), TargetDecl(Target), TargetNestedNameDecl(TargetNNS), IsTypeName(IsTypeNameArg) { this->IdentifierNamespace = TargetDecl->getIdentifierNamespace(); } public: /// \brief Returns the source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange getNestedNameRange() { return(NestedNameRange); } /// \brief Returns the source location of the target declaration name. SourceLocation getTargetNameLocation() { return(TargetNameLocation); } /// \brief Returns the source location of the "using" location itself. SourceLocation getUsingLocation() { return(UsingLocation); } /// \brief getTargetDecl - Returns target specified by using-decl. NamedDecl *getTargetDecl() { return(TargetDecl); } /// \brief Get target nested name declaration. NestedNameSpecifier* getTargetNestedNameDecl() { return(TargetNestedNameDecl); } /// isTypeName - Return true if using decl had 'typename'. bool isTypeName() const { return(IsTypeName); } static UsingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceRange NNR, SourceLocation TargetNL, SourceLocation UL, NamedDecl* Target, NestedNameSpecifier* TargetNNS, bool IsTypeNameArg); static bool classof(const Decl *D) { return D->getKind() == Decl::Using; } static bool classof(const UsingDecl *D) { return true; } }; /// StaticAssertDecl - Represents a C++0x static_assert declaration. class StaticAssertDecl : public Decl { Expr *AssertExpr; StringLiteral *Message; StaticAssertDecl(DeclContext *DC, SourceLocation L, Expr *assertexpr, StringLiteral *message) : Decl(StaticAssert, DC, L), AssertExpr(assertexpr), Message(message) { } public: static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, Expr *AssertExpr, StringLiteral *Message); Expr *getAssertExpr() { return AssertExpr; } const Expr *getAssertExpr() const { return AssertExpr; } StringLiteral *getMessage() { return Message; } const StringLiteral *getMessage() const { return Message; } virtual ~StaticAssertDecl(); virtual void Destroy(ASTContext& C); static bool classof(const Decl *D) { return D->getKind() == Decl::StaticAssert; } static bool classof(StaticAssertDecl *D) { return true; } }; /// Insertion operator for diagnostics. This allows sending AccessSpecifier's /// into a diagnostic with <<. const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, AccessSpecifier AS); } // end namespace clang #endif