//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This is the LLVM vectorization plan. It represents a candidate for /// vectorization, allowing to plan and optimize how to vectorize a given loop /// before generating LLVM-IR. /// The vectorizer uses vectorization plans to estimate the costs of potential /// candidates and if profitable to execute the desired plan, generating vector /// LLVM-IR code. /// //===----------------------------------------------------------------------===// #include "VPlan.h" #include "VPlanDominatorTree.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include using namespace llvm; extern cl::opt EnableVPlanNativePath; #define DEBUG_TYPE "vplan" raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { const VPInstruction *Instr = dyn_cast(&V); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); V.print(OS, SlotTracker); return OS; } void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { if (const VPInstruction *Instr = dyn_cast(this)) Instr->print(OS, SlotTracker); else printAsOperand(OS, SlotTracker); } // Get the top-most entry block of \p Start. This is the entry block of the // containing VPlan. This function is templated to support both const and non-const blocks template static T *getPlanEntry(T *Start) { T *Next = Start; T *Current = Start; while ((Next = Next->getParent())) Current = Next; SmallSetVector WorkList; WorkList.insert(Current); for (unsigned i = 0; i < WorkList.size(); i++) { T *Current = WorkList[i]; if (Current->getNumPredecessors() == 0) return Current; auto &Predecessors = Current->getPredecessors(); WorkList.insert(Predecessors.begin(), Predecessors.end()); } llvm_unreachable("VPlan without any entry node without predecessors"); } VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } VPBasicBlock *VPBlockBase::getEntryBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } void VPBlockBase::setPlan(VPlan *ParentPlan) { assert(ParentPlan->getEntry() == this && "Can only set plan on its entry block."); Plan = ParentPlan; } /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExit(); return cast(Block); } VPBasicBlock *VPBlockBase::getExitBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExit(); return cast(Block); } VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { if (!Successors.empty() || !Parent) return this; assert(Parent->getExit() == this && "Block w/o successors not the exit of its parent."); return Parent->getEnclosingBlockWithSuccessors(); } VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { if (!Predecessors.empty() || !Parent) return this; assert(Parent->getEntry() == this && "Block w/o predecessors not the entry of its parent."); return Parent->getEnclosingBlockWithPredecessors(); } void VPBlockBase::deleteCFG(VPBlockBase *Entry) { SmallVector Blocks; for (VPBlockBase *Block : depth_first(Entry)) Blocks.push_back(Block); for (VPBlockBase *Block : Blocks) delete Block; } BasicBlock * VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. // Pred stands for Predessor. Prev stands for Previous - last visited/created. BasicBlock *PrevBB = CFG.PrevBB; BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), PrevBB->getParent(), CFG.LastBB); LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); // Hook up the new basic block to its predecessors. for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); auto &PredVPSuccessors = PredVPBB->getSuccessors(); BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; // In outer loop vectorization scenario, the predecessor BBlock may not yet // be visited(backedge). Mark the VPBasicBlock for fixup at the end of // vectorization. We do not encounter this case in inner loop vectorization // as we start out by building a loop skeleton with the vector loop header // and latch blocks. As a result, we never enter this function for the // header block in the non VPlan-native path. if (!PredBB) { assert(EnableVPlanNativePath && "Unexpected null predecessor in non VPlan-native path"); CFG.VPBBsToFix.push_back(PredVPBB); continue; } assert(PredBB && "Predecessor basic-block not found building successor."); auto *PredBBTerminator = PredBB->getTerminator(); LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); if (isa(PredBBTerminator)) { assert(PredVPSuccessors.size() == 1 && "Predecessor ending w/o branch must have single successor."); PredBBTerminator->eraseFromParent(); BranchInst::Create(NewBB, PredBB); } else { assert(PredVPSuccessors.size() == 2 && "Predecessor ending with branch must have two successors."); unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; assert(!PredBBTerminator->getSuccessor(idx) && "Trying to reset an existing successor block."); PredBBTerminator->setSuccessor(idx, NewBB); } } return NewBB; } void VPBasicBlock::execute(VPTransformState *State) { bool Replica = State->Instance && !(State->Instance->Part == 0 && State->Instance->Lane == 0); VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; VPBlockBase *SingleHPred = nullptr; BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. // 1. Create an IR basic block, or reuse the last one if possible. // The last IR basic block is reused, as an optimization, in three cases: // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; // B. when the current VPBB has a single (hierarchical) predecessor which // is PrevVPBB and the latter has a single (hierarchical) successor; and // C. when the current VPBB is an entry of a region replica - where PrevVPBB // is the exit of this region from a previous instance, or the predecessor // of this region. if (PrevVPBB && /* A */ !((SingleHPred = getSingleHierarchicalPredecessor()) && SingleHPred->getExitBasicBlock() == PrevVPBB && PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ !(Replica && getPredecessors().empty())) { /* C */ NewBB = createEmptyBasicBlock(State->CFG); State->Builder.SetInsertPoint(NewBB); // Temporarily terminate with unreachable until CFG is rewired. UnreachableInst *Terminator = State->Builder.CreateUnreachable(); State->Builder.SetInsertPoint(Terminator); // Register NewBB in its loop. In innermost loops its the same for all BB's. Loop *L = State->LI->getLoopFor(State->CFG.LastBB); L->addBasicBlockToLoop(NewBB, *State->LI); State->CFG.PrevBB = NewBB; } // 2. Fill the IR basic block with IR instructions. LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() << " in BB:" << NewBB->getName() << '\n'); State->CFG.VPBB2IRBB[this] = NewBB; State->CFG.PrevVPBB = this; for (VPRecipeBase &Recipe : Recipes) Recipe.execute(*State); VPValue *CBV; if (EnableVPlanNativePath && (CBV = getCondBit())) { Value *IRCBV = CBV->getUnderlyingValue(); assert(IRCBV && "Unexpected null underlying value for condition bit"); // Condition bit value in a VPBasicBlock is used as the branch selector. In // the VPlan-native path case, since all branches are uniform we generate a // branch instruction using the condition value from vector lane 0 and dummy // successors. The successors are fixed later when the successor blocks are // visited. Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); NewCond = State->Builder.CreateExtractElement(NewCond, State->Builder.getInt32(0)); // Replace the temporary unreachable terminator with the new conditional // branch. auto *CurrentTerminator = NewBB->getTerminator(); assert(isa(CurrentTerminator) && "Expected to replace unreachable terminator with conditional " "branch."); auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); CondBr->setSuccessor(0, nullptr); ReplaceInstWithInst(CurrentTerminator, CondBr); } LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); } void VPRegionBlock::execute(VPTransformState *State) { ReversePostOrderTraversal RPOT(Entry); if (!isReplicator()) { // Visit the VPBlocks connected to "this", starting from it. for (VPBlockBase *Block : RPOT) { if (EnableVPlanNativePath) { // The inner loop vectorization path does not represent loop preheader // and exit blocks as part of the VPlan. In the VPlan-native path, skip // vectorizing loop preheader block. In future, we may replace this // check with the check for loop preheader. if (Block->getNumPredecessors() == 0) continue; // Skip vectorizing loop exit block. In future, we may replace this // check with the check for loop exit. if (Block->getNumSuccessors() == 0) continue; } LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } return; } assert(!State->Instance && "Replicating a Region with non-null instance."); // Enter replicating mode. State->Instance = {0, 0}; for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { State->Instance->Part = Part; for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { State->Instance->Lane = Lane; // Visit the VPBlocks connected to \p this, starting from it. for (VPBlockBase *Block : RPOT) { LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } } } // Exit replicating mode. State->Instance.reset(); } void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { assert(!Parent && "Recipe already in some VPBasicBlock"); assert(InsertPos->getParent() && "Insertion position not in any VPBasicBlock"); Parent = InsertPos->getParent(); Parent->getRecipeList().insert(InsertPos->getIterator(), this); } void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { assert(!Parent && "Recipe already in some VPBasicBlock"); assert(InsertPos->getParent() && "Insertion position not in any VPBasicBlock"); Parent = InsertPos->getParent(); Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); } void VPRecipeBase::removeFromParent() { assert(getParent() && "Recipe not in any VPBasicBlock"); getParent()->getRecipeList().remove(getIterator()); Parent = nullptr; } iplist::iterator VPRecipeBase::eraseFromParent() { assert(getParent() && "Recipe not in any VPBasicBlock"); return getParent()->getRecipeList().erase(getIterator()); } void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { removeFromParent(); insertAfter(InsertPos); } void VPInstruction::generateInstruction(VPTransformState &State, unsigned Part) { IRBuilder<> &Builder = State.Builder; if (Instruction::isBinaryOp(getOpcode())) { Value *A = State.get(getOperand(0), Part); Value *B = State.get(getOperand(1), Part); Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); State.set(this, V, Part); return; } switch (getOpcode()) { case VPInstruction::Not: { Value *A = State.get(getOperand(0), Part); Value *V = Builder.CreateNot(A); State.set(this, V, Part); break; } case VPInstruction::ICmpULE: { Value *IV = State.get(getOperand(0), Part); Value *TC = State.get(getOperand(1), Part); Value *V = Builder.CreateICmpULE(IV, TC); State.set(this, V, Part); break; } case Instruction::Select: { Value *Cond = State.get(getOperand(0), Part); Value *Op1 = State.get(getOperand(1), Part); Value *Op2 = State.get(getOperand(2), Part); Value *V = Builder.CreateSelect(Cond, Op1, Op2); State.set(this, V, Part); break; } case VPInstruction::ActiveLaneMask: { // Get first lane of vector induction variable. Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); // Get first lane of backedge-taken-count. Value *ScalarBTC = State.get(getOperand(1), {Part, 0}); auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); auto *PredTy = FixedVectorType::get(Int1Ty, State.VF); Instruction *Call = Builder.CreateIntrinsic( Intrinsic::get_active_lane_mask, {PredTy, ScalarBTC->getType()}, {VIVElem0, ScalarBTC}, nullptr, "active.lane.mask"); State.set(this, Call, Part); break; } default: llvm_unreachable("Unsupported opcode for instruction"); } } void VPInstruction::execute(VPTransformState &State) { assert(!State.Instance && "VPInstruction executing an Instance"); for (unsigned Part = 0; Part < State.UF; ++Part) generateInstruction(State, Part); } void VPInstruction::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"EMIT "; print(O, SlotTracker); } void VPInstruction::print(raw_ostream &O) const { VPSlotTracker SlotTracker(getParent()->getPlan()); print(O, SlotTracker); } void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { if (hasResult()) { printAsOperand(O, SlotTracker); O << " = "; } switch (getOpcode()) { case VPInstruction::Not: O << "not"; break; case VPInstruction::ICmpULE: O << "icmp ule"; break; case VPInstruction::SLPLoad: O << "combined load"; break; case VPInstruction::SLPStore: O << "combined store"; break; case VPInstruction::ActiveLaneMask: O << "active lane mask"; break; default: O << Instruction::getOpcodeName(getOpcode()); } for (const VPValue *Operand : operands()) { O << " "; Operand->printAsOperand(O, SlotTracker); } } /// Generate the code inside the body of the vectorized loop. Assumes a single /// LoopVectorBody basic-block was created for this. Introduce additional /// basic-blocks as needed, and fill them all. void VPlan::execute(VPTransformState *State) { // -1. Check if the backedge taken count is needed, and if so build it. if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { Value *TC = State->TripCount; IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), "trip.count.minus.1"); auto VF = State->VF; Value *VTCMO = VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) State->set(BackedgeTakenCount, VTCMO, Part); } // 0. Set the reverse mapping from VPValues to Values for code generation. for (auto &Entry : Value2VPValue) State->VPValue2Value[Entry.second] = Entry.first; BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); assert(VectorHeaderBB && "Loop preheader does not have a single successor."); // 1. Make room to generate basic-blocks inside loop body if needed. BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); Loop *L = State->LI->getLoopFor(VectorHeaderBB); L->addBasicBlockToLoop(VectorLatchBB, *State->LI); // Remove the edge between Header and Latch to allow other connections. // Temporarily terminate with unreachable until CFG is rewired. // Note: this asserts the generated code's assumption that // getFirstInsertionPt() can be dereferenced into an Instruction. VectorHeaderBB->getTerminator()->eraseFromParent(); State->Builder.SetInsertPoint(VectorHeaderBB); UnreachableInst *Terminator = State->Builder.CreateUnreachable(); State->Builder.SetInsertPoint(Terminator); // 2. Generate code in loop body. State->CFG.PrevVPBB = nullptr; State->CFG.PrevBB = VectorHeaderBB; State->CFG.LastBB = VectorLatchBB; for (VPBlockBase *Block : depth_first(Entry)) Block->execute(State); // Setup branch terminator successors for VPBBs in VPBBsToFix based on // VPBB's successors. for (auto VPBB : State->CFG.VPBBsToFix) { assert(EnableVPlanNativePath && "Unexpected VPBBsToFix in non VPlan-native path"); BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; assert(BB && "Unexpected null basic block for VPBB"); unsigned Idx = 0; auto *BBTerminator = BB->getTerminator(); for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); ++Idx; } } // 3. Merge the temporary latch created with the last basic-block filled. BasicBlock *LastBB = State->CFG.PrevBB; // Connect LastBB to VectorLatchBB to facilitate their merge. assert((EnableVPlanNativePath || isa(LastBB->getTerminator())) && "Expected InnerLoop VPlan CFG to terminate with unreachable"); assert((!EnableVPlanNativePath || isa(LastBB->getTerminator())) && "Expected VPlan CFG to terminate with branch in NativePath"); LastBB->getTerminator()->eraseFromParent(); BranchInst::Create(VectorLatchBB, LastBB); // Merge LastBB with Latch. bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); (void)Merged; assert(Merged && "Could not merge last basic block with latch."); VectorLatchBB = LastBB; // We do not attempt to preserve DT for outer loop vectorization currently. if (!EnableVPlanNativePath) updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, L->getExitBlock()); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void VPlan::dump() const { dbgs() << *this << '\n'; } #endif void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, BasicBlock *LoopLatchBB, BasicBlock *LoopExitBB) { BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); assert(LoopHeaderBB && "Loop preheader does not have a single successor."); // The vector body may be more than a single basic-block by this point. // Update the dominator tree information inside the vector body by propagating // it from header to latch, expecting only triangular control-flow, if any. BasicBlock *PostDomSucc = nullptr; for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { // Get the list of successors of this block. std::vector Succs(succ_begin(BB), succ_end(BB)); assert(Succs.size() <= 2 && "Basic block in vector loop has more than 2 successors."); PostDomSucc = Succs[0]; if (Succs.size() == 1) { assert(PostDomSucc->getSinglePredecessor() && "PostDom successor has more than one predecessor."); DT->addNewBlock(PostDomSucc, BB); continue; } BasicBlock *InterimSucc = Succs[1]; if (PostDomSucc->getSingleSuccessor() == InterimSucc) { PostDomSucc = Succs[1]; InterimSucc = Succs[0]; } assert(InterimSucc->getSingleSuccessor() == PostDomSucc && "One successor of a basic block does not lead to the other."); assert(InterimSucc->getSinglePredecessor() && "Interim successor has more than one predecessor."); assert(PostDomSucc->hasNPredecessors(2) && "PostDom successor has more than two predecessors."); DT->addNewBlock(InterimSucc, BB); DT->addNewBlock(PostDomSucc, BB); } // Latch block is a new dominator for the loop exit. DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); assert(DT->verify(DominatorTree::VerificationLevel::Fast)); } const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { return (isa(Block) ? "cluster_N" : "N") + Twine(getOrCreateBID(Block)); } const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { const std::string &Name = Block->getName(); if (!Name.empty()) return Name; return "VPB" + Twine(getOrCreateBID(Block)); } void VPlanPrinter::dump() { Depth = 1; bumpIndent(0); OS << "digraph VPlan {\n"; OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; if (!Plan.getName().empty()) OS << "\\n" << DOT::EscapeString(Plan.getName()); if (Plan.BackedgeTakenCount) { OS << ", where:\\n"; Plan.BackedgeTakenCount->print(OS, SlotTracker); OS << " := BackedgeTakenCount"; } OS << "\"]\n"; OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; OS << "edge [fontname=Courier, fontsize=30]\n"; OS << "compound=true\n"; for (const VPBlockBase *Block : depth_first(Plan.getEntry())) dumpBlock(Block); OS << "}\n"; } void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { if (const VPBasicBlock *BasicBlock = dyn_cast(Block)) dumpBasicBlock(BasicBlock); else if (const VPRegionBlock *Region = dyn_cast(Block)) dumpRegion(Region); else llvm_unreachable("Unsupported kind of VPBlock."); } void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, const Twine &Label) { // Due to "dot" we print an edge between two regions as an edge between the // exit basic block and the entry basic of the respective regions. const VPBlockBase *Tail = From->getExitBasicBlock(); const VPBlockBase *Head = To->getEntryBasicBlock(); OS << Indent << getUID(Tail) << " -> " << getUID(Head); OS << " [ label=\"" << Label << '\"'; if (Tail != From) OS << " ltail=" << getUID(From); if (Head != To) OS << " lhead=" << getUID(To); if (Hidden) OS << "; splines=none"; OS << "]\n"; } void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { auto &Successors = Block->getSuccessors(); if (Successors.size() == 1) drawEdge(Block, Successors.front(), false, ""); else if (Successors.size() == 2) { drawEdge(Block, Successors.front(), false, "T"); drawEdge(Block, Successors.back(), false, "F"); } else { unsigned SuccessorNumber = 0; for (auto *Successor : Successors) drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); } } void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { OS << Indent << getUID(BasicBlock) << " [label =\n"; bumpIndent(1); OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; bumpIndent(1); // Dump the block predicate. const VPValue *Pred = BasicBlock->getPredicate(); if (Pred) { OS << " +\n" << Indent << " \"BlockPredicate: "; if (const VPInstruction *PredI = dyn_cast(Pred)) { PredI->printAsOperand(OS, SlotTracker); OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) << ")\\l\""; } else Pred->printAsOperand(OS, SlotTracker); } for (const VPRecipeBase &Recipe : *BasicBlock) { OS << " +\n" << Indent; Recipe.print(OS, Indent, SlotTracker); OS << "\\l\""; } // Dump the condition bit. const VPValue *CBV = BasicBlock->getCondBit(); if (CBV) { OS << " +\n" << Indent << " \"CondBit: "; if (const VPInstruction *CBI = dyn_cast(CBV)) { CBI->printAsOperand(OS, SlotTracker); OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; } else { CBV->printAsOperand(OS, SlotTracker); OS << "\""; } } bumpIndent(-2); OS << "\n" << Indent << "]\n"; dumpEdges(BasicBlock); } void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { OS << Indent << "subgraph " << getUID(Region) << " {\n"; bumpIndent(1); OS << Indent << "fontname=Courier\n" << Indent << "label=\"" << DOT::EscapeString(Region->isReplicator() ? " " : " ") << DOT::EscapeString(Region->getName()) << "\"\n"; // Dump the blocks of the region. assert(Region->getEntry() && "Region contains no inner blocks."); for (const VPBlockBase *Block : depth_first(Region->getEntry())) dumpBlock(Block); bumpIndent(-1); OS << Indent << "}\n"; dumpEdges(Region); } void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { std::string IngredientString; raw_string_ostream RSO(IngredientString); if (auto *Inst = dyn_cast(V)) { if (!Inst->getType()->isVoidTy()) { Inst->printAsOperand(RSO, false); RSO << " = "; } RSO << Inst->getOpcodeName() << " "; unsigned E = Inst->getNumOperands(); if (E > 0) { Inst->getOperand(0)->printAsOperand(RSO, false); for (unsigned I = 1; I < E; ++I) Inst->getOperand(I)->printAsOperand(RSO << ", ", false); } } else // !Inst V->printAsOperand(RSO, false); RSO.flush(); O << DOT::EscapeString(IngredientString); } void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); } void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) << (InvariantCond ? " (condition is loop invariant)" : ""); } void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN\\l\""; O << "\" " << VPlanIngredient(&Ingredient); } void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN-INDUCTION"; if (Trunc) { O << "\\l\""; O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); } else O << " " << VPlanIngredient(IV); } void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN-GEP "; O << (IsPtrLoopInvariant ? "Inv" : "Var"); size_t IndicesNumber = IsIndexLoopInvariant.size(); for (size_t I = 0; I < IndicesNumber; ++I) O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; O << "\\l\""; O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); } void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN-PHI " << VPlanIngredient(Phi); } void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"BLEND "; Phi->printAsOperand(O, false); O << " ="; if (getNumIncomingValues() == 1) { // Not a User of any mask: not really blending, this is a // single-predecessor phi. O << " "; getIncomingValue(0)->printAsOperand(O, SlotTracker); } else { for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { O << " "; getIncomingValue(I)->printAsOperand(O, SlotTracker); O << "/"; getMask(I)->printAsOperand(O, SlotTracker); } } } void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") << VPlanIngredient(Ingredient); if (AlsoPack) O << " (S->V)"; } void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); } void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"WIDEN " << VPlanIngredient(&Instr); O << ", "; getAddr()->printAsOperand(O, SlotTracker); VPValue *Mask = getMask(); if (Mask) { O << ", "; Mask->printAsOperand(O, SlotTracker); } } void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { Value *CanonicalIV = State.CanonicalIV; Type *STy = CanonicalIV->getType(); IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); auto VF = State.VF; Value *VStart = VF == 1 ? CanonicalIV : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { SmallVector Indices; for (unsigned Lane = 0; Lane < VF; ++Lane) Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); // If VF == 1, there is only one iteration in the loop above, thus the // element pushed back into Indices is ConstantInt::get(STy, Part) Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); // Add the consecutive indices to the vector value. Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); State.set(getVPValue(), CanonicalVectorIV, Part); } } void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << "\"EMIT "; getVPValue()->printAsOperand(O, SlotTracker); O << " = WIDEN-CANONICAL-INDUCTION"; } template void DomTreeBuilder::Calculate(VPDominatorTree &DT); void VPValue::replaceAllUsesWith(VPValue *New) { for (VPUser *User : users()) for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) if (User->getOperand(I) == this) User->setOperand(I, New); } void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { if (const Value *UV = getUnderlyingValue()) { OS << "ir<"; UV->printAsOperand(OS, false); OS << ">"; return; } unsigned Slot = Tracker.getSlot(this); if (Slot == unsigned(-1)) OS << ""; else OS << "vp<%" << Tracker.getSlot(this) << ">"; } void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { ReversePostOrderTraversal RPOT(Region->getEntry()); for (VPBlockBase *Base : RPOT) { visitBlock(Base, Old2New, IAI); } } void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { if (VPBasicBlock *VPBB = dyn_cast(Block)) { for (VPRecipeBase &VPI : *VPBB) { assert(isa(&VPI) && "Can only handle VPInstructions"); auto *VPInst = cast(&VPI); auto *Inst = cast(VPInst->getUnderlyingValue()); auto *IG = IAI.getInterleaveGroup(Inst); if (!IG) continue; auto NewIGIter = Old2New.find(IG); if (NewIGIter == Old2New.end()) Old2New[IG] = new InterleaveGroup( IG->getFactor(), IG->isReverse(), IG->getAlign()); if (Inst == IG->getInsertPos()) Old2New[IG]->setInsertPos(VPInst); InterleaveGroupMap[VPInst] = Old2New[IG]; InterleaveGroupMap[VPInst]->insertMember( VPInst, IG->getIndex(Inst), Align(IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor())); } } else if (VPRegionBlock *Region = dyn_cast(Block)) visitRegion(Region, Old2New, IAI); else llvm_unreachable("Unsupported kind of VPBlock."); } VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI) { Old2NewTy Old2New; visitRegion(cast(Plan.getEntry()), Old2New, IAI); } void VPSlotTracker::assignSlot(const VPValue *V) { assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); const Value *UV = V->getUnderlyingValue(); if (UV) return; const auto *VPI = dyn_cast(V); if (VPI && !VPI->hasResult()) return; Slots[V] = NextSlot++; } void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { if (auto *Region = dyn_cast(VPBB)) assignSlots(Region); else assignSlots(cast(VPBB)); } void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { ReversePostOrderTraversal RPOT(Region->getEntry()); for (const VPBlockBase *Block : RPOT) assignSlots(Block); } void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { for (const VPRecipeBase &Recipe : *VPBB) { if (const auto *VPI = dyn_cast(&Recipe)) assignSlot(VPI); else if (const auto *VPIV = dyn_cast(&Recipe)) assignSlot(VPIV->getVPValue()); } } void VPSlotTracker::assignSlots(const VPlan &Plan) { for (const VPValue *V : Plan.VPExternalDefs) assignSlot(V); for (auto &E : Plan.Value2VPValue) if (!isa(E.second)) assignSlot(E.second); for (const VPValue *V : Plan.VPCBVs) assignSlot(V); if (Plan.BackedgeTakenCount) assignSlot(Plan.BackedgeTakenCount); ReversePostOrderTraversal RPOT(Plan.getEntry()); for (const VPBlockBase *Block : RPOT) assignSlots(Block); }