//===-------- LoopDataPrefetch.cpp - Loop Data Prefetching Pass -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a Loop Data Prefetching Pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopDataPrefetch.h" #include "llvm/InitializePasses.h" #define DEBUG_TYPE "loop-data-prefetch" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/ValueMapper.h" using namespace llvm; // By default, we limit this to creating 16 PHIs (which is a little over half // of the allocatable register set). static cl::opt PrefetchWrites("loop-prefetch-writes", cl::Hidden, cl::init(false), cl::desc("Prefetch write addresses")); static cl::opt PrefetchDistance("prefetch-distance", cl::desc("Number of instructions to prefetch ahead"), cl::Hidden); static cl::opt MinPrefetchStride("min-prefetch-stride", cl::desc("Min stride to add prefetches"), cl::Hidden); static cl::opt MaxPrefetchIterationsAhead( "max-prefetch-iters-ahead", cl::desc("Max number of iterations to prefetch ahead"), cl::Hidden); STATISTIC(NumPrefetches, "Number of prefetches inserted"); namespace { /// Loop prefetch implementation class. class LoopDataPrefetch { public: LoopDataPrefetch(AssumptionCache *AC, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE) : AC(AC), DT(DT), LI(LI), SE(SE), TTI(TTI), ORE(ORE) {} bool run(); private: bool runOnLoop(Loop *L); /// Check if the stride of the accesses is large enough to /// warrant a prefetch. bool isStrideLargeEnough(const SCEVAddRecExpr *AR, unsigned TargetMinStride); unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) { if (MinPrefetchStride.getNumOccurrences() > 0) return MinPrefetchStride; return TTI->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, NumPrefetches, HasCall); } unsigned getPrefetchDistance() { if (PrefetchDistance.getNumOccurrences() > 0) return PrefetchDistance; return TTI->getPrefetchDistance(); } unsigned getMaxPrefetchIterationsAhead() { if (MaxPrefetchIterationsAhead.getNumOccurrences() > 0) return MaxPrefetchIterationsAhead; return TTI->getMaxPrefetchIterationsAhead(); } bool doPrefetchWrites() { if (PrefetchWrites.getNumOccurrences() > 0) return PrefetchWrites; return TTI->enableWritePrefetching(); } AssumptionCache *AC; DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; const TargetTransformInfo *TTI; OptimizationRemarkEmitter *ORE; }; /// Legacy class for inserting loop data prefetches. class LoopDataPrefetchLegacyPass : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid LoopDataPrefetchLegacyPass() : FunctionPass(ID) { initializeLoopDataPrefetchLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); } bool runOnFunction(Function &F) override; }; } char LoopDataPrefetchLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopDataPrefetchLegacyPass, "loop-data-prefetch", "Loop Data Prefetch", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(LoopDataPrefetchLegacyPass, "loop-data-prefetch", "Loop Data Prefetch", false, false) FunctionPass *llvm::createLoopDataPrefetchPass() { return new LoopDataPrefetchLegacyPass(); } bool LoopDataPrefetch::isStrideLargeEnough(const SCEVAddRecExpr *AR, unsigned TargetMinStride) { // No need to check if any stride goes. if (TargetMinStride <= 1) return true; const auto *ConstStride = dyn_cast(AR->getStepRecurrence(*SE)); // If MinStride is set, don't prefetch unless we can ensure that stride is // larger. if (!ConstStride) return false; unsigned AbsStride = std::abs(ConstStride->getAPInt().getSExtValue()); return TargetMinStride <= AbsStride; } PreservedAnalyses LoopDataPrefetchPass::run(Function &F, FunctionAnalysisManager &AM) { DominatorTree *DT = &AM.getResult(F); LoopInfo *LI = &AM.getResult(F); ScalarEvolution *SE = &AM.getResult(F); AssumptionCache *AC = &AM.getResult(F); OptimizationRemarkEmitter *ORE = &AM.getResult(F); const TargetTransformInfo *TTI = &AM.getResult(F); LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE); bool Changed = LDP.run(); if (Changed) { PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; } return PreservedAnalyses::all(); } bool LoopDataPrefetchLegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; DominatorTree *DT = &getAnalysis().getDomTree(); LoopInfo *LI = &getAnalysis().getLoopInfo(); ScalarEvolution *SE = &getAnalysis().getSE(); AssumptionCache *AC = &getAnalysis().getAssumptionCache(F); OptimizationRemarkEmitter *ORE = &getAnalysis().getORE(); const TargetTransformInfo *TTI = &getAnalysis().getTTI(F); LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE); return LDP.run(); } bool LoopDataPrefetch::run() { // If PrefetchDistance is not set, don't run the pass. This gives an // opportunity for targets to run this pass for selected subtargets only // (whose TTI sets PrefetchDistance). if (getPrefetchDistance() == 0) return false; assert(TTI->getCacheLineSize() && "Cache line size is not set for target"); bool MadeChange = false; for (Loop *I : *LI) for (auto L = df_begin(I), LE = df_end(I); L != LE; ++L) MadeChange |= runOnLoop(*L); return MadeChange; } /// A record for a potential prefetch made during the initial scan of the /// loop. This is used to let a single prefetch target multiple memory accesses. struct Prefetch { /// The address formula for this prefetch as returned by ScalarEvolution. const SCEVAddRecExpr *LSCEVAddRec; /// The point of insertion for the prefetch instruction. Instruction *InsertPt; /// True if targeting a write memory access. bool Writes; /// The (first seen) prefetched instruction. Instruction *MemI; /// Constructor to create a new Prefetch for \p I. Prefetch(const SCEVAddRecExpr *L, Instruction *I) : LSCEVAddRec(L), InsertPt(nullptr), Writes(false), MemI(nullptr) { addInstruction(I); }; /// Add the instruction \param I to this prefetch. If it's not the first /// one, 'InsertPt' and 'Writes' will be updated as required. /// \param PtrDiff the known constant address difference to the first added /// instruction. void addInstruction(Instruction *I, DominatorTree *DT = nullptr, int64_t PtrDiff = 0) { if (!InsertPt) { MemI = I; InsertPt = I; Writes = isa(I); } else { BasicBlock *PrefBB = InsertPt->getParent(); BasicBlock *InsBB = I->getParent(); if (PrefBB != InsBB) { BasicBlock *DomBB = DT->findNearestCommonDominator(PrefBB, InsBB); if (DomBB != PrefBB) InsertPt = DomBB->getTerminator(); } if (isa(I) && PtrDiff == 0) Writes = true; } } }; bool LoopDataPrefetch::runOnLoop(Loop *L) { bool MadeChange = false; // Only prefetch in the inner-most loop if (!L->empty()) return MadeChange; SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(L, AC, EphValues); // Calculate the number of iterations ahead to prefetch CodeMetrics Metrics; bool HasCall = false; for (const auto BB : L->blocks()) { // If the loop already has prefetches, then assume that the user knows // what they are doing and don't add any more. for (auto &I : *BB) { if (isa(&I) || isa(&I)) { if (const Function *F = cast(I).getCalledFunction()) { if (F->getIntrinsicID() == Intrinsic::prefetch) return MadeChange; if (TTI->isLoweredToCall(F)) HasCall = true; } else { // indirect call. HasCall = true; } } } Metrics.analyzeBasicBlock(BB, *TTI, EphValues); } unsigned LoopSize = Metrics.NumInsts; if (!LoopSize) LoopSize = 1; unsigned ItersAhead = getPrefetchDistance() / LoopSize; if (!ItersAhead) ItersAhead = 1; if (ItersAhead > getMaxPrefetchIterationsAhead()) return MadeChange; unsigned ConstantMaxTripCount = SE->getSmallConstantMaxTripCount(L); if (ConstantMaxTripCount && ConstantMaxTripCount < ItersAhead + 1) return MadeChange; unsigned NumMemAccesses = 0; unsigned NumStridedMemAccesses = 0; SmallVector Prefetches; for (const auto BB : L->blocks()) for (auto &I : *BB) { Value *PtrValue; Instruction *MemI; if (LoadInst *LMemI = dyn_cast(&I)) { MemI = LMemI; PtrValue = LMemI->getPointerOperand(); } else if (StoreInst *SMemI = dyn_cast(&I)) { if (!doPrefetchWrites()) continue; MemI = SMemI; PtrValue = SMemI->getPointerOperand(); } else continue; unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace(); if (PtrAddrSpace) continue; NumMemAccesses++; if (L->isLoopInvariant(PtrValue)) continue; const SCEV *LSCEV = SE->getSCEV(PtrValue); const SCEVAddRecExpr *LSCEVAddRec = dyn_cast(LSCEV); if (!LSCEVAddRec) continue; NumStridedMemAccesses++; // We don't want to double prefetch individual cache lines. If this // access is known to be within one cache line of some other one that // has already been prefetched, then don't prefetch this one as well. bool DupPref = false; for (auto &Pref : Prefetches) { const SCEV *PtrDiff = SE->getMinusSCEV(LSCEVAddRec, Pref.LSCEVAddRec); if (const SCEVConstant *ConstPtrDiff = dyn_cast(PtrDiff)) { int64_t PD = std::abs(ConstPtrDiff->getValue()->getSExtValue()); if (PD < (int64_t) TTI->getCacheLineSize()) { Pref.addInstruction(MemI, DT, PD); DupPref = true; break; } } } if (!DupPref) Prefetches.push_back(Prefetch(LSCEVAddRec, MemI)); } unsigned TargetMinStride = getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, Prefetches.size(), HasCall); LLVM_DEBUG(dbgs() << "Prefetching " << ItersAhead << " iterations ahead (loop size: " << LoopSize << ") in " << L->getHeader()->getParent()->getName() << ": " << *L); LLVM_DEBUG(dbgs() << "Loop has: " << NumMemAccesses << " memory accesses, " << NumStridedMemAccesses << " strided memory accesses, " << Prefetches.size() << " potential prefetch(es), " << "a minimum stride of " << TargetMinStride << ", " << (HasCall ? "calls" : "no calls") << ".\n"); for (auto &P : Prefetches) { // Check if the stride of the accesses is large enough to warrant a // prefetch. if (!isStrideLargeEnough(P.LSCEVAddRec, TargetMinStride)) continue; const SCEV *NextLSCEV = SE->getAddExpr(P.LSCEVAddRec, SE->getMulExpr( SE->getConstant(P.LSCEVAddRec->getType(), ItersAhead), P.LSCEVAddRec->getStepRecurrence(*SE))); if (!isSafeToExpand(NextLSCEV, *SE)) continue; BasicBlock *BB = P.InsertPt->getParent(); Type *I8Ptr = Type::getInt8PtrTy(BB->getContext(), 0/*PtrAddrSpace*/); SCEVExpander SCEVE(*SE, BB->getModule()->getDataLayout(), "prefaddr"); Value *PrefPtrValue = SCEVE.expandCodeFor(NextLSCEV, I8Ptr, P.InsertPt); IRBuilder<> Builder(P.InsertPt); Module *M = BB->getParent()->getParent(); Type *I32 = Type::getInt32Ty(BB->getContext()); Function *PrefetchFunc = Intrinsic::getDeclaration( M, Intrinsic::prefetch, PrefPtrValue->getType()); Builder.CreateCall( PrefetchFunc, {PrefPtrValue, ConstantInt::get(I32, P.Writes), ConstantInt::get(I32, 3), ConstantInt::get(I32, 1)}); ++NumPrefetches; LLVM_DEBUG(dbgs() << " Access: " << *P.MemI->getOperand(isa(P.MemI) ? 0 : 1) << ", SCEV: " << *P.LSCEVAddRec << "\n"); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Prefetched", P.MemI) << "prefetched memory access"; }); MadeChange = true; } return MadeChange; }