//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { /// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind class X86AlignBranchKind { private: uint8_t AlignBranchKind = 0; public: void operator=(const std::string &Val) { if (Val.empty()) return; SmallVector BranchTypes; StringRef(Val).split(BranchTypes, '+', -1, false); for (auto BranchType : BranchTypes) { if (BranchType == "fused") addKind(X86::AlignBranchFused); else if (BranchType == "jcc") addKind(X86::AlignBranchJcc); else if (BranchType == "jmp") addKind(X86::AlignBranchJmp); else if (BranchType == "call") addKind(X86::AlignBranchCall); else if (BranchType == "ret") addKind(X86::AlignBranchRet); else if (BranchType == "indirect") addKind(X86::AlignBranchIndirect); else { errs() << "invalid argument " << BranchType.str() << " to -x86-align-branch=; each element must be one of: fused, " "jcc, jmp, call, ret, indirect.(plus separated)\n"; } } } operator uint8_t() const { return AlignBranchKind; } void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; } }; X86AlignBranchKind X86AlignBranchKindLoc; cl::opt X86AlignBranchBoundary( "x86-align-branch-boundary", cl::init(0), cl::desc( "Control how the assembler should align branches with NOP. If the " "boundary's size is not 0, it should be a power of 2 and no less " "than 32. Branches will be aligned to prevent from being across or " "against the boundary of specified size. The default value 0 does not " "align branches.")); cl::opt> X86AlignBranch( "x86-align-branch", cl::desc( "Specify types of branches to align (plus separated list of types):" "\njcc indicates conditional jumps" "\nfused indicates fused conditional jumps" "\njmp indicates direct unconditional jumps" "\ncall indicates direct and indirect calls" "\nret indicates rets" "\nindirect indicates indirect unconditional jumps"), cl::location(X86AlignBranchKindLoc)); cl::opt X86AlignBranchWithin32BBoundaries( "x86-branches-within-32B-boundaries", cl::init(false), cl::desc( "Align selected instructions to mitigate negative performance impact " "of Intel's micro code update for errata skx102. May break " "assumptions about labels corresponding to particular instructions, " "and should be used with caution.")); cl::opt X86PadMaxPrefixSize( "x86-pad-max-prefix-size", cl::init(0), cl::desc("Maximum number of prefixes to use for padding")); cl::opt X86PadForAlign( "x86-pad-for-align", cl::init(true), cl::Hidden, cl::desc("Pad previous instructions to implement align directives")); cl::opt X86PadForBranchAlign( "x86-pad-for-branch-align", cl::init(true), cl::Hidden, cl::desc("Pad previous instructions to implement branch alignment")); class X86ELFObjectWriter : public MCELFObjectTargetWriter { public: X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine, bool HasRelocationAddend, bool foobar) : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {} }; class X86AsmBackend : public MCAsmBackend { const MCSubtargetInfo &STI; std::unique_ptr MCII; X86AlignBranchKind AlignBranchType; Align AlignBoundary; unsigned TargetPrefixMax = 0; MCInst PrevInst; MCBoundaryAlignFragment *PendingBA = nullptr; std::pair PrevInstPosition; bool CanPadInst; uint8_t determinePaddingPrefix(const MCInst &Inst) const; bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const; bool needAlign(const MCInst &Inst) const; bool canPadBranches(MCObjectStreamer &OS) const; bool canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const; public: X86AsmBackend(const Target &T, const MCSubtargetInfo &STI) : MCAsmBackend(support::little), STI(STI), MCII(T.createMCInstrInfo()) { if (X86AlignBranchWithin32BBoundaries) { // At the moment, this defaults to aligning fused branches, unconditional // jumps, and (unfused) conditional jumps with nops. Both the // instructions aligned and the alignment method (nop vs prefix) may // change in the future. AlignBoundary = assumeAligned(32);; AlignBranchType.addKind(X86::AlignBranchFused); AlignBranchType.addKind(X86::AlignBranchJcc); AlignBranchType.addKind(X86::AlignBranchJmp); } // Allow overriding defaults set by master flag if (X86AlignBranchBoundary.getNumOccurrences()) AlignBoundary = assumeAligned(X86AlignBranchBoundary); if (X86AlignBranch.getNumOccurrences()) AlignBranchType = X86AlignBranchKindLoc; if (X86PadMaxPrefixSize.getNumOccurrences()) TargetPrefixMax = X86PadMaxPrefixSize; } bool allowAutoPadding() const override; bool allowEnhancedRelaxation() const override; void emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst) override; void emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) override; unsigned getNumFixupKinds() const override { return X86::NumTargetFixupKinds; } Optional getFixupKind(StringRef Name) const override; const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override; bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) override; void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const override; bool mayNeedRelaxation(const MCInst &Inst, const MCSubtargetInfo &STI) const override; bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const override; void relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const override; bool padInstructionViaRelaxation(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const; bool padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const; bool padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const; void finishLayout(MCAssembler const &Asm, MCAsmLayout &Layout) const override; bool writeNopData(raw_ostream &OS, uint64_t Count) const override; }; } // end anonymous namespace static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool Is16BitMode) { unsigned Op = Inst.getOpcode(); switch (Op) { default: return Op; case X86::JCC_1: return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4; case X86::JMP_1: return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4; } } static unsigned getRelaxedOpcodeArith(const MCInst &Inst) { unsigned Op = Inst.getOpcode(); switch (Op) { default: return Op; // IMUL case X86::IMUL16rri8: return X86::IMUL16rri; case X86::IMUL16rmi8: return X86::IMUL16rmi; case X86::IMUL32rri8: return X86::IMUL32rri; case X86::IMUL32rmi8: return X86::IMUL32rmi; case X86::IMUL64rri8: return X86::IMUL64rri32; case X86::IMUL64rmi8: return X86::IMUL64rmi32; // AND case X86::AND16ri8: return X86::AND16ri; case X86::AND16mi8: return X86::AND16mi; case X86::AND32ri8: return X86::AND32ri; case X86::AND32mi8: return X86::AND32mi; case X86::AND64ri8: return X86::AND64ri32; case X86::AND64mi8: return X86::AND64mi32; // OR case X86::OR16ri8: return X86::OR16ri; case X86::OR16mi8: return X86::OR16mi; case X86::OR32ri8: return X86::OR32ri; case X86::OR32mi8: return X86::OR32mi; case X86::OR64ri8: return X86::OR64ri32; case X86::OR64mi8: return X86::OR64mi32; // XOR case X86::XOR16ri8: return X86::XOR16ri; case X86::XOR16mi8: return X86::XOR16mi; case X86::XOR32ri8: return X86::XOR32ri; case X86::XOR32mi8: return X86::XOR32mi; case X86::XOR64ri8: return X86::XOR64ri32; case X86::XOR64mi8: return X86::XOR64mi32; // ADD case X86::ADD16ri8: return X86::ADD16ri; case X86::ADD16mi8: return X86::ADD16mi; case X86::ADD32ri8: return X86::ADD32ri; case X86::ADD32mi8: return X86::ADD32mi; case X86::ADD64ri8: return X86::ADD64ri32; case X86::ADD64mi8: return X86::ADD64mi32; // ADC case X86::ADC16ri8: return X86::ADC16ri; case X86::ADC16mi8: return X86::ADC16mi; case X86::ADC32ri8: return X86::ADC32ri; case X86::ADC32mi8: return X86::ADC32mi; case X86::ADC64ri8: return X86::ADC64ri32; case X86::ADC64mi8: return X86::ADC64mi32; // SUB case X86::SUB16ri8: return X86::SUB16ri; case X86::SUB16mi8: return X86::SUB16mi; case X86::SUB32ri8: return X86::SUB32ri; case X86::SUB32mi8: return X86::SUB32mi; case X86::SUB64ri8: return X86::SUB64ri32; case X86::SUB64mi8: return X86::SUB64mi32; // SBB case X86::SBB16ri8: return X86::SBB16ri; case X86::SBB16mi8: return X86::SBB16mi; case X86::SBB32ri8: return X86::SBB32ri; case X86::SBB32mi8: return X86::SBB32mi; case X86::SBB64ri8: return X86::SBB64ri32; case X86::SBB64mi8: return X86::SBB64mi32; // CMP case X86::CMP16ri8: return X86::CMP16ri; case X86::CMP16mi8: return X86::CMP16mi; case X86::CMP32ri8: return X86::CMP32ri; case X86::CMP32mi8: return X86::CMP32mi; case X86::CMP64ri8: return X86::CMP64ri32; case X86::CMP64mi8: return X86::CMP64mi32; // PUSH case X86::PUSH32i8: return X86::PUSHi32; case X86::PUSH16i8: return X86::PUSHi16; case X86::PUSH64i8: return X86::PUSH64i32; } } static unsigned getRelaxedOpcode(const MCInst &Inst, bool Is16BitMode) { unsigned R = getRelaxedOpcodeArith(Inst); if (R != Inst.getOpcode()) return R; return getRelaxedOpcodeBranch(Inst, Is16BitMode); } static X86::CondCode getCondFromBranch(const MCInst &MI, const MCInstrInfo &MCII) { unsigned Opcode = MI.getOpcode(); switch (Opcode) { default: return X86::COND_INVALID; case X86::JCC_1: { const MCInstrDesc &Desc = MCII.get(Opcode); return static_cast( MI.getOperand(Desc.getNumOperands() - 1).getImm()); } } } static X86::SecondMacroFusionInstKind classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) { X86::CondCode CC = getCondFromBranch(MI, MCII); return classifySecondCondCodeInMacroFusion(CC); } /// Check if the instruction uses RIP relative addressing. static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; unsigned CurOp = X86II::getOperandBias(Desc); int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); if (MemoryOperand < 0) return false; unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg; unsigned BaseReg = MI.getOperand(BaseRegNum).getReg(); return (BaseReg == X86::RIP); } /// Check if the instruction is a prefix. static bool isPrefix(const MCInst &MI, const MCInstrInfo &MCII) { return X86II::isPrefix(MCII.get(MI.getOpcode()).TSFlags); } /// Check if the instruction is valid as the first instruction in macro fusion. static bool isFirstMacroFusibleInst(const MCInst &Inst, const MCInstrInfo &MCII) { // An Intel instruction with RIP relative addressing is not macro fusible. if (isRIPRelative(Inst, MCII)) return false; X86::FirstMacroFusionInstKind FIK = X86::classifyFirstOpcodeInMacroFusion(Inst.getOpcode()); return FIK != X86::FirstMacroFusionInstKind::Invalid; } /// X86 can reduce the bytes of NOP by padding instructions with prefixes to /// get a better peformance in some cases. Here, we determine which prefix is /// the most suitable. /// /// If the instruction has a segment override prefix, use the existing one. /// If the target is 64-bit, use the CS. /// If the target is 32-bit, /// - If the instruction has a ESP/EBP base register, use SS. /// - Otherwise use DS. uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const { assert((STI.hasFeature(X86::Mode32Bit) || STI.hasFeature(X86::Mode64Bit)) && "Prefixes can be added only in 32-bit or 64-bit mode."); const MCInstrDesc &Desc = MCII->get(Inst.getOpcode()); uint64_t TSFlags = Desc.TSFlags; // Determine where the memory operand starts, if present. int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); if (MemoryOperand != -1) MemoryOperand += X86II::getOperandBias(Desc); unsigned SegmentReg = 0; if (MemoryOperand >= 0) { // Check for explicit segment override on memory operand. SegmentReg = Inst.getOperand(MemoryOperand + X86::AddrSegmentReg).getReg(); } switch (TSFlags & X86II::FormMask) { default: break; case X86II::RawFrmDstSrc: { // Check segment override opcode prefix as needed (not for %ds). if (Inst.getOperand(2).getReg() != X86::DS) SegmentReg = Inst.getOperand(2).getReg(); break; } case X86II::RawFrmSrc: { // Check segment override opcode prefix as needed (not for %ds). if (Inst.getOperand(1).getReg() != X86::DS) SegmentReg = Inst.getOperand(1).getReg(); break; } case X86II::RawFrmMemOffs: { // Check segment override opcode prefix as needed. SegmentReg = Inst.getOperand(1).getReg(); break; } } if (SegmentReg != 0) return X86::getSegmentOverridePrefixForReg(SegmentReg); if (STI.hasFeature(X86::Mode64Bit)) return X86::CS_Encoding; if (MemoryOperand >= 0) { unsigned BaseRegNum = MemoryOperand + X86::AddrBaseReg; unsigned BaseReg = Inst.getOperand(BaseRegNum).getReg(); if (BaseReg == X86::ESP || BaseReg == X86::EBP) return X86::SS_Encoding; } return X86::DS_Encoding; } /// Check if the two instructions will be macro-fused on the target cpu. bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const { const MCInstrDesc &InstDesc = MCII->get(Jcc.getOpcode()); if (!InstDesc.isConditionalBranch()) return false; if (!isFirstMacroFusibleInst(Cmp, *MCII)) return false; const X86::FirstMacroFusionInstKind CmpKind = X86::classifyFirstOpcodeInMacroFusion(Cmp.getOpcode()); const X86::SecondMacroFusionInstKind BranchKind = classifySecondInstInMacroFusion(Jcc, *MCII); return X86::isMacroFused(CmpKind, BranchKind); } /// Check if the instruction has a variant symbol operand. static bool hasVariantSymbol(const MCInst &MI) { for (auto &Operand : MI) { if (!Operand.isExpr()) continue; const MCExpr &Expr = *Operand.getExpr(); if (Expr.getKind() == MCExpr::SymbolRef && cast(Expr).getKind() != MCSymbolRefExpr::VK_None) return true; } return false; } bool X86AsmBackend::allowAutoPadding() const { return (AlignBoundary != Align(1) && AlignBranchType != X86::AlignBranchNone); } bool X86AsmBackend::allowEnhancedRelaxation() const { return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign; } /// X86 has certain instructions which enable interrupts exactly one /// instruction *after* the instruction which stores to SS. Return true if the /// given instruction has such an interrupt delay slot. static bool hasInterruptDelaySlot(const MCInst &Inst) { switch (Inst.getOpcode()) { case X86::POPSS16: case X86::POPSS32: case X86::STI: return true; case X86::MOV16sr: case X86::MOV32sr: case X86::MOV64sr: case X86::MOV16sm: if (Inst.getOperand(0).getReg() == X86::SS) return true; break; } return false; } /// Check if the instruction to be emitted is right after any data. static bool isRightAfterData(MCFragment *CurrentFragment, const std::pair &PrevInstPosition) { MCFragment *F = CurrentFragment; // Empty data fragments may be created to prevent further data being // added into the previous fragment, we need to skip them since they // have no contents. for (; isa_and_nonnull(F); F = F->getPrevNode()) if (cast(F)->getContents().size() != 0) break; // Since data is always emitted into a DataFragment, our check strategy is // simple here. // - If the fragment is a DataFragment // - If it's not the fragment where the previous instruction is, // returns true. // - If it's the fragment holding the previous instruction but its // size changed since the the previous instruction was emitted into // it, returns true. // - Otherwise returns false. // - If the fragment is not a DataFragment, returns false. if (auto *DF = dyn_cast_or_null(F)) return DF != PrevInstPosition.first || DF->getContents().size() != PrevInstPosition.second; return false; } /// \returns the fragment size if it has instructions, otherwise returns 0. static size_t getSizeForInstFragment(const MCFragment *F) { if (!F || !F->hasInstructions()) return 0; // MCEncodedFragmentWithContents being templated makes this tricky. switch (F->getKind()) { default: llvm_unreachable("Unknown fragment with instructions!"); case MCFragment::FT_Data: return cast(*F).getContents().size(); case MCFragment::FT_Relaxable: return cast(*F).getContents().size(); case MCFragment::FT_CompactEncodedInst: return cast(*F).getContents().size(); } } /// Return true if we can insert NOP or prefixes automatically before the /// the instruction to be emitted. bool X86AsmBackend::canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const { if (hasVariantSymbol(Inst)) // Linker may rewrite the instruction with variant symbol operand(e.g. // TLSCALL). return false; if (hasInterruptDelaySlot(PrevInst)) // If this instruction follows an interrupt enabling instruction with a one // instruction delay, inserting a nop would change behavior. return false; if (isPrefix(PrevInst, *MCII)) // If this instruction follows a prefix, inserting a nop/prefix would change // semantic. return false; if (isPrefix(Inst, *MCII)) // If this instruction is a prefix, inserting a prefix would change // semantic. return false; if (isRightAfterData(OS.getCurrentFragment(), PrevInstPosition)) // If this instruction follows any data, there is no clear // instruction boundary, inserting a nop/prefix would change semantic. return false; return true; } bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS) const { if (!OS.getAllowAutoPadding()) return false; assert(allowAutoPadding() && "incorrect initialization!"); // We only pad in text section. if (!OS.getCurrentSectionOnly()->getKind().isText()) return false; // To be Done: Currently don't deal with Bundle cases. if (OS.getAssembler().isBundlingEnabled()) return false; // Branches only need to be aligned in 32-bit or 64-bit mode. if (!(STI.hasFeature(X86::Mode64Bit) || STI.hasFeature(X86::Mode32Bit))) return false; return true; } /// Check if the instruction operand needs to be aligned. bool X86AsmBackend::needAlign(const MCInst &Inst) const { const MCInstrDesc &Desc = MCII->get(Inst.getOpcode()); return (Desc.isConditionalBranch() && (AlignBranchType & X86::AlignBranchJcc)) || (Desc.isUnconditionalBranch() && (AlignBranchType & X86::AlignBranchJmp)) || (Desc.isCall() && (AlignBranchType & X86::AlignBranchCall)) || (Desc.isReturn() && (AlignBranchType & X86::AlignBranchRet)) || (Desc.isIndirectBranch() && (AlignBranchType & X86::AlignBranchIndirect)); } /// Insert BoundaryAlignFragment before instructions to align branches. void X86AsmBackend::emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst) { CanPadInst = canPadInst(Inst, OS); if (!canPadBranches(OS)) return; if (!isMacroFused(PrevInst, Inst)) // Macro fusion doesn't happen indeed, clear the pending. PendingBA = nullptr; if (!CanPadInst) return; if (PendingBA && OS.getCurrentFragment()->getPrevNode() == PendingBA) { // Macro fusion actually happens and there is no other fragment inserted // after the previous instruction. // // Do nothing here since we already inserted a BoudaryAlign fragment when // we met the first instruction in the fused pair and we'll tie them // together in emitInstructionEnd. // // Note: When there is at least one fragment, such as MCAlignFragment, // inserted after the previous instruction, e.g. // // \code // cmp %rax %rcx // .align 16 // je .Label0 // \ endcode // // We will treat the JCC as a unfused branch although it may be fused // with the CMP. return; } if (needAlign(Inst) || ((AlignBranchType & X86::AlignBranchFused) && isFirstMacroFusibleInst(Inst, *MCII))) { // If we meet a unfused branch or the first instuction in a fusiable pair, // insert a BoundaryAlign fragment. OS.insert(PendingBA = new MCBoundaryAlignFragment(AlignBoundary)); } } /// Set the last fragment to be aligned for the BoundaryAlignFragment. void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) { PrevInst = Inst; MCFragment *CF = OS.getCurrentFragment(); PrevInstPosition = std::make_pair(CF, getSizeForInstFragment(CF)); if (auto *F = dyn_cast_or_null(CF)) F->setAllowAutoPadding(CanPadInst); if (!canPadBranches(OS)) return; if (!needAlign(Inst) || !PendingBA) return; // Tie the aligned instructions into a a pending BoundaryAlign. PendingBA->setLastFragment(CF); PendingBA = nullptr; // We need to ensure that further data isn't added to the current // DataFragment, so that we can get the size of instructions later in // MCAssembler::relaxBoundaryAlign. The easiest way is to insert a new empty // DataFragment. if (isa_and_nonnull(CF)) OS.insert(new MCDataFragment()); // Update the maximum alignment on the current section if necessary. MCSection *Sec = OS.getCurrentSectionOnly(); if (AlignBoundary.value() > Sec->getAlignment()) Sec->setAlignment(AlignBoundary); } Optional X86AsmBackend::getFixupKind(StringRef Name) const { if (STI.getTargetTriple().isOSBinFormatELF()) { unsigned Type; if (STI.getTargetTriple().getArch() == Triple::x86_64) { Type = llvm::StringSwitch(Name) #define ELF_RELOC(X, Y) .Case(#X, Y) #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" #undef ELF_RELOC .Default(-1u); } else { Type = llvm::StringSwitch(Name) #define ELF_RELOC(X, Y) .Case(#X, Y) #include "llvm/BinaryFormat/ELFRelocs/i386.def" #undef ELF_RELOC .Default(-1u); } if (Type == -1u) return None; return static_cast(FirstLiteralRelocationKind + Type); } return MCAsmBackend::getFixupKind(Name); } const MCFixupKindInfo &X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"reloc_signed_4byte", 0, 32, 0}, {"reloc_signed_4byte_relax", 0, 32, 0}, {"reloc_global_offset_table", 0, 32, 0}, {"reloc_global_offset_table8", 0, 64, 0}, {"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, }; // Fixup kinds from .reloc directive are like R_386_NONE/R_X86_64_NONE. They // do not require any extra processing. if (Kind >= FirstLiteralRelocationKind) return MCAsmBackend::getFixupKindInfo(FK_NONE); if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!"); return Infos[Kind - FirstTargetFixupKind]; } bool X86AsmBackend::shouldForceRelocation(const MCAssembler &, const MCFixup &Fixup, const MCValue &) { return Fixup.getKind() >= FirstLiteralRelocationKind; } static unsigned getFixupKindSize(unsigned Kind) { switch (Kind) { default: llvm_unreachable("invalid fixup kind!"); case FK_NONE: return 0; case FK_PCRel_1: case FK_SecRel_1: case FK_Data_1: return 1; case FK_PCRel_2: case FK_SecRel_2: case FK_Data_2: return 2; case FK_PCRel_4: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_relax: case X86::reloc_riprel_4byte_relax_rex: case X86::reloc_riprel_4byte_movq_load: case X86::reloc_signed_4byte: case X86::reloc_signed_4byte_relax: case X86::reloc_global_offset_table: case X86::reloc_branch_4byte_pcrel: case FK_SecRel_4: case FK_Data_4: return 4; case FK_PCRel_8: case FK_SecRel_8: case FK_Data_8: case X86::reloc_global_offset_table8: return 8; } } void X86AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const { unsigned Kind = Fixup.getKind(); if (Kind >= FirstLiteralRelocationKind) return; unsigned Size = getFixupKindSize(Kind); assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!"); int64_t SignedValue = static_cast(Value); if ((Target.isAbsolute() || IsResolved) && getFixupKindInfo(Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel) { // check that PC relative fixup fits into the fixup size. if (Size > 0 && !isIntN(Size * 8, SignedValue)) Asm.getContext().reportError( Fixup.getLoc(), "value of " + Twine(SignedValue) + " is too large for field of " + Twine(Size) + ((Size == 1) ? " byte." : " bytes.")); } else { // Check that uppper bits are either all zeros or all ones. // Specifically ignore overflow/underflow as long as the leakage is // limited to the lower bits. This is to remain compatible with // other assemblers. assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) && "Value does not fit in the Fixup field"); } for (unsigned i = 0; i != Size; ++i) Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); } bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst, const MCSubtargetInfo &STI) const { // Branches can always be relaxed in either mode. if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode()) return true; // Check if this instruction is ever relaxable. if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode()) return false; // Check if the relaxable operand has an expression. For the current set of // relaxable instructions, the relaxable operand is always the last operand. unsigned RelaxableOp = Inst.getNumOperands() - 1; if (Inst.getOperand(RelaxableOp).isExpr()) return true; return false; } bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { // Relax if the value is too big for a (signed) i8. return !isInt<8>(Value); } // FIXME: Can tblgen help at all here to verify there aren't other instructions // we can relax? void X86AsmBackend::relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const { // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. bool Is16BitMode = STI.getFeatureBits()[X86::Mode16Bit]; unsigned RelaxedOp = getRelaxedOpcode(Inst, Is16BitMode); if (RelaxedOp == Inst.getOpcode()) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); Inst.dump_pretty(OS); OS << "\n"; report_fatal_error("unexpected instruction to relax: " + OS.str()); } Inst.setOpcode(RelaxedOp); } /// Return true if this instruction has been fully relaxed into it's most /// general available form. static bool isFullyRelaxed(const MCRelaxableFragment &RF) { auto &Inst = RF.getInst(); auto &STI = *RF.getSubtargetInfo(); bool Is16BitMode = STI.getFeatureBits()[X86::Mode16Bit]; return getRelaxedOpcode(Inst, Is16BitMode) == Inst.getOpcode(); } bool X86AsmBackend::padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const { if (!RF.getAllowAutoPadding()) return false; // If the instruction isn't fully relaxed, shifting it around might require a // larger value for one of the fixups then can be encoded. The outer loop // will also catch this before moving to the next instruction, but we need to // prevent padding this single instruction as well. if (!isFullyRelaxed(RF)) return false; const unsigned OldSize = RF.getContents().size(); if (OldSize == 15) return false; const unsigned MaxPossiblePad = std::min(15 - OldSize, RemainingSize); const unsigned RemainingPrefixSize = [&]() -> unsigned { SmallString<15> Code; raw_svector_ostream VecOS(Code); Emitter.emitPrefix(RF.getInst(), VecOS, STI); assert(Code.size() < 15 && "The number of prefixes must be less than 15."); // TODO: It turns out we need a decent amount of plumbing for the target // specific bits to determine number of prefixes its safe to add. Various // targets (older chips mostly, but also Atom family) encounter decoder // stalls with too many prefixes. For testing purposes, we set the value // externally for the moment. unsigned ExistingPrefixSize = Code.size(); if (TargetPrefixMax <= ExistingPrefixSize) return 0; return TargetPrefixMax - ExistingPrefixSize; }(); const unsigned PrefixBytesToAdd = std::min(MaxPossiblePad, RemainingPrefixSize); if (PrefixBytesToAdd == 0) return false; const uint8_t Prefix = determinePaddingPrefix(RF.getInst()); SmallString<256> Code; Code.append(PrefixBytesToAdd, Prefix); Code.append(RF.getContents().begin(), RF.getContents().end()); RF.getContents() = Code; // Adjust the fixups for the change in offsets for (auto &F : RF.getFixups()) { F.setOffset(F.getOffset() + PrefixBytesToAdd); } RemainingSize -= PrefixBytesToAdd; return true; } bool X86AsmBackend::padInstructionViaRelaxation(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const { if (isFullyRelaxed(RF)) // TODO: There are lots of other tricks we could apply for increasing // encoding size without impacting performance. return false; MCInst Relaxed = RF.getInst(); relaxInstruction(Relaxed, *RF.getSubtargetInfo()); SmallVector Fixups; SmallString<15> Code; raw_svector_ostream VecOS(Code); Emitter.encodeInstruction(Relaxed, VecOS, Fixups, *RF.getSubtargetInfo()); const unsigned OldSize = RF.getContents().size(); const unsigned NewSize = Code.size(); assert(NewSize >= OldSize && "size decrease during relaxation?"); unsigned Delta = NewSize - OldSize; if (Delta > RemainingSize) return false; RF.setInst(Relaxed); RF.getContents() = Code; RF.getFixups() = Fixups; RemainingSize -= Delta; return true; } bool X86AsmBackend::padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, unsigned &RemainingSize) const { bool Changed = false; if (RemainingSize != 0) Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize); if (RemainingSize != 0) Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize); return Changed; } void X86AsmBackend::finishLayout(MCAssembler const &Asm, MCAsmLayout &Layout) const { // See if we can further relax some instructions to cut down on the number of // nop bytes required for code alignment. The actual win is in reducing // instruction count, not number of bytes. Modern X86-64 can easily end up // decode limited. It is often better to reduce the number of instructions // (i.e. eliminate nops) even at the cost of increasing the size and // complexity of others. if (!X86PadForAlign && !X86PadForBranchAlign) return; DenseSet LabeledFragments; for (const MCSymbol &S : Asm.symbols()) LabeledFragments.insert(S.getFragment(false)); for (MCSection &Sec : Asm) { if (!Sec.getKind().isText()) continue; SmallVector Relaxable; for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) { MCFragment &F = *I; if (LabeledFragments.count(&F)) Relaxable.clear(); if (F.getKind() == MCFragment::FT_Data || F.getKind() == MCFragment::FT_CompactEncodedInst) // Skip and ignore continue; if (F.getKind() == MCFragment::FT_Relaxable) { auto &RF = cast(*I); Relaxable.push_back(&RF); continue; } auto canHandle = [](MCFragment &F) -> bool { switch (F.getKind()) { default: return false; case MCFragment::FT_Align: return X86PadForAlign; case MCFragment::FT_BoundaryAlign: return X86PadForBranchAlign; } }; // For any unhandled kind, assume we can't change layout. if (!canHandle(F)) { Relaxable.clear(); continue; } #ifndef NDEBUG const uint64_t OrigOffset = Layout.getFragmentOffset(&F); #endif const uint64_t OrigSize = Asm.computeFragmentSize(Layout, F); // To keep the effects local, prefer to relax instructions closest to // the align directive. This is purely about human understandability // of the resulting code. If we later find a reason to expand // particular instructions over others, we can adjust. MCFragment *FirstChangedFragment = nullptr; unsigned RemainingSize = OrigSize; while (!Relaxable.empty() && RemainingSize != 0) { auto &RF = *Relaxable.pop_back_val(); // Give the backend a chance to play any tricks it wishes to increase // the encoding size of the given instruction. Target independent code // will try further relaxation, but target's may play further tricks. if (padInstructionEncoding(RF, Asm.getEmitter(), RemainingSize)) FirstChangedFragment = &RF; // If we have an instruction which hasn't been fully relaxed, we can't // skip past it and insert bytes before it. Changing its starting // offset might require a larger negative offset than it can encode. // We don't need to worry about larger positive offsets as none of the // possible offsets between this and our align are visible, and the // ones afterwards aren't changing. if (!isFullyRelaxed(RF)) break; } Relaxable.clear(); if (FirstChangedFragment) { // Make sure the offsets for any fragments in the effected range get // updated. Note that this (conservatively) invalidates the offsets of // those following, but this is not required. Layout.invalidateFragmentsFrom(FirstChangedFragment); } // BoundaryAlign explicitly tracks it's size (unlike align) if (F.getKind() == MCFragment::FT_BoundaryAlign) cast(F).setSize(RemainingSize); #ifndef NDEBUG const uint64_t FinalOffset = Layout.getFragmentOffset(&F); const uint64_t FinalSize = Asm.computeFragmentSize(Layout, F); assert(OrigOffset + OrigSize == FinalOffset + FinalSize && "can't move start of next fragment!"); assert(FinalSize == RemainingSize && "inconsistent size computation?"); #endif // If we're looking at a boundary align, make sure we don't try to pad // its target instructions for some following directive. Doing so would // break the alignment of the current boundary align. if (auto *BF = dyn_cast(&F)) { const MCFragment *LastFragment = BF->getLastFragment(); if (!LastFragment) continue; while (&*I != LastFragment) ++I; } } } // The layout is done. Mark every fragment as valid. for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { MCSection &Section = *Layout.getSectionOrder()[i]; Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); Asm.computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); } } /// Write a sequence of optimal nops to the output, covering \p Count /// bytes. /// \return - true on success, false on failure bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { static const char Nops[10][11] = { // nop "\x90", // xchg %ax,%ax "\x66\x90", // nopl (%[re]ax) "\x0f\x1f\x00", // nopl 0(%[re]ax) "\x0f\x1f\x40\x00", // nopl 0(%[re]ax,%[re]ax,1) "\x0f\x1f\x44\x00\x00", // nopw 0(%[re]ax,%[re]ax,1) "\x66\x0f\x1f\x44\x00\x00", // nopl 0L(%[re]ax) "\x0f\x1f\x80\x00\x00\x00\x00", // nopl 0L(%[re]ax,%[re]ax,1) "\x0f\x1f\x84\x00\x00\x00\x00\x00", // nopw 0L(%[re]ax,%[re]ax,1) "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00", // nopw %cs:0L(%[re]ax,%[re]ax,1) "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00", }; // This CPU doesn't support long nops. If needed add more. // FIXME: We could generated something better than plain 0x90. if (!STI.hasFeature(X86::FeatureNOPL) && !STI.hasFeature(X86::Mode64Bit)) { for (uint64_t i = 0; i < Count; ++i) OS << '\x90'; return true; } // 15-bytes is the longest single NOP instruction, but 10-bytes is // commonly the longest that can be efficiently decoded. uint64_t MaxNopLength = 10; if (STI.getFeatureBits()[X86::FeatureFast7ByteNOP]) MaxNopLength = 7; else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP]) MaxNopLength = 15; else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP]) MaxNopLength = 11; // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining // length. do { const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength); const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; for (uint8_t i = 0; i < Prefixes; i++) OS << '\x66'; const uint8_t Rest = ThisNopLength - Prefixes; if (Rest != 0) OS.write(Nops[Rest - 1], Rest); Count -= ThisNopLength; } while (Count != 0); return true; } /* *** */ namespace { class ELFX86AsmBackend : public X86AsmBackend { public: uint8_t OSABI; ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) : X86AsmBackend(T, STI), OSABI(OSABI) {} }; class ELFX86_32AsmBackend : public ELFX86AsmBackend { public: ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) : ELFX86AsmBackend(T, OSABI, STI) {} std::unique_ptr createObjectTargetWriter() const override { return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386); } }; class ELFX86_X32AsmBackend : public ELFX86AsmBackend { public: ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) : ELFX86AsmBackend(T, OSABI, STI) {} std::unique_ptr createObjectTargetWriter() const override { return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_X86_64); } }; class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend { public: ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) : ELFX86AsmBackend(T, OSABI, STI) {} std::unique_ptr createObjectTargetWriter() const override { return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_IAMCU); } }; class ELFX86_64AsmBackend : public ELFX86AsmBackend { public: ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) : ELFX86AsmBackend(T, OSABI, STI) {} std::unique_ptr createObjectTargetWriter() const override { return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64); } }; class WindowsX86AsmBackend : public X86AsmBackend { bool Is64Bit; public: WindowsX86AsmBackend(const Target &T, bool is64Bit, const MCSubtargetInfo &STI) : X86AsmBackend(T, STI) , Is64Bit(is64Bit) { } Optional getFixupKind(StringRef Name) const override { return StringSwitch>(Name) .Case("dir32", FK_Data_4) .Case("secrel32", FK_SecRel_4) .Case("secidx", FK_SecRel_2) .Default(MCAsmBackend::getFixupKind(Name)); } std::unique_ptr createObjectTargetWriter() const override { return createX86WinCOFFObjectWriter(Is64Bit); } }; namespace CU { /// Compact unwind encoding values. enum CompactUnwindEncodings { /// [RE]BP based frame where [RE]BP is pused on the stack immediately after /// the return address, then [RE]SP is moved to [RE]BP. UNWIND_MODE_BP_FRAME = 0x01000000, /// A frameless function with a small constant stack size. UNWIND_MODE_STACK_IMMD = 0x02000000, /// A frameless function with a large constant stack size. UNWIND_MODE_STACK_IND = 0x03000000, /// No compact unwind encoding is available. UNWIND_MODE_DWARF = 0x04000000, /// Mask for encoding the frame registers. UNWIND_BP_FRAME_REGISTERS = 0x00007FFF, /// Mask for encoding the frameless registers. UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF }; } // end CU namespace class DarwinX86AsmBackend : public X86AsmBackend { const MCRegisterInfo &MRI; /// Number of registers that can be saved in a compact unwind encoding. enum { CU_NUM_SAVED_REGS = 6 }; mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; Triple TT; bool Is64Bit; unsigned OffsetSize; ///< Offset of a "push" instruction. unsigned MoveInstrSize; ///< Size of a "move" instruction. unsigned StackDivide; ///< Amount to adjust stack size by. protected: /// Size of a "push" instruction for the given register. unsigned PushInstrSize(unsigned Reg) const { switch (Reg) { case X86::EBX: case X86::ECX: case X86::EDX: case X86::EDI: case X86::ESI: case X86::EBP: case X86::RBX: case X86::RBP: return 1; case X86::R12: case X86::R13: case X86::R14: case X86::R15: return 2; } return 1; } private: /// Get the compact unwind number for a given register. The number /// corresponds to the enum lists in compact_unwind_encoding.h. int getCompactUnwindRegNum(unsigned Reg) const { static const MCPhysReg CU32BitRegs[7] = { X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 }; static const MCPhysReg CU64BitRegs[] = { X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; for (int Idx = 1; *CURegs; ++CURegs, ++Idx) if (*CURegs == Reg) return Idx; return -1; } /// Return the registers encoded for a compact encoding with a frame /// pointer. uint32_t encodeCompactUnwindRegistersWithFrame() const { // Encode the registers in the order they were saved --- 3-bits per // register. The list of saved registers is assumed to be in reverse // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. uint32_t RegEnc = 0; for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { unsigned Reg = SavedRegs[i]; if (Reg == 0) break; int CURegNum = getCompactUnwindRegNum(Reg); if (CURegNum == -1) return ~0U; // Encode the 3-bit register number in order, skipping over 3-bits for // each register. RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); } assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!"); return RegEnc; } /// Create the permutation encoding used with frameless stacks. It is /// passed the number of registers to be saved and an array of the registers /// saved. uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { // The saved registers are numbered from 1 to 6. In order to encode the // order in which they were saved, we re-number them according to their // place in the register order. The re-numbering is relative to the last // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in // that order: // // Orig Re-Num // ---- ------ // 6 6 // 2 2 // 4 3 // 5 3 // for (unsigned i = 0; i < RegCount; ++i) { int CUReg = getCompactUnwindRegNum(SavedRegs[i]); if (CUReg == -1) return ~0U; SavedRegs[i] = CUReg; } // Reverse the list. std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]); uint32_t RenumRegs[CU_NUM_SAVED_REGS]; for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ unsigned Countless = 0; for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) if (SavedRegs[j] < SavedRegs[i]) ++Countless; RenumRegs[i] = SavedRegs[i] - Countless - 1; } // Take the renumbered values and encode them into a 10-bit number. uint32_t permutationEncoding = 0; switch (RegCount) { case 6: permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] + 6 * RenumRegs[2] + 2 * RenumRegs[3] + RenumRegs[4]; break; case 5: permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] + 6 * RenumRegs[3] + 2 * RenumRegs[4] + RenumRegs[5]; break; case 4: permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] + 3 * RenumRegs[4] + RenumRegs[5]; break; case 3: permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] + RenumRegs[5]; break; case 2: permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; break; case 1: permutationEncoding |= RenumRegs[5]; break; } assert((permutationEncoding & 0x3FF) == permutationEncoding && "Invalid compact register encoding!"); return permutationEncoding; } public: DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, const MCSubtargetInfo &STI) : X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()), Is64Bit(TT.isArch64Bit()) { memset(SavedRegs, 0, sizeof(SavedRegs)); OffsetSize = Is64Bit ? 8 : 4; MoveInstrSize = Is64Bit ? 3 : 2; StackDivide = Is64Bit ? 8 : 4; } std::unique_ptr createObjectTargetWriter() const override { uint32_t CPUType = cantFail(MachO::getCPUType(TT)); uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TT)); return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubType); } /// Implementation of algorithm to generate the compact unwind encoding /// for the CFI instructions. uint32_t generateCompactUnwindEncoding(ArrayRef Instrs) const override { if (Instrs.empty()) return 0; // Reset the saved registers. unsigned SavedRegIdx = 0; memset(SavedRegs, 0, sizeof(SavedRegs)); bool HasFP = false; // Encode that we are using EBP/RBP as the frame pointer. uint32_t CompactUnwindEncoding = 0; unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; unsigned InstrOffset = 0; unsigned StackAdjust = 0; unsigned StackSize = 0; unsigned NumDefCFAOffsets = 0; for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { const MCCFIInstruction &Inst = Instrs[i]; switch (Inst.getOperation()) { default: // Any other CFI directives indicate a frame that we aren't prepared // to represent via compact unwind, so just bail out. return 0; case MCCFIInstruction::OpDefCfaRegister: { // Defines a frame pointer. E.g. // // movq %rsp, %rbp // L0: // .cfi_def_cfa_register %rbp // HasFP = true; // If the frame pointer is other than esp/rsp, we do not have a way to // generate a compact unwinding representation, so bail out. if (*MRI.getLLVMRegNum(Inst.getRegister(), true) != (Is64Bit ? X86::RBP : X86::EBP)) return 0; // Reset the counts. memset(SavedRegs, 0, sizeof(SavedRegs)); StackAdjust = 0; SavedRegIdx = 0; InstrOffset += MoveInstrSize; break; } case MCCFIInstruction::OpDefCfaOffset: { // Defines a new offset for the CFA. E.g. // // With frame: // // pushq %rbp // L0: // .cfi_def_cfa_offset 16 // // Without frame: // // subq $72, %rsp // L0: // .cfi_def_cfa_offset 80 // StackSize = Inst.getOffset() / StackDivide; ++NumDefCFAOffsets; break; } case MCCFIInstruction::OpOffset: { // Defines a "push" of a callee-saved register. E.g. // // pushq %r15 // pushq %r14 // pushq %rbx // L0: // subq $120, %rsp // L1: // .cfi_offset %rbx, -40 // .cfi_offset %r14, -32 // .cfi_offset %r15, -24 // if (SavedRegIdx == CU_NUM_SAVED_REGS) // If there are too many saved registers, we cannot use a compact // unwind encoding. return CU::UNWIND_MODE_DWARF; unsigned Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true); SavedRegs[SavedRegIdx++] = Reg; StackAdjust += OffsetSize; InstrOffset += PushInstrSize(Reg); break; } } } StackAdjust /= StackDivide; if (HasFP) { if ((StackAdjust & 0xFF) != StackAdjust) // Offset was too big for a compact unwind encoding. return CU::UNWIND_MODE_DWARF; // Get the encoding of the saved registers when we have a frame pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; } else { SubtractInstrIdx += InstrOffset; ++StackAdjust; if ((StackSize & 0xFF) == StackSize) { // Frameless stack with a small stack size. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; // Encode the stack size. CompactUnwindEncoding |= (StackSize & 0xFF) << 16; } else { if ((StackAdjust & 0x7) != StackAdjust) // The extra stack adjustments are too big for us to handle. return CU::UNWIND_MODE_DWARF; // Frameless stack with an offset too large for us to encode compactly. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' // instruction. CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; // Encode any extra stack adjustments (done via push instructions). CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; } // Encode the number of registers saved. (Reverse the list first.) std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]); CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; // Get the encoding of the saved registers when we don't have a frame // pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; // Encode the register encoding. CompactUnwindEncoding |= RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; } return CompactUnwindEncoding; } }; } // end anonymous namespace MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TheTriple = STI.getTargetTriple(); if (TheTriple.isOSBinFormatMachO()) return new DarwinX86AsmBackend(T, MRI, STI); if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) return new WindowsX86AsmBackend(T, false, STI); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); if (TheTriple.isOSIAMCU()) return new ELFX86_IAMCUAsmBackend(T, OSABI, STI); return new ELFX86_32AsmBackend(T, OSABI, STI); } MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TheTriple = STI.getTargetTriple(); if (TheTriple.isOSBinFormatMachO()) return new DarwinX86AsmBackend(T, MRI, STI); if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) return new WindowsX86AsmBackend(T, true, STI); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); if (TheTriple.getEnvironment() == Triple::GNUX32) return new ELFX86_X32AsmBackend(T, OSABI, STI); return new ELFX86_64AsmBackend(T, OSABI, STI); }