//===- WebAssemblyInstrControl.td-WebAssembly control-flow ------*- tablegen -*- // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// WebAssembly control-flow code-gen constructs. /// //===----------------------------------------------------------------------===// let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { // The condition operand is a boolean value which WebAssembly represents as i32. defm BR_IF : I<(outs), (ins bb_op:$dst, I32:$cond), (outs), (ins bb_op:$dst), [(brcond I32:$cond, bb:$dst)], "br_if \t$dst, $cond", "br_if \t$dst", 0x0d>; let isCodeGenOnly = 1 in defm BR_UNLESS : I<(outs), (ins bb_op:$dst, I32:$cond), (outs), (ins bb_op:$dst), []>; let isBarrier = 1 in defm BR : NRI<(outs), (ins bb_op:$dst), [(br bb:$dst)], "br \t$dst", 0x0c>; } // isBranch = 1, isTerminator = 1, hasCtrlDep = 1 def : Pat<(brcond (i32 (setne I32:$cond, 0)), bb:$dst), (BR_IF bb_op:$dst, I32:$cond)>; def : Pat<(brcond (i32 (seteq I32:$cond, 0)), bb:$dst), (BR_UNLESS bb_op:$dst, I32:$cond)>; // A list of branch targets enclosed in {} and separated by comma. // Used by br_table only. def BrListAsmOperand : AsmOperandClass { let Name = "BrList"; } let OperandNamespace = "WebAssembly", OperandType = "OPERAND_BRLIST" in def brlist : Operand { let ParserMatchClass = BrListAsmOperand; let PrintMethod = "printBrList"; } // Duplicating a BR_TABLE is almost never a good idea. In particular, it can // lead to some nasty irreducibility due to tail merging when the br_table is in // a loop. let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1, isNotDuplicable = 1 in { defm BR_TABLE_I32 : I<(outs), (ins I32:$index, variable_ops), (outs), (ins brlist:$brl), [(WebAssemblybr_table I32:$index)], "br_table \t$index", "br_table \t$brl", 0x0e>; // TODO: SelectionDAG's lowering insists on using a pointer as the index for // jump tables, so in practice we don't ever use BR_TABLE_I64 in wasm32 mode // currently. defm BR_TABLE_I64 : I<(outs), (ins I64:$index, variable_ops), (outs), (ins brlist:$brl), [(WebAssemblybr_table I64:$index)], "br_table \t$index", "br_table \t$brl", 0x0e>; } // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1, isNotDuplicable = 1 // This is technically a control-flow instruction, since all it affects is the // IP. defm NOP : NRI<(outs), (ins), [], "nop", 0x01>; // Placemarkers to indicate the start or end of a block or loop scope. // These use/clobber VALUE_STACK to prevent them from being moved into the // middle of an expression tree. let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in { defm BLOCK : NRI<(outs), (ins Signature:$sig), [], "block \t$sig", 0x02>; defm LOOP : NRI<(outs), (ins Signature:$sig), [], "loop \t$sig", 0x03>; defm IF : I<(outs), (ins Signature:$sig, I32:$cond), (outs), (ins Signature:$sig), [], "if \t$sig, $cond", "if \t$sig", 0x04>; defm ELSE : NRI<(outs), (ins), [], "else", 0x05>; // END_BLOCK, END_LOOP, END_IF and END_FUNCTION are represented with the same // opcode in wasm. defm END_BLOCK : NRI<(outs), (ins), [], "end_block", 0x0b>; defm END_LOOP : NRI<(outs), (ins), [], "end_loop", 0x0b>; defm END_IF : NRI<(outs), (ins), [], "end_if", 0x0b>; // Generic instruction, for disassembler. let IsCanonical = 1 in defm END : NRI<(outs), (ins), [], "end", 0x0b>; let isTerminator = 1, isBarrier = 1 in defm END_FUNCTION : NRI<(outs), (ins), [], "end_function", 0x0b>; } // Uses = [VALUE_STACK], Defs = [VALUE_STACK] let hasCtrlDep = 1, isBarrier = 1 in { let isTerminator = 1 in { let isReturn = 1 in { defm RETURN : I<(outs), (ins variable_ops), (outs), (ins), [(WebAssemblyreturn)], "return", "return", 0x0f>; // Equivalent to RETURN, for use at the end of a function when wasm // semantics return by falling off the end of the block. let isCodeGenOnly = 1 in defm FALLTHROUGH_RETURN : I<(outs), (ins variable_ops), (outs), (ins), []>; } // isReturn = 1 let isTrap = 1 in defm UNREACHABLE : NRI<(outs), (ins), [(trap)], "unreachable", 0x00>; } // isTerminator = 1 // debugtrap explicitly returns despite trapping because it is supposed to just // get the attention of the debugger. Unfortunately, because UNREACHABLE is a // terminator, lowering debugtrap to UNREACHABLE can create an invalid // MachineBasicBlock when there is additional code after it. Lower it to this // non-terminator version instead. // TODO: Actually execute the debugger statement when running on the Web let isTrap = 1 in defm DEBUG_UNREACHABLE : NRI<(outs), (ins), [(debugtrap)], "unreachable", 0x00>; } // hasCtrlDep = 1, isBarrier = 1 //===----------------------------------------------------------------------===// // Exception handling instructions //===----------------------------------------------------------------------===// let Predicates = [HasExceptionHandling] in { // Throwing an exception: throw / rethrow let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { defm THROW : I<(outs), (ins event_op:$tag, variable_ops), (outs), (ins event_op:$tag), [(WebAssemblythrow (WebAssemblywrapper texternalsym:$tag))], "throw \t$tag", "throw \t$tag", 0x08>; defm RETHROW : I<(outs), (ins EXNREF:$exn), (outs), (ins), [], "rethrow \t$exn", "rethrow", 0x09>; // Pseudo instruction to be the lowering target of int_wasm_rethrow_in_catch // intrinsic. Will be converted to the real rethrow instruction later. let isPseudo = 1 in defm RETHROW_IN_CATCH : NRI<(outs), (ins), [(int_wasm_rethrow_in_catch)], "rethrow_in_catch", 0>; } // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 // Region within which an exception is caught: try / end_try let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in { defm TRY : NRI<(outs), (ins Signature:$sig), [], "try \t$sig", 0x06>; defm END_TRY : NRI<(outs), (ins), [], "end_try", 0x0b>; } // Uses = [VALUE_STACK], Defs = [VALUE_STACK] // Catching an exception: catch / extract_exception let hasCtrlDep = 1, hasSideEffects = 1 in defm CATCH : I<(outs EXNREF:$dst), (ins), (outs), (ins), [], "catch \t$dst", "catch", 0x07>; // Querying / extracing exception: br_on_exn // br_on_exn queries an exnref to see if it matches the corresponding exception // tag index. If true it branches to the given label and pushes the // corresponding argument values of the exception onto the stack. let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in defm BR_ON_EXN : I<(outs), (ins bb_op:$dst, event_op:$tag, EXNREF:$exn), (outs), (ins bb_op:$dst, event_op:$tag), [], "br_on_exn \t$dst, $tag, $exn", "br_on_exn \t$dst, $tag", 0x0a>; // This is a pseudo instruction that simulates popping a value from stack, which // has been pushed by br_on_exn let isCodeGenOnly = 1, hasSideEffects = 1 in defm EXTRACT_EXCEPTION_I32 : NRI<(outs I32:$dst), (ins), [(set I32:$dst, (int_wasm_extract_exception))], "extract_exception\t$dst">; // Pseudo instructions: cleanupret / catchret let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isPseudo = 1, isEHScopeReturn = 1 in { defm CLEANUPRET : NRI<(outs), (ins), [(cleanupret)], "cleanupret", 0>; defm CATCHRET : NRI<(outs), (ins bb_op:$dst, bb_op:$from), [(catchret bb:$dst, bb:$from)], "catchret", 0>; } // isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, // isPseudo = 1, isEHScopeReturn = 1 } // Predicates = [HasExceptionHandling]