//===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a CFG stacking pass. /// /// This pass inserts BLOCK, LOOP, and TRY markers to mark the start of scopes, /// since scope boundaries serve as the labels for WebAssembly's control /// transfers. /// /// This is sufficient to convert arbitrary CFGs into a form that works on /// WebAssembly, provided that all loops are single-entry. /// /// In case we use exceptions, this pass also fixes mismatches in unwind /// destinations created during transforming CFG into wasm structured format. /// //===----------------------------------------------------------------------===// #include "WebAssembly.h" #include "WebAssemblyExceptionInfo.h" #include "WebAssemblyMachineFunctionInfo.h" #include "WebAssemblySubtarget.h" #include "WebAssemblyUtilities.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "wasm-cfg-stackify" STATISTIC(NumUnwindMismatches, "Number of EH pad unwind mismatches found"); namespace { class WebAssemblyCFGStackify final : public MachineFunctionPass { StringRef getPassName() const override { return "WebAssembly CFG Stackify"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; // For each block whose label represents the end of a scope, record the block // which holds the beginning of the scope. This will allow us to quickly skip // over scoped regions when walking blocks. SmallVector ScopeTops; // Placing markers. void placeMarkers(MachineFunction &MF); void placeBlockMarker(MachineBasicBlock &MBB); void placeLoopMarker(MachineBasicBlock &MBB); void placeTryMarker(MachineBasicBlock &MBB); void removeUnnecessaryInstrs(MachineFunction &MF); bool fixUnwindMismatches(MachineFunction &MF); void rewriteDepthImmediates(MachineFunction &MF); void fixEndsAtEndOfFunction(MachineFunction &MF); // For each BLOCK|LOOP|TRY, the corresponding END_(BLOCK|LOOP|TRY). DenseMap BeginToEnd; // For each END_(BLOCK|LOOP|TRY), the corresponding BLOCK|LOOP|TRY. DenseMap EndToBegin; // map DenseMap TryToEHPad; // map DenseMap EHPadToTry; // There can be an appendix block at the end of each function, shared for: // - creating a correct signature for fallthrough returns // - target for rethrows that need to unwind to the caller, but are trapped // inside another try/catch MachineBasicBlock *AppendixBB = nullptr; MachineBasicBlock *getAppendixBlock(MachineFunction &MF) { if (!AppendixBB) { AppendixBB = MF.CreateMachineBasicBlock(); // Give it a fake predecessor so that AsmPrinter prints its label. AppendixBB->addSuccessor(AppendixBB); MF.push_back(AppendixBB); } return AppendixBB; } // Helper functions to register / unregister scope information created by // marker instructions. void registerScope(MachineInstr *Begin, MachineInstr *End); void registerTryScope(MachineInstr *Begin, MachineInstr *End, MachineBasicBlock *EHPad); void unregisterScope(MachineInstr *Begin); public: static char ID; // Pass identification, replacement for typeid WebAssemblyCFGStackify() : MachineFunctionPass(ID) {} ~WebAssemblyCFGStackify() override { releaseMemory(); } void releaseMemory() override; }; } // end anonymous namespace char WebAssemblyCFGStackify::ID = 0; INITIALIZE_PASS(WebAssemblyCFGStackify, DEBUG_TYPE, "Insert BLOCK/LOOP/TRY markers for WebAssembly scopes", false, false) FunctionPass *llvm::createWebAssemblyCFGStackify() { return new WebAssemblyCFGStackify(); } /// Test whether Pred has any terminators explicitly branching to MBB, as /// opposed to falling through. Note that it's possible (eg. in unoptimized /// code) for a branch instruction to both branch to a block and fallthrough /// to it, so we check the actual branch operands to see if there are any /// explicit mentions. static bool explicitlyBranchesTo(MachineBasicBlock *Pred, MachineBasicBlock *MBB) { for (MachineInstr &MI : Pred->terminators()) for (MachineOperand &MO : MI.explicit_operands()) if (MO.isMBB() && MO.getMBB() == MBB) return true; return false; } // Returns an iterator to the earliest position possible within the MBB, // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet // contains instructions that should go before the marker, and AfterSet contains // ones that should go after the marker. In this function, AfterSet is only // used for sanity checking. static MachineBasicBlock::iterator getEarliestInsertPos(MachineBasicBlock *MBB, const SmallPtrSet &BeforeSet, const SmallPtrSet &AfterSet) { auto InsertPos = MBB->end(); while (InsertPos != MBB->begin()) { if (BeforeSet.count(&*std::prev(InsertPos))) { #ifndef NDEBUG // Sanity check for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos) assert(!AfterSet.count(&*std::prev(Pos))); #endif break; } --InsertPos; } return InsertPos; } // Returns an iterator to the latest position possible within the MBB, // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet // contains instructions that should go before the marker, and AfterSet contains // ones that should go after the marker. In this function, BeforeSet is only // used for sanity checking. static MachineBasicBlock::iterator getLatestInsertPos(MachineBasicBlock *MBB, const SmallPtrSet &BeforeSet, const SmallPtrSet &AfterSet) { auto InsertPos = MBB->begin(); while (InsertPos != MBB->end()) { if (AfterSet.count(&*InsertPos)) { #ifndef NDEBUG // Sanity check for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos) assert(!BeforeSet.count(&*Pos)); #endif break; } ++InsertPos; } return InsertPos; } void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin, MachineInstr *End) { BeginToEnd[Begin] = End; EndToBegin[End] = Begin; } void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin, MachineInstr *End, MachineBasicBlock *EHPad) { registerScope(Begin, End); TryToEHPad[Begin] = EHPad; EHPadToTry[EHPad] = Begin; } void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) { assert(BeginToEnd.count(Begin)); MachineInstr *End = BeginToEnd[Begin]; assert(EndToBegin.count(End)); BeginToEnd.erase(Begin); EndToBegin.erase(End); MachineBasicBlock *EHPad = TryToEHPad.lookup(Begin); if (EHPad) { assert(EHPadToTry.count(EHPad)); TryToEHPad.erase(Begin); EHPadToTry.erase(EHPad); } } /// Insert a BLOCK marker for branches to MBB (if needed). // TODO Consider a more generalized way of handling block (and also loop and // try) signatures when we implement the multi-value proposal later. void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) { assert(!MBB.isEHPad()); MachineFunction &MF = *MBB.getParent(); auto &MDT = getAnalysis(); const auto &TII = *MF.getSubtarget().getInstrInfo(); const auto &MFI = *MF.getInfo(); // First compute the nearest common dominator of all forward non-fallthrough // predecessors so that we minimize the time that the BLOCK is on the stack, // which reduces overall stack height. MachineBasicBlock *Header = nullptr; bool IsBranchedTo = false; bool IsBrOnExn = false; MachineInstr *BrOnExn = nullptr; int MBBNumber = MBB.getNumber(); for (MachineBasicBlock *Pred : MBB.predecessors()) { if (Pred->getNumber() < MBBNumber) { Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred; if (explicitlyBranchesTo(Pred, &MBB)) { IsBranchedTo = true; if (Pred->getFirstTerminator()->getOpcode() == WebAssembly::BR_ON_EXN) { IsBrOnExn = true; assert(!BrOnExn && "There should be only one br_on_exn per block"); BrOnExn = &*Pred->getFirstTerminator(); } } } } if (!Header) return; if (!IsBranchedTo) return; assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors"); MachineBasicBlock *LayoutPred = MBB.getPrevNode(); // If the nearest common dominator is inside a more deeply nested context, // walk out to the nearest scope which isn't more deeply nested. for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) { if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) { if (ScopeTop->getNumber() > Header->getNumber()) { // Skip over an intervening scope. I = std::next(ScopeTop->getIterator()); } else { // We found a scope level at an appropriate depth. Header = ScopeTop; break; } } } // Decide where in Header to put the BLOCK. // Instructions that should go before the BLOCK. SmallPtrSet BeforeSet; // Instructions that should go after the BLOCK. SmallPtrSet AfterSet; for (const auto &MI : *Header) { // If there is a previously placed LOOP marker and the bottom block of the // loop is above MBB, it should be after the BLOCK, because the loop is // nested in this BLOCK. Otherwise it should be before the BLOCK. if (MI.getOpcode() == WebAssembly::LOOP) { auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode(); if (MBB.getNumber() > LoopBottom->getNumber()) AfterSet.insert(&MI); #ifndef NDEBUG else BeforeSet.insert(&MI); #endif } // If there is a previously placed BLOCK/TRY marker and its corresponding // END marker is before the current BLOCK's END marker, that should be // placed after this BLOCK. Otherwise it should be placed before this BLOCK // marker. if (MI.getOpcode() == WebAssembly::BLOCK || MI.getOpcode() == WebAssembly::TRY) { if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber()) AfterSet.insert(&MI); #ifndef NDEBUG else BeforeSet.insert(&MI); #endif } #ifndef NDEBUG // All END_(BLOCK|LOOP|TRY) markers should be before the BLOCK. if (MI.getOpcode() == WebAssembly::END_BLOCK || MI.getOpcode() == WebAssembly::END_LOOP || MI.getOpcode() == WebAssembly::END_TRY) BeforeSet.insert(&MI); #endif // Terminators should go after the BLOCK. if (MI.isTerminator()) AfterSet.insert(&MI); } // Local expression tree should go after the BLOCK. for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E; --I) { if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) continue; if (WebAssembly::isChild(*std::prev(I), MFI)) AfterSet.insert(&*std::prev(I)); else break; } // Add the BLOCK. // 'br_on_exn' extracts exnref object and pushes variable number of values // depending on its tag. For C++ exception, its a single i32 value, and the // generated code will be in the form of: // block i32 // br_on_exn 0, $__cpp_exception // rethrow // end_block WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void; if (IsBrOnExn) { const char *TagName = BrOnExn->getOperand(1).getSymbolName(); if (std::strcmp(TagName, "__cpp_exception") != 0) llvm_unreachable("Only C++ exception is supported"); ReturnType = WebAssembly::BlockType::I32; } auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet); MachineInstr *Begin = BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos), TII.get(WebAssembly::BLOCK)) .addImm(int64_t(ReturnType)); // Decide where in Header to put the END_BLOCK. BeforeSet.clear(); AfterSet.clear(); for (auto &MI : MBB) { #ifndef NDEBUG // END_BLOCK should precede existing LOOP and TRY markers. if (MI.getOpcode() == WebAssembly::LOOP || MI.getOpcode() == WebAssembly::TRY) AfterSet.insert(&MI); #endif // If there is a previously placed END_LOOP marker and the header of the // loop is above this block's header, the END_LOOP should be placed after // the BLOCK, because the loop contains this block. Otherwise the END_LOOP // should be placed before the BLOCK. The same for END_TRY. if (MI.getOpcode() == WebAssembly::END_LOOP || MI.getOpcode() == WebAssembly::END_TRY) { if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber()) BeforeSet.insert(&MI); #ifndef NDEBUG else AfterSet.insert(&MI); #endif } } // Mark the end of the block. InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet); MachineInstr *End = BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos), TII.get(WebAssembly::END_BLOCK)); registerScope(Begin, End); // Track the farthest-spanning scope that ends at this point. int Number = MBB.getNumber(); if (!ScopeTops[Number] || ScopeTops[Number]->getNumber() > Header->getNumber()) ScopeTops[Number] = Header; } /// Insert a LOOP marker for a loop starting at MBB (if it's a loop header). void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) { MachineFunction &MF = *MBB.getParent(); const auto &MLI = getAnalysis(); const auto &TII = *MF.getSubtarget().getInstrInfo(); MachineLoop *Loop = MLI.getLoopFor(&MBB); if (!Loop || Loop->getHeader() != &MBB) return; // The operand of a LOOP is the first block after the loop. If the loop is the // bottom of the function, insert a dummy block at the end. MachineBasicBlock *Bottom = WebAssembly::getBottom(Loop); auto Iter = std::next(Bottom->getIterator()); if (Iter == MF.end()) { getAppendixBlock(MF); Iter = std::next(Bottom->getIterator()); } MachineBasicBlock *AfterLoop = &*Iter; // Decide where in Header to put the LOOP. SmallPtrSet BeforeSet; SmallPtrSet AfterSet; for (const auto &MI : MBB) { // LOOP marker should be after any existing loop that ends here. Otherwise // we assume the instruction belongs to the loop. if (MI.getOpcode() == WebAssembly::END_LOOP) BeforeSet.insert(&MI); #ifndef NDEBUG else AfterSet.insert(&MI); #endif } // Mark the beginning of the loop. auto InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet); MachineInstr *Begin = BuildMI(MBB, InsertPos, MBB.findDebugLoc(InsertPos), TII.get(WebAssembly::LOOP)) .addImm(int64_t(WebAssembly::BlockType::Void)); // Decide where in Header to put the END_LOOP. BeforeSet.clear(); AfterSet.clear(); #ifndef NDEBUG for (const auto &MI : MBB) // Existing END_LOOP markers belong to parent loops of this loop if (MI.getOpcode() == WebAssembly::END_LOOP) AfterSet.insert(&MI); #endif // Mark the end of the loop (using arbitrary debug location that branched to // the loop end as its location). InsertPos = getEarliestInsertPos(AfterLoop, BeforeSet, AfterSet); DebugLoc EndDL = AfterLoop->pred_empty() ? DebugLoc() : (*AfterLoop->pred_rbegin())->findBranchDebugLoc(); MachineInstr *End = BuildMI(*AfterLoop, InsertPos, EndDL, TII.get(WebAssembly::END_LOOP)); registerScope(Begin, End); assert((!ScopeTops[AfterLoop->getNumber()] || ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) && "With block sorting the outermost loop for a block should be first."); if (!ScopeTops[AfterLoop->getNumber()]) ScopeTops[AfterLoop->getNumber()] = &MBB; } void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) { assert(MBB.isEHPad()); MachineFunction &MF = *MBB.getParent(); auto &MDT = getAnalysis(); const auto &TII = *MF.getSubtarget().getInstrInfo(); const auto &WEI = getAnalysis(); const auto &MFI = *MF.getInfo(); // Compute the nearest common dominator of all unwind predecessors MachineBasicBlock *Header = nullptr; int MBBNumber = MBB.getNumber(); for (auto *Pred : MBB.predecessors()) { if (Pred->getNumber() < MBBNumber) { Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred; assert(!explicitlyBranchesTo(Pred, &MBB) && "Explicit branch to an EH pad!"); } } if (!Header) return; // If this try is at the bottom of the function, insert a dummy block at the // end. WebAssemblyException *WE = WEI.getExceptionFor(&MBB); assert(WE); MachineBasicBlock *Bottom = WebAssembly::getBottom(WE); auto Iter = std::next(Bottom->getIterator()); if (Iter == MF.end()) { getAppendixBlock(MF); Iter = std::next(Bottom->getIterator()); } MachineBasicBlock *Cont = &*Iter; assert(Cont != &MF.front()); MachineBasicBlock *LayoutPred = Cont->getPrevNode(); // If the nearest common dominator is inside a more deeply nested context, // walk out to the nearest scope which isn't more deeply nested. for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) { if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) { if (ScopeTop->getNumber() > Header->getNumber()) { // Skip over an intervening scope. I = std::next(ScopeTop->getIterator()); } else { // We found a scope level at an appropriate depth. Header = ScopeTop; break; } } } // Decide where in Header to put the TRY. // Instructions that should go before the TRY. SmallPtrSet BeforeSet; // Instructions that should go after the TRY. SmallPtrSet AfterSet; for (const auto &MI : *Header) { // If there is a previously placed LOOP marker and the bottom block of the // loop is above MBB, it should be after the TRY, because the loop is nested // in this TRY. Otherwise it should be before the TRY. if (MI.getOpcode() == WebAssembly::LOOP) { auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode(); if (MBB.getNumber() > LoopBottom->getNumber()) AfterSet.insert(&MI); #ifndef NDEBUG else BeforeSet.insert(&MI); #endif } // All previously inserted BLOCK/TRY markers should be after the TRY because // they are all nested trys. if (MI.getOpcode() == WebAssembly::BLOCK || MI.getOpcode() == WebAssembly::TRY) AfterSet.insert(&MI); #ifndef NDEBUG // All END_(BLOCK/LOOP/TRY) markers should be before the TRY. if (MI.getOpcode() == WebAssembly::END_BLOCK || MI.getOpcode() == WebAssembly::END_LOOP || MI.getOpcode() == WebAssembly::END_TRY) BeforeSet.insert(&MI); #endif // Terminators should go after the TRY. if (MI.isTerminator()) AfterSet.insert(&MI); } // If Header unwinds to MBB (= Header contains 'invoke'), the try block should // contain the call within it. So the call should go after the TRY. The // exception is when the header's terminator is a rethrow instruction, in // which case that instruction, not a call instruction before it, is gonna // throw. MachineInstr *ThrowingCall = nullptr; if (MBB.isPredecessor(Header)) { auto TermPos = Header->getFirstTerminator(); if (TermPos == Header->end() || TermPos->getOpcode() != WebAssembly::RETHROW) { for (auto &MI : reverse(*Header)) { if (MI.isCall()) { AfterSet.insert(&MI); ThrowingCall = &MI; // Possibly throwing calls are usually wrapped by EH_LABEL // instructions. We don't want to split them and the call. if (MI.getIterator() != Header->begin() && std::prev(MI.getIterator())->isEHLabel()) { AfterSet.insert(&*std::prev(MI.getIterator())); ThrowingCall = &*std::prev(MI.getIterator()); } break; } } } } // Local expression tree should go after the TRY. // For BLOCK placement, we start the search from the previous instruction of a // BB's terminator, but in TRY's case, we should start from the previous // instruction of a call that can throw, or a EH_LABEL that precedes the call, // because the return values of the call's previous instructions can be // stackified and consumed by the throwing call. auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall) : Header->getFirstTerminator(); for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) { if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) continue; if (WebAssembly::isChild(*std::prev(I), MFI)) AfterSet.insert(&*std::prev(I)); else break; } // Add the TRY. auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet); MachineInstr *Begin = BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos), TII.get(WebAssembly::TRY)) .addImm(int64_t(WebAssembly::BlockType::Void)); // Decide where in Header to put the END_TRY. BeforeSet.clear(); AfterSet.clear(); for (const auto &MI : *Cont) { #ifndef NDEBUG // END_TRY should precede existing LOOP and BLOCK markers. if (MI.getOpcode() == WebAssembly::LOOP || MI.getOpcode() == WebAssembly::BLOCK) AfterSet.insert(&MI); // All END_TRY markers placed earlier belong to exceptions that contains // this one. if (MI.getOpcode() == WebAssembly::END_TRY) AfterSet.insert(&MI); #endif // If there is a previously placed END_LOOP marker and its header is after // where TRY marker is, this loop is contained within the 'catch' part, so // the END_TRY marker should go after that. Otherwise, the whole try-catch // is contained within this loop, so the END_TRY should go before that. if (MI.getOpcode() == WebAssembly::END_LOOP) { // For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they // are in the same BB, LOOP is always before TRY. if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber()) BeforeSet.insert(&MI); #ifndef NDEBUG else AfterSet.insert(&MI); #endif } // It is not possible for an END_BLOCK to be already in this block. } // Mark the end of the TRY. InsertPos = getEarliestInsertPos(Cont, BeforeSet, AfterSet); MachineInstr *End = BuildMI(*Cont, InsertPos, Bottom->findBranchDebugLoc(), TII.get(WebAssembly::END_TRY)); registerTryScope(Begin, End, &MBB); // Track the farthest-spanning scope that ends at this point. We create two // mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB // with 'try'). We need to create 'catch' -> 'try' mapping here too because // markers should not span across 'catch'. For example, this should not // happen: // // try // block --| (X) // catch | // end_block --| // end_try for (int Number : {Cont->getNumber(), MBB.getNumber()}) { if (!ScopeTops[Number] || ScopeTops[Number]->getNumber() > Header->getNumber()) ScopeTops[Number] = Header; } } void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) { const auto &TII = *MF.getSubtarget().getInstrInfo(); // When there is an unconditional branch right before a catch instruction and // it branches to the end of end_try marker, we don't need the branch, because // it there is no exception, the control flow transfers to that point anyway. // bb0: // try // ... // br bb2 <- Not necessary // bb1: // catch // ... // bb2: // end for (auto &MBB : MF) { if (!MBB.isEHPad()) continue; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode(); MachineBasicBlock *Cont = BeginToEnd[EHPadToTry[&MBB]]->getParent(); bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond); // This condition means either // 1. This BB ends with a single unconditional branch whose destinaion is // Cont. // 2. This BB ends with a conditional branch followed by an unconditional // branch, and the unconditional branch's destination is Cont. // In both cases, we want to remove the last (= unconditional) branch. if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) || (!Cond.empty() && FBB && FBB == Cont))) { bool ErasedUncondBr = false; (void)ErasedUncondBr; for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin(); I != E; --I) { auto PrevI = std::prev(I); if (PrevI->isTerminator()) { assert(PrevI->getOpcode() == WebAssembly::BR); PrevI->eraseFromParent(); ErasedUncondBr = true; break; } } assert(ErasedUncondBr && "Unconditional branch not erased!"); } } // When there are block / end_block markers that overlap with try / end_try // markers, and the block and try markers' return types are the same, the // block /end_block markers are not necessary, because try / end_try markers // also can serve as boundaries for branches. // block <- Not necessary // try // ... // catch // ... // end // end <- Not necessary SmallVector ToDelete; for (auto &MBB : MF) { for (auto &MI : MBB) { if (MI.getOpcode() != WebAssembly::TRY) continue; MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try]; MachineBasicBlock *TryBB = Try->getParent(); MachineBasicBlock *Cont = EndTry->getParent(); int64_t RetType = Try->getOperand(0).getImm(); for (auto B = Try->getIterator(), E = std::next(EndTry->getIterator()); B != TryBB->begin() && E != Cont->end() && std::prev(B)->getOpcode() == WebAssembly::BLOCK && E->getOpcode() == WebAssembly::END_BLOCK && std::prev(B)->getOperand(0).getImm() == RetType; --B, ++E) { ToDelete.push_back(&*std::prev(B)); ToDelete.push_back(&*E); } } } for (auto *MI : ToDelete) { if (MI->getOpcode() == WebAssembly::BLOCK) unregisterScope(MI); MI->eraseFromParent(); } } // Get the appropriate copy opcode for the given register class. static unsigned getCopyOpcode(const TargetRegisterClass *RC) { if (RC == &WebAssembly::I32RegClass) return WebAssembly::COPY_I32; if (RC == &WebAssembly::I64RegClass) return WebAssembly::COPY_I64; if (RC == &WebAssembly::F32RegClass) return WebAssembly::COPY_F32; if (RC == &WebAssembly::F64RegClass) return WebAssembly::COPY_F64; if (RC == &WebAssembly::V128RegClass) return WebAssembly::COPY_V128; if (RC == &WebAssembly::EXNREFRegClass) return WebAssembly::COPY_EXNREF; llvm_unreachable("Unexpected register class"); } // When MBB is split into MBB and Split, we should unstackify defs in MBB that // have their uses in Split. static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB, MachineBasicBlock &Split, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, const WebAssemblyInstrInfo &TII) { for (auto &MI : Split) { for (auto &MO : MI.explicit_uses()) { if (!MO.isReg() || Register::isPhysicalRegister(MO.getReg())) continue; if (MachineInstr *Def = MRI.getUniqueVRegDef(MO.getReg())) if (Def->getParent() == &MBB) MFI.unstackifyVReg(MO.getReg()); } } // In RegStackify, when a register definition is used multiple times, // Reg = INST ... // INST ..., Reg, ... // INST ..., Reg, ... // INST ..., Reg, ... // // we introduce a TEE, which has the following form: // DefReg = INST ... // TeeReg, Reg = TEE_... DefReg // INST ..., TeeReg, ... // INST ..., Reg, ... // INST ..., Reg, ... // with DefReg and TeeReg stackified but Reg not stackified. // // But the invariant that TeeReg should be stackified can be violated while we // unstackify registers in the split BB above. In this case, we convert TEEs // into two COPYs. This COPY will be eventually eliminated in ExplicitLocals. // DefReg = INST ... // TeeReg = COPY DefReg // Reg = COPY DefReg // INST ..., TeeReg, ... // INST ..., Reg, ... // INST ..., Reg, ... for (auto I = MBB.begin(), E = MBB.end(); I != E;) { MachineInstr &MI = *I++; if (!WebAssembly::isTee(MI.getOpcode())) continue; Register TeeReg = MI.getOperand(0).getReg(); Register Reg = MI.getOperand(1).getReg(); Register DefReg = MI.getOperand(2).getReg(); if (!MFI.isVRegStackified(TeeReg)) { // Now we are not using TEE anymore, so unstackify DefReg too MFI.unstackifyVReg(DefReg); unsigned CopyOpc = getCopyOpcode(MRI.getRegClass(DefReg)); BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), TeeReg) .addReg(DefReg); BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), Reg).addReg(DefReg); MI.eraseFromParent(); } } } bool WebAssemblyCFGStackify::fixUnwindMismatches(MachineFunction &MF) { const auto &TII = *MF.getSubtarget().getInstrInfo(); auto &MFI = *MF.getInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Linearizing the control flow by placing TRY / END_TRY markers can create // mismatches in unwind destinations. There are two kinds of mismatches we // try to solve here. // 1. When an instruction may throw, but the EH pad it will unwind to can be // different from the original CFG. // // Example: we have the following CFG: // bb0: // call @foo (if it throws, unwind to bb2) // bb1: // call @bar (if it throws, unwind to bb3) // bb2 (ehpad): // catch // ... // bb3 (ehpad) // catch // handler body // // And the CFG is sorted in this order. Then after placing TRY markers, it // will look like: (BB markers are omitted) // try $label1 // try // call @foo // call @bar (if it throws, unwind to bb3) // catch <- ehpad (bb2) // ... // end_try // catch <- ehpad (bb3) // handler body // end_try // // Now if bar() throws, it is going to end up ip in bb2, not bb3, where it // is supposed to end up. We solve this problem by // a. Split the target unwind EH pad (here bb3) so that the handler body is // right after 'end_try', which means we extract the handler body out of // the catch block. We do this because this handler body should be // somewhere branch-eable from the inner scope. // b. Wrap the call that has an incorrect unwind destination ('call @bar' // here) with a nested try/catch/end_try scope, and within the new catch // block, branches to the handler body. // c. Place a branch after the newly inserted nested end_try so it can bypass // the handler body, which is now outside of a catch block. // // The result will like as follows. (new: a) means this instruction is newly // created in the process of doing 'a' above. // // block $label0 (new: placeBlockMarker) // try $label1 // try // call @foo // try (new: b) // call @bar // catch (new: b) // local.set n / drop (new: b) // br $label1 (new: b) // end_try (new: b) // catch <- ehpad (bb2) // end_try // br $label0 (new: c) // catch <- ehpad (bb3) // end_try (hoisted: a) // handler body // end_block (new: placeBlockMarker) // // Note that the new wrapping block/end_block will be generated later in // placeBlockMarker. // // TODO Currently local.set and local.gets are generated to move exnref value // created by catches. That's because we don't support yielding values from a // block in LLVM machine IR yet, even though it is supported by wasm. Delete // unnecessary local.get/local.sets once yielding values from a block is // supported. The full EH spec requires multi-value support to do this, but // for C++ we don't yet need it because we only throw a single i32. // // --- // 2. The same as 1, but in this case an instruction unwinds to a caller // function and not another EH pad. // // Example: we have the following CFG: // bb0: // call @foo (if it throws, unwind to bb2) // bb1: // call @bar (if it throws, unwind to caller) // bb2 (ehpad): // catch // ... // // And the CFG is sorted in this order. Then after placing TRY markers, it // will look like: // try // call @foo // call @bar (if it throws, unwind to caller) // catch <- ehpad (bb2) // ... // end_try // // Now if bar() throws, it is going to end up ip in bb2, when it is supposed // throw up to the caller. // We solve this problem by // a. Create a new 'appendix' BB at the end of the function and put a single // 'rethrow' instruction (+ local.get) in there. // b. Wrap the call that has an incorrect unwind destination ('call @bar' // here) with a nested try/catch/end_try scope, and within the new catch // block, branches to the new appendix block. // // block $label0 (new: placeBlockMarker) // try // call @foo // try (new: b) // call @bar // catch (new: b) // local.set n (new: b) // br $label0 (new: b) // end_try (new: b) // catch <- ehpad (bb2) // ... // end_try // ... // end_block (new: placeBlockMarker) // local.get n (new: a) <- appendix block // rethrow (new: a) // // In case there are multiple calls in a BB that may throw to the caller, they // can be wrapped together in one nested try scope. (In 1, this couldn't // happen, because may-throwing instruction there had an unwind destination, // i.e., it was an invoke before, and there could be only one invoke within a // BB.) SmallVector EHPadStack; // Range of intructions to be wrapped in a new nested try/catch using TryRange = std::pair; // In original CFG, DenseMap> UnwindDestToTryRanges; // In new CFG, DenseMap> BrDestToTryRanges; // In new CFG, DenseMap BrDestToExnReg; // Destinations for branches that will be newly added, for which a new // BLOCK/END_BLOCK markers are necessary. SmallVector BrDests; // Gather possibly throwing calls (i.e., previously invokes) whose current // unwind destination is not the same as the original CFG. for (auto &MBB : reverse(MF)) { bool SeenThrowableInstInBB = false; for (auto &MI : reverse(MBB)) { if (MI.getOpcode() == WebAssembly::TRY) EHPadStack.pop_back(); else if (MI.getOpcode() == WebAssembly::CATCH) EHPadStack.push_back(MI.getParent()); // In this loop we only gather calls that have an EH pad to unwind. So // there will be at most 1 such call (= invoke) in a BB, so after we've // seen one, we can skip the rest of BB. Also if MBB has no EH pad // successor or MI does not throw, this is not an invoke. if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() || !WebAssembly::mayThrow(MI)) continue; SeenThrowableInstInBB = true; // If the EH pad on the stack top is where this instruction should unwind // next, we're good. MachineBasicBlock *UnwindDest = nullptr; for (auto *Succ : MBB.successors()) { if (Succ->isEHPad()) { UnwindDest = Succ; break; } } if (EHPadStack.back() == UnwindDest) continue; // If not, record the range. UnwindDestToTryRanges[UnwindDest].push_back(TryRange(&MI, &MI)); } } assert(EHPadStack.empty()); // Gather possibly throwing calls that are supposed to unwind up to the caller // if they throw, but currently unwind to an incorrect destination. Unlike the // loop above, there can be multiple calls within a BB that unwind to the // caller, which we should group together in a range. bool NeedAppendixBlock = false; for (auto &MBB : reverse(MF)) { MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive for (auto &MI : reverse(MBB)) { if (MI.getOpcode() == WebAssembly::TRY) EHPadStack.pop_back(); else if (MI.getOpcode() == WebAssembly::CATCH) EHPadStack.push_back(MI.getParent()); // If MBB has an EH pad successor, this inst does not unwind to caller. if (MBB.hasEHPadSuccessor()) continue; // We wrap up the current range when we see a marker even if we haven't // finished a BB. if (RangeEnd && WebAssembly::isMarker(MI.getOpcode())) { NeedAppendixBlock = true; // Record the range. nullptr here means the unwind destination is the // caller. UnwindDestToTryRanges[nullptr].push_back( TryRange(RangeBegin, RangeEnd)); RangeBegin = RangeEnd = nullptr; // Reset range pointers } // If EHPadStack is empty, that means it is correctly unwind to caller if // it throws, so we're good. If MI does not throw, we're good too. if (EHPadStack.empty() || !WebAssembly::mayThrow(MI)) continue; // We found an instruction that unwinds to the caller but currently has an // incorrect unwind destination. Create a new range or increment the // currently existing range. if (!RangeEnd) RangeBegin = RangeEnd = &MI; else RangeBegin = &MI; } if (RangeEnd) { NeedAppendixBlock = true; // Record the range. nullptr here means the unwind destination is the // caller. UnwindDestToTryRanges[nullptr].push_back(TryRange(RangeBegin, RangeEnd)); RangeBegin = RangeEnd = nullptr; // Reset range pointers } } assert(EHPadStack.empty()); // We don't have any unwind destination mismatches to resolve. if (UnwindDestToTryRanges.empty()) return false; // If we found instructions that should unwind to the caller but currently // have incorrect unwind destination, we create an appendix block at the end // of the function with a local.get and a rethrow instruction. if (NeedAppendixBlock) { auto *AppendixBB = getAppendixBlock(MF); Register ExnReg = MRI.createVirtualRegister(&WebAssembly::EXNREFRegClass); BuildMI(AppendixBB, DebugLoc(), TII.get(WebAssembly::RETHROW)) .addReg(ExnReg); // These instruction ranges should branch to this appendix BB. for (auto Range : UnwindDestToTryRanges[nullptr]) BrDestToTryRanges[AppendixBB].push_back(Range); BrDestToExnReg[AppendixBB] = ExnReg; } // We loop through unwind destination EH pads that are targeted from some // inner scopes. Because these EH pads are destination of more than one scope // now, we split them so that the handler body is after 'end_try'. // - Before // ehpad: // catch // local.set n / drop // handler body // ... // cont: // end_try // // - After // ehpad: // catch // local.set n / drop // brdest: (new) // end_try (hoisted from 'cont' BB) // handler body (taken from 'ehpad') // ... // cont: for (auto &P : UnwindDestToTryRanges) { NumUnwindMismatches += P.second.size(); // This means the destination is the appendix BB, which was separately // handled above. if (!P.first) continue; MachineBasicBlock *EHPad = P.first; // Find 'catch' and 'local.set' or 'drop' instruction that follows the // 'catch'. If -wasm-disable-explicit-locals is not set, 'catch' should be // always followed by either 'local.set' or a 'drop', because 'br_on_exn' is // generated after 'catch' in LateEHPrepare and we don't support blocks // taking values yet. MachineInstr *Catch = nullptr; unsigned ExnReg = 0; for (auto &MI : *EHPad) { switch (MI.getOpcode()) { case WebAssembly::CATCH: Catch = &MI; ExnReg = Catch->getOperand(0).getReg(); break; } } assert(Catch && "EH pad does not have a catch"); assert(ExnReg != 0 && "Invalid register"); auto SplitPos = std::next(Catch->getIterator()); // Create a new BB that's gonna be the destination for branches from the // inner mismatched scope. MachineInstr *BeginTry = EHPadToTry[EHPad]; MachineInstr *EndTry = BeginToEnd[BeginTry]; MachineBasicBlock *Cont = EndTry->getParent(); auto *BrDest = MF.CreateMachineBasicBlock(); MF.insert(std::next(EHPad->getIterator()), BrDest); // Hoist up the existing 'end_try'. BrDest->insert(BrDest->end(), EndTry->removeFromParent()); // Take out the handler body from EH pad to the new branch destination BB. BrDest->splice(BrDest->end(), EHPad, SplitPos, EHPad->end()); unstackifyVRegsUsedInSplitBB(*EHPad, *BrDest, MFI, MRI, TII); // Fix predecessor-successor relationship. BrDest->transferSuccessors(EHPad); EHPad->addSuccessor(BrDest); // All try ranges that were supposed to unwind to this EH pad now have to // branch to this new branch dest BB. for (auto Range : UnwindDestToTryRanges[EHPad]) BrDestToTryRanges[BrDest].push_back(Range); BrDestToExnReg[BrDest] = ExnReg; // In case we fall through to the continuation BB after the catch block, we // now have to add a branch to it. // - Before // try // ... // (falls through to 'cont') // catch // handler body // end // <-- cont // // - After // try // ... // br %cont (new) // catch // end // handler body // <-- cont MachineBasicBlock *EHPadLayoutPred = &*std::prev(EHPad->getIterator()); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond); if (Analyzable && !TBB && !FBB) { DebugLoc DL = EHPadLayoutPred->empty() ? DebugLoc() : EHPadLayoutPred->rbegin()->getDebugLoc(); BuildMI(EHPadLayoutPred, DL, TII.get(WebAssembly::BR)).addMBB(Cont); BrDests.push_back(Cont); } } // For possibly throwing calls whose unwind destinations are currently // incorrect because of CFG linearization, we wrap them with a nested // try/catch/end_try, and within the new catch block, we branch to the correct // handler. // - Before // mbb: // call @foo <- Unwind destination mismatch! // ehpad: // ... // // - After // mbb: // try (new) // call @foo // nested-ehpad: (new) // catch (new) // local.set n / drop (new) // br %brdest (new) // nested-end: (new) // end_try (new) // ehpad: // ... for (auto &P : BrDestToTryRanges) { MachineBasicBlock *BrDest = P.first; auto &TryRanges = P.second; unsigned ExnReg = BrDestToExnReg[BrDest]; for (auto Range : TryRanges) { MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; std::tie(RangeBegin, RangeEnd) = Range; auto *MBB = RangeBegin->getParent(); // Store the first function call from this range, because RangeBegin can // be moved to point EH_LABEL before the call MachineInstr *RangeBeginCall = RangeBegin; // Include possible EH_LABELs in the range if (RangeBegin->getIterator() != MBB->begin() && std::prev(RangeBegin->getIterator())->isEHLabel()) RangeBegin = &*std::prev(RangeBegin->getIterator()); if (std::next(RangeEnd->getIterator()) != MBB->end() && std::next(RangeEnd->getIterator())->isEHLabel()) RangeEnd = &*std::next(RangeEnd->getIterator()); MachineBasicBlock *EHPad = nullptr; for (auto *Succ : MBB->successors()) { if (Succ->isEHPad()) { EHPad = Succ; break; } } // Local expression tree before the first call of this range should go // after the nested TRY. SmallPtrSet AfterSet; AfterSet.insert(RangeBegin); AfterSet.insert(RangeBeginCall); for (auto I = MachineBasicBlock::iterator(RangeBeginCall), E = MBB->begin(); I != E; --I) { if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) continue; if (WebAssembly::isChild(*std::prev(I), MFI)) AfterSet.insert(&*std::prev(I)); else break; } // Create the nested try instruction. auto InsertPos = getLatestInsertPos( MBB, SmallPtrSet(), AfterSet); MachineInstr *NestedTry = BuildMI(*MBB, InsertPos, RangeBegin->getDebugLoc(), TII.get(WebAssembly::TRY)) .addImm(int64_t(WebAssembly::BlockType::Void)); // Create the nested EH pad and fill instructions in. MachineBasicBlock *NestedEHPad = MF.CreateMachineBasicBlock(); MF.insert(std::next(MBB->getIterator()), NestedEHPad); NestedEHPad->setIsEHPad(); NestedEHPad->setIsEHScopeEntry(); BuildMI(NestedEHPad, RangeEnd->getDebugLoc(), TII.get(WebAssembly::CATCH), ExnReg); BuildMI(NestedEHPad, RangeEnd->getDebugLoc(), TII.get(WebAssembly::BR)) .addMBB(BrDest); // Create the nested continuation BB and end_try instruction. MachineBasicBlock *NestedCont = MF.CreateMachineBasicBlock(); MF.insert(std::next(NestedEHPad->getIterator()), NestedCont); MachineInstr *NestedEndTry = BuildMI(*NestedCont, NestedCont->begin(), RangeEnd->getDebugLoc(), TII.get(WebAssembly::END_TRY)); // In case MBB has more instructions after the try range, move them to the // new nested continuation BB. NestedCont->splice(NestedCont->end(), MBB, std::next(RangeEnd->getIterator()), MBB->end()); unstackifyVRegsUsedInSplitBB(*MBB, *NestedCont, MFI, MRI, TII); registerTryScope(NestedTry, NestedEndTry, NestedEHPad); // Fix predecessor-successor relationship. NestedCont->transferSuccessors(MBB); if (EHPad) { NestedCont->removeSuccessor(EHPad); // If EHPad does not have any predecessors left after removing // NextedCont predecessor, remove its successor too, because this EHPad // is not reachable from the entry BB anyway. We can't remove EHPad BB // itself because it can contain 'catch' or 'end', which are necessary // for keeping try-catch-end structure. if (EHPad->pred_empty()) EHPad->removeSuccessor(BrDest); } MBB->addSuccessor(NestedEHPad); MBB->addSuccessor(NestedCont); NestedEHPad->addSuccessor(BrDest); } } // Renumber BBs and recalculate ScopeTop info because new BBs might have been // created and inserted above. MF.RenumberBlocks(); ScopeTops.clear(); ScopeTops.resize(MF.getNumBlockIDs()); for (auto &MBB : reverse(MF)) { for (auto &MI : reverse(MBB)) { if (ScopeTops[MBB.getNumber()]) break; switch (MI.getOpcode()) { case WebAssembly::END_BLOCK: case WebAssembly::END_LOOP: case WebAssembly::END_TRY: ScopeTops[MBB.getNumber()] = EndToBegin[&MI]->getParent(); break; case WebAssembly::CATCH: ScopeTops[MBB.getNumber()] = EHPadToTry[&MBB]->getParent(); break; } } } // Recompute the dominator tree. getAnalysis().runOnMachineFunction(MF); // Place block markers for newly added branches, if necessary. // If we've created an appendix BB and a branch to it, place a block/end_block // marker for that. For some new branches, those branch destination BBs start // with a hoisted end_try marker, so we don't need a new marker there. if (AppendixBB) BrDests.push_back(AppendixBB); llvm::sort(BrDests, [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { auto ANum = A->getNumber(); auto BNum = B->getNumber(); return ANum < BNum; }); for (auto *Dest : BrDests) placeBlockMarker(*Dest); return true; } static unsigned getDepth(const SmallVectorImpl &Stack, const MachineBasicBlock *MBB) { unsigned Depth = 0; for (auto X : reverse(Stack)) { if (X == MBB) break; ++Depth; } assert(Depth < Stack.size() && "Branch destination should be in scope"); return Depth; } /// In normal assembly languages, when the end of a function is unreachable, /// because the function ends in an infinite loop or a noreturn call or similar, /// it isn't necessary to worry about the function return type at the end of /// the function, because it's never reached. However, in WebAssembly, blocks /// that end at the function end need to have a return type signature that /// matches the function signature, even though it's unreachable. This function /// checks for such cases and fixes up the signatures. void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) { const auto &MFI = *MF.getInfo(); if (MFI.getResults().empty()) return; // MCInstLower will add the proper types to multivalue signatures based on the // function return type WebAssembly::BlockType RetType = MFI.getResults().size() > 1 ? WebAssembly::BlockType::Multivalue : WebAssembly::BlockType( WebAssembly::toValType(MFI.getResults().front())); for (MachineBasicBlock &MBB : reverse(MF)) { for (MachineInstr &MI : reverse(MBB)) { if (MI.isPosition() || MI.isDebugInstr()) continue; switch (MI.getOpcode()) { case WebAssembly::END_BLOCK: case WebAssembly::END_LOOP: case WebAssembly::END_TRY: EndToBegin[&MI]->getOperand(0).setImm(int32_t(RetType)); continue; default: // Something other than an `end`. We're done. return; } } } } // WebAssembly functions end with an end instruction, as if the function body // were a block. static void appendEndToFunction(MachineFunction &MF, const WebAssemblyInstrInfo &TII) { BuildMI(MF.back(), MF.back().end(), MF.back().findPrevDebugLoc(MF.back().end()), TII.get(WebAssembly::END_FUNCTION)); } /// Insert LOOP/TRY/BLOCK markers at appropriate places. void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) { // We allocate one more than the number of blocks in the function to // accommodate for the possible fake block we may insert at the end. ScopeTops.resize(MF.getNumBlockIDs() + 1); // Place the LOOP for MBB if MBB is the header of a loop. for (auto &MBB : MF) placeLoopMarker(MBB); const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo(); for (auto &MBB : MF) { if (MBB.isEHPad()) { // Place the TRY for MBB if MBB is the EH pad of an exception. if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && MF.getFunction().hasPersonalityFn()) placeTryMarker(MBB); } else { // Place the BLOCK for MBB if MBB is branched to from above. placeBlockMarker(MBB); } } // Fix mismatches in unwind destinations induced by linearizing the code. if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && MF.getFunction().hasPersonalityFn()) fixUnwindMismatches(MF); } void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) { // Now rewrite references to basic blocks to be depth immediates. SmallVector Stack; for (auto &MBB : reverse(MF)) { for (auto I = MBB.rbegin(), E = MBB.rend(); I != E; ++I) { MachineInstr &MI = *I; switch (MI.getOpcode()) { case WebAssembly::BLOCK: case WebAssembly::TRY: assert(ScopeTops[Stack.back()->getNumber()]->getNumber() <= MBB.getNumber() && "Block/try marker should be balanced"); Stack.pop_back(); break; case WebAssembly::LOOP: assert(Stack.back() == &MBB && "Loop top should be balanced"); Stack.pop_back(); break; case WebAssembly::END_BLOCK: case WebAssembly::END_TRY: Stack.push_back(&MBB); break; case WebAssembly::END_LOOP: Stack.push_back(EndToBegin[&MI]->getParent()); break; default: if (MI.isTerminator()) { // Rewrite MBB operands to be depth immediates. SmallVector Ops(MI.operands()); while (MI.getNumOperands() > 0) MI.RemoveOperand(MI.getNumOperands() - 1); for (auto MO : Ops) { if (MO.isMBB()) MO = MachineOperand::CreateImm(getDepth(Stack, MO.getMBB())); MI.addOperand(MF, MO); } } break; } } } assert(Stack.empty() && "Control flow should be balanced"); } void WebAssemblyCFGStackify::releaseMemory() { ScopeTops.clear(); BeginToEnd.clear(); EndToBegin.clear(); TryToEHPad.clear(); EHPadToTry.clear(); AppendixBB = nullptr; } bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n" "********** Function: " << MF.getName() << '\n'); const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo(); releaseMemory(); // Liveness is not tracked for VALUE_STACK physreg. MF.getRegInfo().invalidateLiveness(); // Place the BLOCK/LOOP/TRY markers to indicate the beginnings of scopes. placeMarkers(MF); // Remove unnecessary instructions possibly introduced by try/end_trys. if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && MF.getFunction().hasPersonalityFn()) removeUnnecessaryInstrs(MF); // Convert MBB operands in terminators to relative depth immediates. rewriteDepthImmediates(MF); // Fix up block/loop/try signatures at the end of the function to conform to // WebAssembly's rules. fixEndsAtEndOfFunction(MF); // Add an end instruction at the end of the function body. const auto &TII = *MF.getSubtarget().getInstrInfo(); if (!MF.getSubtarget() .getTargetTriple() .isOSBinFormatELF()) appendEndToFunction(MF, TII); MF.getInfo()->setCFGStackified(); return true; }