//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the VE implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "VEInstrInfo.h" #include "VE.h" #include "VEMachineFunctionInfo.h" #include "VESubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #define DEBUG_TYPE "ve-instr-info" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "VEGenInstrInfo.inc" // Pin the vtable to this file. void VEInstrInfo::anchor() {} VEInstrInfo::VEInstrInfo(VESubtarget &ST) : VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {} static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); } static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) { switch (CC) { case VECC::CC_IG: return VECC::CC_ILE; case VECC::CC_IL: return VECC::CC_IGE; case VECC::CC_INE: return VECC::CC_IEQ; case VECC::CC_IEQ: return VECC::CC_INE; case VECC::CC_IGE: return VECC::CC_IL; case VECC::CC_ILE: return VECC::CC_IG; case VECC::CC_AF: return VECC::CC_AT; case VECC::CC_G: return VECC::CC_LENAN; case VECC::CC_L: return VECC::CC_GENAN; case VECC::CC_NE: return VECC::CC_EQNAN; case VECC::CC_EQ: return VECC::CC_NENAN; case VECC::CC_GE: return VECC::CC_LNAN; case VECC::CC_LE: return VECC::CC_GNAN; case VECC::CC_NUM: return VECC::CC_NAN; case VECC::CC_NAN: return VECC::CC_NUM; case VECC::CC_GNAN: return VECC::CC_LE; case VECC::CC_LNAN: return VECC::CC_GE; case VECC::CC_NENAN: return VECC::CC_EQ; case VECC::CC_EQNAN: return VECC::CC_NE; case VECC::CC_GENAN: return VECC::CC_L; case VECC::CC_LENAN: return VECC::CC_G; case VECC::CC_AT: return VECC::CC_AF; case VECC::UNKNOWN: return VECC::UNKNOWN; } llvm_unreachable("Invalid cond code"); } // Treat br.l [BRCF AT] as unconditional branch static bool isUncondBranchOpcode(int Opc) { return Opc == VE::BRCFLa || Opc == VE::BRCFWa || Opc == VE::BRCFLa_nt || Opc == VE::BRCFWa_nt || Opc == VE::BRCFLa_t || Opc == VE::BRCFWa_t || Opc == VE::BRCFDa || Opc == VE::BRCFSa || Opc == VE::BRCFDa_nt || Opc == VE::BRCFSa_nt || Opc == VE::BRCFDa_t || Opc == VE::BRCFSa_t; } static bool isCondBranchOpcode(int Opc) { return Opc == VE::BRCFLrr || Opc == VE::BRCFLir || Opc == VE::BRCFLrr_nt || Opc == VE::BRCFLir_nt || Opc == VE::BRCFLrr_t || Opc == VE::BRCFLir_t || Opc == VE::BRCFWrr || Opc == VE::BRCFWir || Opc == VE::BRCFWrr_nt || Opc == VE::BRCFWir_nt || Opc == VE::BRCFWrr_t || Opc == VE::BRCFWir_t || Opc == VE::BRCFDrr || Opc == VE::BRCFDir || Opc == VE::BRCFDrr_nt || Opc == VE::BRCFDir_nt || Opc == VE::BRCFDrr_t || Opc == VE::BRCFDir_t || Opc == VE::BRCFSrr || Opc == VE::BRCFSir || Opc == VE::BRCFSrr_nt || Opc == VE::BRCFSir_nt || Opc == VE::BRCFSrr_t || Opc == VE::BRCFSir_t; } static bool isIndirectBranchOpcode(int Opc) { return Opc == VE::BCFLari || Opc == VE::BCFLari || Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt || Opc == VE::BCFLari_t || Opc == VE::BCFLari_t || Opc == VE::BCFLari || Opc == VE::BCFLari || Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt || Opc == VE::BCFLari_t || Opc == VE::BCFLari_t; } static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl &Cond) { Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm())); Cond.push_back(LastInst->getOperand(1)); Cond.push_back(LastInst->getOperand(2)); Target = LastInst->getOperand(3).getMBB(); } bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; if (!isUnpredicatedTerminator(*I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. parseCondBranch(LastInst, TBB, Cond); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = &*I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If AllowModify is true and the block ends with two or more unconditional // branches, delete all but the first unconditional branch. if (AllowModify && isUncondBranchOpcode(LastOpc)) { while (isUncondBranchOpcode(SecondLastOpc)) { LastInst->eraseFromParent(); LastInst = SecondLastInst; LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { // Return now the only terminator is an unconditional branch. TBB = LastInst->getOperand(0).getMBB(); return false; } SecondLastInst = &*I; SecondLastOpc = SecondLastInst->getOpcode(); } } // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) return true; // If the block ends with a B and a Bcc, handle it. if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { parseCondBranch(SecondLastInst, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); return false; } // ...likewise if it ends with an indirect branch followed by an unconditional // branch. if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 3 || Cond.size() == 0) && "VE branch conditions should have three component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Uncondition branch assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(VE::BRCFLa_t)) .addMBB(TBB); return 1; } // Conditional branch // (BRCFir CC sy sz addr) assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented"); unsigned opc[2]; const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineFunction *MF = MBB.getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Reg = Cond[2].getReg(); if (IsIntegerCC(Cond[0].getImm())) { if (TRI->getRegSizeInBits(Reg, MRI) == 32) { opc[0] = VE::BRCFWir; opc[1] = VE::BRCFWrr; } else { opc[0] = VE::BRCFLir; opc[1] = VE::BRCFLrr; } } else { if (TRI->getRegSizeInBits(Reg, MRI) == 32) { opc[0] = VE::BRCFSir; opc[1] = VE::BRCFSrr; } else { opc[0] = VE::BRCFDir; opc[1] = VE::BRCFDrr; } } if (Cond[1].isImm()) { BuildMI(&MBB, DL, get(opc[0])) .add(Cond[0]) // condition code .add(Cond[1]) // lhs .add(Cond[2]) // rhs .addMBB(TBB); } else { BuildMI(&MBB, DL, get(opc[1])) .add(Cond[0]) .add(Cond[1]) .add(Cond[2]) .addMBB(TBB); } if (!FBB) return 1; BuildMI(&MBB, DL, get(VE::BRCFLa_t)) .addMBB(FBB); return 2; } unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (!isUncondBranchOpcode(I->getOpcode()) && !isCondBranchOpcode(I->getOpcode())) break; // Not a branch I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } bool VEInstrInfo::reverseBranchCondition( SmallVectorImpl &Cond) const { VECC::CondCode CC = static_cast(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } static bool IsAliasOfSX(Register Reg) { return VE::I8RegClass.contains(Reg) || VE::I16RegClass.contains(Reg) || VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) || VE::F32RegClass.contains(Reg); } void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) { BuildMI(MBB, I, DL, get(VE::ORri), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0); } else { const TargetRegisterInfo *TRI = &getRegisterInfo(); dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI) << " to " << printReg(DestReg, TRI) << "\n"; llvm_unreachable("Impossible reg-to-reg copy"); } } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == VE::LDrii || // I64 MI.getOpcode() == VE::LDLSXrii || // I32 MI.getOpcode() == VE::LDUrii // F32 ) { if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 0) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == VE::STrii || // I64 MI.getOpcode() == VE::STLrii || // I32 MI.getOpcode() == VE::STUrii // F32 ) { if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { FrameIndex = MI.getOperand(0).getIndex(); return MI.getOperand(3).getReg(); } } return 0; } void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); // On the order of operands here: think "[FrameIdx + 0] = SrcReg". if (RC == &VE::I64RegClass) { BuildMI(MBB, I, DL, get(VE::STrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else if (RC == &VE::I32RegClass) { BuildMI(MBB, I, DL, get(VE::STLrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else if (RC == &VE::F32RegClass) { BuildMI(MBB, I, DL, get(VE::STUrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else report_fatal_error("Can't store this register to stack slot"); } void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); if (RC == &VE::I64RegClass) { BuildMI(MBB, I, DL, get(VE::LDrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else if (RC == &VE::I32RegClass) { BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else if (RC == &VE::F32RegClass) { BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else report_fatal_error("Can't load this register from stack slot"); } Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { VEMachineFunctionInfo *VEFI = MF->getInfo(); Register GlobalBaseReg = VEFI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // We use %s15 (%got) as a global base register GlobalBaseReg = VE::SX15; // Insert a pseudo instruction to set the GlobalBaseReg into the first // MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc dl; BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg); VEFI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { switch (MI.getOpcode()) { case VE::EXTEND_STACK: { return expandExtendStackPseudo(MI); } case VE::EXTEND_STACK_GUARD: { MI.eraseFromParent(); // The pseudo instruction is gone now. return true; } case VE::GETSTACKTOP: { return expandGetStackTopPseudo(MI); } } return false; } bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const VESubtarget &STI = MF.getSubtarget(); const VEInstrInfo &TII = *STI.getInstrInfo(); DebugLoc dl = MBB.findDebugLoc(MI); // Create following instructions and multiple basic blocks. // // thisBB: // brge.l.t %sp, %sl, sinkBB // syscallBB: // ld %s61, 0x18(, %tp) // load param area // or %s62, 0, %s0 // spill the value of %s0 // lea %s63, 0x13b // syscall # of grow // shm.l %s63, 0x0(%s61) // store syscall # at addr:0 // shm.l %sl, 0x8(%s61) // store old limit at addr:8 // shm.l %sp, 0x10(%s61) // store new limit at addr:16 // monc // call monitor // or %s0, 0, %s62 // restore the value of %s0 // sinkBB: // Create new MBB MachineBasicBlock *BB = &MBB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = ++(BB->getIterator()); MF.insert(It, syscallMBB); MF.insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(std::next(MachineBasicBlock::iterator(MI))), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(syscallMBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(VE::BRCFLrr_t)) .addImm(VECC::CC_IGE) .addReg(VE::SX11) // %sp .addReg(VE::SX8) // %sl .addMBB(sinkMBB); BB = syscallMBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61) .addReg(VE::SX14) .addImm(0) .addImm(0x18); BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62) .addReg(VE::SX0) .addImm(0); BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63) .addImm(0) .addImm(0) .addImm(0x13b); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(0) .addReg(VE::SX63); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(8) .addReg(VE::SX8); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(16) .addReg(VE::SX11); BuildMI(BB, dl, TII.get(VE::MONC)); BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0) .addReg(VE::SX62) .addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return true; } bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const { MachineBasicBlock *MBB = MI.getParent(); MachineFunction &MF = *MBB->getParent(); const VESubtarget &STI = MF.getSubtarget(); const VEInstrInfo &TII = *STI.getInstrInfo(); DebugLoc DL = MBB->findDebugLoc(MI); // Create following instruction // // dst = %sp + target specific frame + the size of parameter area const MachineFrameInfo &MFI = MF.getFrameInfo(); const VEFrameLowering &TFL = *STI.getFrameLowering(); // The VE ABI requires a reserved 176 bytes area at the top // of stack as described in VESubtarget.cpp. So, we adjust it here. unsigned NumBytes = STI.getAdjustedFrameSize(0); // Also adds the size of parameter area. if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF)) NumBytes += MFI.getMaxCallFrameSize(); BuildMI(*MBB, MI, DL, TII.get(VE::LEArii)) .addDef(MI.getOperand(0).getReg()) .addReg(VE::SX11) .addImm(0) .addImm(NumBytes); MI.eraseFromParent(); // The pseudo instruction is gone now. return true; }