//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a crude C++11 based thread pool. // //===----------------------------------------------------------------------===// #include "llvm/Support/ThreadPool.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Threading.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #if LLVM_ENABLE_THREADS ThreadPool::ThreadPool(ThreadPoolStrategy S) : ThreadCount(S.compute_thread_count()) { // Create ThreadCount threads that will loop forever, wait on QueueCondition // for tasks to be queued or the Pool to be destroyed. Threads.reserve(ThreadCount); for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) { Threads.emplace_back([S, ThreadID, this] { S.apply_thread_strategy(ThreadID); while (true) { PackagedTaskTy Task; { std::unique_lock LockGuard(QueueLock); // Wait for tasks to be pushed in the queue QueueCondition.wait(LockGuard, [&] { return !EnableFlag || !Tasks.empty(); }); // Exit condition if (!EnableFlag && Tasks.empty()) return; // Yeah, we have a task, grab it and release the lock on the queue // We first need to signal that we are active before popping the queue // in order for wait() to properly detect that even if the queue is // empty, there is still a task in flight. ++ActiveThreads; Task = std::move(Tasks.front()); Tasks.pop(); } // Run the task we just grabbed Task(); bool Notify; { // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait() std::lock_guard LockGuard(QueueLock); --ActiveThreads; Notify = workCompletedUnlocked(); } // Notify task completion if this is the last active thread, in case // someone waits on ThreadPool::wait(). if (Notify) CompletionCondition.notify_all(); } }); } } void ThreadPool::wait() { // Wait for all threads to complete and the queue to be empty std::unique_lock LockGuard(QueueLock); CompletionCondition.wait(LockGuard, [&] { return workCompletedUnlocked(); }); } std::shared_future ThreadPool::asyncImpl(TaskTy Task) { /// Wrap the Task in a packaged_task to return a future object. PackagedTaskTy PackagedTask(std::move(Task)); auto Future = PackagedTask.get_future(); { // Lock the queue and push the new task std::unique_lock LockGuard(QueueLock); // Don't allow enqueueing after disabling the pool assert(EnableFlag && "Queuing a thread during ThreadPool destruction"); Tasks.push(std::move(PackagedTask)); } QueueCondition.notify_one(); return Future.share(); } // The destructor joins all threads, waiting for completion. ThreadPool::~ThreadPool() { { std::unique_lock LockGuard(QueueLock); EnableFlag = false; } QueueCondition.notify_all(); for (auto &Worker : Threads) Worker.join(); } #else // LLVM_ENABLE_THREADS Disabled // No threads are launched, issue a warning if ThreadCount is not 0 ThreadPool::ThreadPool(ThreadPoolStrategy S) : ThreadCount(S.compute_thread_count()) { if (ThreadCount != 1) { errs() << "Warning: request a ThreadPool with " << ThreadCount << " threads, but LLVM_ENABLE_THREADS has been turned off\n"; } } void ThreadPool::wait() { // Sequential implementation running the tasks while (!Tasks.empty()) { auto Task = std::move(Tasks.front()); Tasks.pop(); Task(); } } std::shared_future ThreadPool::asyncImpl(TaskTy Task) { // Get a Future with launch::deferred execution using std::async auto Future = std::async(std::launch::deferred, std::move(Task)).share(); // Wrap the future so that both ThreadPool::wait() can operate and the // returned future can be sync'ed on. PackagedTaskTy PackagedTask([Future]() { Future.get(); }); Tasks.push(std::move(PackagedTask)); return Future; } ThreadPool::~ThreadPool() { wait(); } #endif