//=== DWARFLinker.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DWARFLinker/DWARFLinker.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/NonRelocatableStringpool.h" #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/Path.h" #include "llvm/Support/ThreadPool.h" #include namespace llvm { /// Hold the input and output of the debug info size in bytes. struct DebugInfoSize { uint64_t Input; uint64_t Output; }; /// Compute the total size of the debug info. static uint64_t getDebugInfoSize(DWARFContext &Dwarf) { uint64_t Size = 0; for (auto &Unit : Dwarf.compile_units()) { Size += Unit->getLength(); } return Size; } /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our /// CompileUnit object instead. static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) { auto CU = std::upper_bound( Units.begin(), Units.end(), Offset, [](uint64_t LHS, const std::unique_ptr &RHS) { return LHS < RHS->getOrigUnit().getNextUnitOffset(); }); return CU != Units.end() ? CU->get() : nullptr; } /// Resolve the DIE attribute reference that has been extracted in \p RefValue. /// The resulting DIE might be in another CompileUnit which is stored into \p /// ReferencedCU. \returns null if resolving fails for any reason. DWARFDie DWARFLinker::resolveDIEReference(const DwarfFile &File, const UnitListTy &Units, const DWARFFormValue &RefValue, const DWARFDie &DIE, CompileUnit *&RefCU) { assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); uint64_t RefOffset = *RefValue.getAsReference(); if ((RefCU = getUnitForOffset(Units, RefOffset))) if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) { // In a file with broken references, an attribute might point to a NULL // DIE. if (!RefDie.isNULL()) return RefDie; } reportWarning("could not find referenced DIE", File, &DIE); return DWARFDie(); } /// \returns whether the passed \a Attr type might contain a DIE reference /// suitable for ODR uniquing. static bool isODRAttribute(uint16_t Attr) { switch (Attr) { default: return false; case dwarf::DW_AT_type: case dwarf::DW_AT_containing_type: case dwarf::DW_AT_specification: case dwarf::DW_AT_abstract_origin: case dwarf::DW_AT_import: return true; } llvm_unreachable("Improper attribute."); } static bool isTypeTag(uint16_t Tag) { switch (Tag) { case dwarf::DW_TAG_array_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_pointer_type: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_string_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_ptr_to_member_type: case dwarf::DW_TAG_set_type: case dwarf::DW_TAG_subrange_type: case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_constant: case dwarf::DW_TAG_file_type: case dwarf::DW_TAG_namelist: case dwarf::DW_TAG_packed_type: case dwarf::DW_TAG_volatile_type: case dwarf::DW_TAG_restrict_type: case dwarf::DW_TAG_atomic_type: case dwarf::DW_TAG_interface_type: case dwarf::DW_TAG_unspecified_type: case dwarf::DW_TAG_shared_type: return true; default: break; } return false; } AddressesMap::~AddressesMap() {} DwarfEmitter::~DwarfEmitter() {} static Optional StripTemplateParameters(StringRef Name) { // We are looking for template parameters to strip from Name. e.g. // // operator< // // We look for > at the end but if it does not contain any < then we // have something like operator>>. We check for the operator<=> case. if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>")) return {}; // How many < until we have the start of the template parameters. size_t NumLeftAnglesToSkip = 1; // If we have operator<=> then we need to skip its < as well. NumLeftAnglesToSkip += Name.count("<=>"); size_t RightAngleCount = Name.count('>'); size_t LeftAngleCount = Name.count('<'); // If we have more < than > we have operator< or operator<< // we to account for their < as well. if (LeftAngleCount > RightAngleCount) NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount; size_t StartOfTemplate = 0; while (NumLeftAnglesToSkip--) StartOfTemplate = Name.find('<', StartOfTemplate) + 1; return Name.substr(0, StartOfTemplate - 1); } bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die, AttributesInfo &Info, OffsetsStringPool &StringPool, bool StripTemplate) { // This function will be called on DIEs having low_pcs and // ranges. As getting the name might be more expansive, filter out // blocks directly. if (Die.getTag() == dwarf::DW_TAG_lexical_block) return false; if (!Info.MangledName) if (const char *MangledName = Die.getLinkageName()) Info.MangledName = StringPool.getEntry(MangledName); if (!Info.Name) if (const char *Name = Die.getShortName()) Info.Name = StringPool.getEntry(Name); if (!Info.MangledName) Info.MangledName = Info.Name; if (StripTemplate && Info.Name && Info.MangledName != Info.Name) { StringRef Name = Info.Name.getString(); if (Optional StrippedName = StripTemplateParameters(Name)) Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName); } return Info.Name || Info.MangledName; } /// Resolve the relative path to a build artifact referenced by DWARF by /// applying DW_AT_comp_dir. static void resolveRelativeObjectPath(SmallVectorImpl &Buf, DWARFDie CU) { sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), "")); } /// Collect references to parseable Swift interfaces in imported /// DW_TAG_module blocks. static void analyzeImportedModule( const DWARFDie &DIE, CompileUnit &CU, swiftInterfacesMap *ParseableSwiftInterfaces, std::function ReportWarning) { if (CU.getLanguage() != dwarf::DW_LANG_Swift) return; if (!ParseableSwiftInterfaces) return; StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path)); if (!Path.endswith(".swiftinterface")) return; // Don't track interfaces that are part of the SDK. StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot)); if (SysRoot.empty()) SysRoot = CU.getSysRoot(); if (!SysRoot.empty() && Path.startswith(SysRoot)) return; if (Optional Val = DIE.find(dwarf::DW_AT_name)) if (Optional Name = Val->getAsCString()) { auto &Entry = (*ParseableSwiftInterfaces)[*Name]; // The prepend path is applied later when copying. DWARFDie CUDie = CU.getOrigUnit().getUnitDIE(); SmallString<128> ResolvedPath; if (sys::path::is_relative(Path)) resolveRelativeObjectPath(ResolvedPath, CUDie); sys::path::append(ResolvedPath, Path); if (!Entry.empty() && Entry != ResolvedPath) ReportWarning( Twine("Conflicting parseable interfaces for Swift Module ") + *Name + ": " + Entry + " and " + Path, DIE); Entry = std::string(ResolvedPath.str()); } } /// Recursive helper to build the global DeclContext information and /// gather the child->parent relationships in the original compile unit. /// /// \return true when this DIE and all of its children are only /// forward declarations to types defined in external clang modules /// (i.e., forward declarations that are children of a DW_TAG_module). static bool analyzeContextInfo( const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU, DeclContext *CurrentDeclContext, UniquingStringPool &StringPool, DeclContextTree &Contexts, uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces, std::function ReportWarning, bool InImportedModule = false) { unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE); CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx); // Clang imposes an ODR on modules(!) regardless of the language: // "The module-id should consist of only a single identifier, // which provides the name of the module being defined. Each // module shall have a single definition." // // This does not extend to the types inside the modules: // "[I]n C, this implies that if two structs are defined in // different submodules with the same name, those two types are // distinct types (but may be compatible types if their // definitions match)." // // We treat non-C++ modules like namespaces for this reason. if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 && dwarf::toString(DIE.find(dwarf::DW_AT_name), "") != CU.getClangModuleName()) { InImportedModule = true; analyzeImportedModule(DIE, CU, ParseableSwiftInterfaces, ReportWarning); } Info.ParentIdx = ParentIdx; bool InClangModule = CU.isClangModule() || InImportedModule; if (CU.hasODR() || InClangModule) { if (CurrentDeclContext) { auto PtrInvalidPair = Contexts.getChildDeclContext( *CurrentDeclContext, DIE, CU, StringPool, InClangModule); CurrentDeclContext = PtrInvalidPair.getPointer(); Info.Ctxt = PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); if (Info.Ctxt) Info.Ctxt->setDefinedInClangModule(InClangModule); } else Info.Ctxt = CurrentDeclContext = nullptr; } Info.Prune = InImportedModule; if (DIE.hasChildren()) for (auto Child : DIE.children()) Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext, StringPool, Contexts, ModulesEndOffset, ParseableSwiftInterfaces, ReportWarning, InImportedModule); // Prune this DIE if it is either a forward declaration inside a // DW_TAG_module or a DW_TAG_module that contains nothing but // forward declarations. Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) || (isTypeTag(DIE.getTag()) && dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0)); // Only prune forward declarations inside a DW_TAG_module for which a // definition exists elsewhere. if (ModulesEndOffset == 0) Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset(); else Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 && Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset; return Info.Prune; } static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { switch (Tag) { default: return false; case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_common_block: case dwarf::DW_TAG_lexical_block: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_union_type: return true; } llvm_unreachable("Invalid Tag"); } void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) { Context.clear(); for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I) (*I)->~DIEBlock(); for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I) (*I)->~DIELoc(); DIEBlocks.clear(); DIELocs.clear(); DIEAlloc.Reset(); } /// Get the starting and ending (exclusive) offset for the /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is /// supposed to point to the position of the first attribute described /// by \p Abbrev. /// \return [StartOffset, EndOffset) as a pair. static std::pair getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx, uint64_t Offset, const DWARFUnit &Unit) { DataExtractor Data = Unit.getDebugInfoExtractor(); for (unsigned I = 0; I < Idx; ++I) DWARFFormValue::skipValue(Abbrev->getFormByIndex(I), Data, &Offset, Unit.getFormParams()); uint64_t End = Offset; DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, Unit.getFormParams()); return std::make_pair(Offset, End); } /// Check if a variable describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); // Global variables with constant value can always be kept. if (!(Flags & TF_InFunctionScope) && Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) { MyInfo.InDebugMap = true; return Flags | TF_Keep; } Optional LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location); if (!LocationIdx) return Flags; uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint64_t LocationOffset, LocationEndOffset; std::tie(LocationOffset, LocationEndOffset) = getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit); // See if there is a relocation to a valid debug map entry inside // this variable's location. The order is important here. We want to // always check if the variable has a valid relocation, so that the // DIEInfo is filled. However, we don't want a static variable in a // function to force us to keep the enclosing function. if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset, MyInfo) || (Flags & TF_InFunctionScope)) return Flags; if (Options.Verbose) { outs() << "Keeping variable DIE:"; DIDumpOptions DumpOpts; DumpOpts.ChildRecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; DIE.dump(outs(), 8 /* Indent */, DumpOpts); } return Flags | TF_Keep; } /// Check if a function describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DWARFLinker::shouldKeepSubprogramDIE( AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE, const DwarfFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); Flags |= TF_InFunctionScope; Optional LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc); if (!LowPcIdx) return Flags; uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint64_t LowPcOffset, LowPcEndOffset; std::tie(LowPcOffset, LowPcEndOffset) = getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit); auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc)); assert(LowPc.hasValue() && "low_pc attribute is not an address."); if (!LowPc || !RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo)) return Flags; if (Options.Verbose) { outs() << "Keeping subprogram DIE:"; DIDumpOptions DumpOpts; DumpOpts.ChildRecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; DIE.dump(outs(), 8 /* Indent */, DumpOpts); } if (DIE.getTag() == dwarf::DW_TAG_label) { if (Unit.hasLabelAt(*LowPc)) return Flags; // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels // that don't fall into the CU's aranges. This is wrong IMO. Debug info // generation bugs aside, this is really wrong in the case of labels, where // a label marking the end of a function will have a PC == CU's high_pc. if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc)) .getValueOr(UINT64_MAX) <= LowPc) return Flags; Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust); return Flags | TF_Keep; } Flags |= TF_Keep; Optional HighPc = DIE.getHighPC(*LowPc); if (!HighPc) { reportWarning("Function without high_pc. Range will be discarded.\n", File, &DIE); return Flags; } // Replace the debug map range with a more accurate one. Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust); Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust); return Flags; } /// Check if a DIE should be kept. /// \returns updated TraversalFlags. unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE, const DwarfFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { switch (DIE.getTag()) { case dwarf::DW_TAG_constant: case dwarf::DW_TAG_variable: return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_label: return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo, Flags); case dwarf::DW_TAG_base_type: // DWARF Expressions may reference basic types, but scanning them // is expensive. Basic types are tiny, so just keep all of them. case dwarf::DW_TAG_imported_module: case dwarf::DW_TAG_imported_declaration: case dwarf::DW_TAG_imported_unit: // We always want to keep these. return Flags | TF_Keep; default: break; } return Flags; } /// Helper that updates the completeness of the current DIE based on the /// completeness of one of its children. It depends on the incompleteness of /// the children already being computed. static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU, CompileUnit::DIEInfo &ChildInfo) { switch (Die.getTag()) { case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: break; default: return; } unsigned Idx = CU.getOrigUnit().getDIEIndex(Die); CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx); if (ChildInfo.Incomplete || ChildInfo.Prune) MyInfo.Incomplete = true; } /// Helper that updates the completeness of the current DIE based on the /// completeness of the DIEs it references. It depends on the incompleteness of /// the referenced DIE already being computed. static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU, CompileUnit::DIEInfo &RefInfo) { switch (Die.getTag()) { case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_member: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_ptr_to_member_type: case dwarf::DW_TAG_pointer_type: break; default: return; } unsigned Idx = CU.getOrigUnit().getDIEIndex(Die); CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx); if (MyInfo.Incomplete) return; if (RefInfo.Incomplete) MyInfo.Incomplete = true; } /// Look at the children of the given DIE and decide whether they should be /// kept. void DWARFLinker::lookForChildDIEsToKeep( const DWARFDie &Die, CompileUnit &CU, unsigned Flags, SmallVectorImpl &Worklist) { // The TF_ParentWalk flag tells us that we are currently walking up the // parent chain of a required DIE, and we don't want to mark all the children // of the parents as kept (consider for example a DW_TAG_namespace node in // the parent chain). There are however a set of DIE types for which we want // to ignore that directive and still walk their children. if (dieNeedsChildrenToBeMeaningful(Die.getTag())) Flags &= ~DWARFLinker::TF_ParentWalk; // We're finished if this DIE has no children or we're walking the parent // chain. if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk)) return; // Add children in reverse order to the worklist to effectively process them // in order. for (auto Child : reverse(Die.children())) { // Add a worklist item before every child to calculate incompleteness right // after the current child is processed. unsigned Idx = CU.getOrigUnit().getDIEIndex(Child); CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Idx); Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness, &ChildInfo); Worklist.emplace_back(Child, CU, Flags); } } /// Look at DIEs referenced by the given DIE and decide whether they should be /// kept. All DIEs referenced though attributes should be kept. void DWARFLinker::lookForRefDIEsToKeep( const DWARFDie &Die, CompileUnit &CU, unsigned Flags, const UnitListTy &Units, const DwarfFile &File, SmallVectorImpl &Worklist) { bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk) ? (Flags & DWARFLinker::TF_ODR) : CU.hasODR(); DWARFUnit &Unit = CU.getOrigUnit(); DWARFDataExtractor Data = Unit.getDebugInfoExtractor(); const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); SmallVector, 4> ReferencedDIEs; for (const auto &AttrSpec : Abbrev->attributes()) { DWARFFormValue Val(AttrSpec.Form); if (!Val.isFormClass(DWARFFormValue::FC_Reference) || AttrSpec.Attr == dwarf::DW_AT_sibling) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, Unit.getFormParams()); continue; } Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit); CompileUnit *ReferencedCU; if (auto RefDie = resolveDIEReference(File, Units, Val, Die, ReferencedCU)) { uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx); bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() && Info.Ctxt->isDefinedInClangModule(); // If the referenced DIE has a DeclContext that has already been // emitted, then do not keep the one in this CU. We'll link to // the canonical DIE in cloneDieReferenceAttribute. // // FIXME: compatibility with dsymutil-classic. UseODR shouldn't // be necessary and could be advantageously replaced by // ReferencedCU->hasODR() && CU.hasODR(). // // FIXME: compatibility with dsymutil-classic. There is no // reason not to unique ref_addr references. if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) && Info.Ctxt && Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt && Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr)) continue; // Keep a module forward declaration if there is no definition. if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset())) Info.Prune = false; ReferencedDIEs.emplace_back(RefDie, *ReferencedCU); } } unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0; // Add referenced DIEs in reverse order to the worklist to effectively // process them in order. for (auto &P : reverse(ReferencedDIEs)) { // Add a worklist item before every child to calculate incompleteness right // after the current child is processed. uint32_t RefIdx = P.second.getOrigUnit().getDIEIndex(P.first); CompileUnit::DIEInfo &Info = P.second.getInfo(RefIdx); Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness, &Info); Worklist.emplace_back(P.first, P.second, DWARFLinker::TF_Keep | DWARFLinker::TF_DependencyWalk | ODRFlag); } } /// Look at the parent of the given DIE and decide whether they should be kept. void DWARFLinker::lookForParentDIEsToKeep( unsigned AncestorIdx, CompileUnit &CU, unsigned Flags, SmallVectorImpl &Worklist) { // Stop if we encounter an ancestor that's already marked as kept. if (CU.getInfo(AncestorIdx).Keep) return; DWARFUnit &Unit = CU.getOrigUnit(); DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx); Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags); Worklist.emplace_back(ParentDIE, CU, Flags); } /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that /// information in \p CU's DIEInfo. /// /// This function is the entry point of the DIE selection algorithm. It is /// expected to walk the DIE tree in file order and (though the mediation of /// its helper) call hasValidRelocation() on each DIE that might be a 'root /// DIE' (See DwarfLinker class comment). /// /// While walking the dependencies of root DIEs, this function is also called, /// but during these dependency walks the file order is not respected. The /// TF_DependencyWalk flag tells us which kind of traversal we are currently /// doing. /// /// The recursive algorithm is implemented iteratively as a work list because /// very deep recursion could exhaust the stack for large projects. The work /// list acts as a scheduler for different types of work that need to be /// performed. /// /// The recursive nature of the algorithm is simulated by running the "main" /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or /// fixing up a computed property (UpdateChildIncompleteness, /// UpdateRefIncompleteness). /// /// The return value indicates whether the DIE is incomplete. void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap, RangesTy &Ranges, const UnitListTy &Units, const DWARFDie &Die, const DwarfFile &File, CompileUnit &Cu, unsigned Flags) { // LIFO work list. SmallVector Worklist; Worklist.emplace_back(Die, Cu, Flags); while (!Worklist.empty()) { WorklistItem Current = Worklist.back(); Worklist.pop_back(); // Look at the worklist type to decide what kind of work to perform. switch (Current.Type) { case WorklistItemType::UpdateChildIncompleteness: updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); continue; case WorklistItemType::UpdateRefIncompleteness: updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); continue; case WorklistItemType::LookForChildDIEsToKeep: lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist); continue; case WorklistItemType::LookForRefDIEsToKeep: lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File, Worklist); continue; case WorklistItemType::LookForParentDIEsToKeep: lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags, Worklist); continue; case WorklistItemType::LookForDIEsToKeep: break; } unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die); CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx); if (MyInfo.Prune) continue; // If the Keep flag is set, we are marking a required DIE's dependencies. // If our target is already marked as kept, we're all set. bool AlreadyKept = MyInfo.Keep; if ((Current.Flags & TF_DependencyWalk) && AlreadyKept) continue; // We must not call shouldKeepDIE while called from keepDIEAndDependencies, // because it would screw up the relocation finding logic. if (!(Current.Flags & TF_DependencyWalk)) Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File, Current.CU, MyInfo, Current.Flags); // Finish by looking for child DIEs. Because of the LIFO worklist we need // to schedule that work before any subsequent items are added to the // worklist. Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, WorklistItemType::LookForChildDIEsToKeep); if (AlreadyKept || !(Current.Flags & TF_Keep)) continue; // If it is a newly kept DIE mark it as well as all its dependencies as // kept. MyInfo.Keep = true; // We're looking for incomplete types. MyInfo.Incomplete = Current.Die.getTag() != dwarf::DW_TAG_subprogram && Current.Die.getTag() != dwarf::DW_TAG_member && dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0); // After looking at the parent chain, look for referenced DIEs. Because of // the LIFO worklist we need to schedule that work before any subsequent // items are added to the worklist. Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, WorklistItemType::LookForRefDIEsToKeep); bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR) : Current.CU.hasODR(); unsigned ODRFlag = UseOdr ? TF_ODR : 0; unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag; // Now schedule the parent walk. Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags); } } /// Assign an abbreviation number to \p Abbrev. /// /// Our DIEs get freed after every DebugMapObject has been processed, /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to /// the instances hold by the DIEs. When we encounter an abbreviation /// that we don't know, we create a permanent copy of it. void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) { // Check the set for priors. FoldingSetNodeID ID; Abbrev.Profile(ID); void *InsertToken; DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); // If it's newly added. if (InSet) { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } else { // Add to abbreviation list. Abbreviations.push_back( std::make_unique(Abbrev.getTag(), Abbrev.hasChildren())); for (const auto &Attr : Abbrev.getData()) Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken); // Assign the unique abbreviation number. Abbrev.setNumber(Abbreviations.size()); Abbreviations.back()->setNumber(Abbreviations.size()); } } unsigned DWARFLinker::DIECloner::cloneStringAttribute( DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) { // Switch everything to out of line strings. const char *String = *Val.getAsCString(); auto StringEntry = StringPool.getEntry(String); // Update attributes info. if (AttrSpec.Attr == dwarf::DW_AT_name) Info.Name = StringEntry; else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name || AttrSpec.Attr == dwarf::DW_AT_linkage_name) Info.MangledName = StringEntry; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, DIEInteger(StringEntry.getOffset())); return 4; } unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute( DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val, const DwarfFile &File, CompileUnit &Unit) { const DWARFUnit &U = Unit.getOrigUnit(); uint64_t Ref = *Val.getAsReference(); DIE *NewRefDie = nullptr; CompileUnit *RefUnit = nullptr; DeclContext *Ctxt = nullptr; DWARFDie RefDie = Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit); // If the referenced DIE is not found, drop the attribute. if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling) return 0; unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx); // If we already have emitted an equivalent DeclContext, just point // at it. if (isODRAttribute(AttrSpec.Attr)) { Ctxt = RefInfo.Ctxt; if (Ctxt && Ctxt->getCanonicalDIEOffset()) { DIEInteger Attr(Ctxt->getCanonicalDIEOffset()); Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, Attr); return U.getRefAddrByteSize(); } } if (!RefInfo.Clone) { assert(Ref > InputDIE.getOffset()); // We haven't cloned this DIE yet. Just create an empty one and // store it. It'll get really cloned when we process it. RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag())); } NewRefDie = RefInfo.Clone; if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { // We cannot currently rely on a DIEEntry to emit ref_addr // references, because the implementation calls back to DwarfDebug // to find the unit offset. (We don't have a DwarfDebug) // FIXME: we should be able to design DIEEntry reliance on // DwarfDebug away. uint64_t Attr; if (Ref < InputDIE.getOffset()) { // We must have already cloned that DIE. uint32_t NewRefOffset = RefUnit->getStartOffset() + NewRefDie->getOffset(); Attr = NewRefOffset; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); } else { // A forward reference. Note and fixup later. Attr = 0xBADDEF; Unit.noteForwardReference( NewRefDie, RefUnit, Ctxt, Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); } return U.getRefAddrByteSize(); } Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); return AttrSize; } void DWARFLinker::DIECloner::cloneExpression( DataExtractor &Data, DWARFExpression Expression, const DwarfFile &File, CompileUnit &Unit, SmallVectorImpl &OutputBuffer) { using Encoding = DWARFExpression::Operation::Encoding; uint64_t OpOffset = 0; for (auto &Op : Expression) { auto Description = Op.getDescription(); // DW_OP_const_type is variable-length and has 3 // operands. DWARFExpression thus far only supports 2. auto Op0 = Description.Op[0]; auto Op1 = Description.Op[1]; if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) || (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1)) Linker.reportWarning("Unsupported DW_OP encoding.", File); if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) || (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) { // This code assumes that the other non-typeref operand fits into 1 byte. assert(OpOffset < Op.getEndOffset()); uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1; assert(ULEBsize <= 16); // Copy over the operation. OutputBuffer.push_back(Op.getCode()); uint64_t RefOffset; if (Op1 == Encoding::SizeNA) { RefOffset = Op.getRawOperand(0); } else { OutputBuffer.push_back(Op.getRawOperand(0)); RefOffset = Op.getRawOperand(1); } uint32_t Offset = 0; // Look up the base type. For DW_OP_convert, the operand may be 0 to // instead indicate the generic type. The same holds for // DW_OP_reinterpret, which is currently not supported. if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) { auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset); uint32_t RefIdx = Unit.getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &Info = Unit.getInfo(RefIdx); if (DIE *Clone = Info.Clone) Offset = Clone->getOffset(); else Linker.reportWarning( "base type ref doesn't point to DW_TAG_base_type.", File); } uint8_t ULEB[16]; unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize); if (RealSize > ULEBsize) { // Emit the generic type as a fallback. RealSize = encodeULEB128(0, ULEB, ULEBsize); Linker.reportWarning("base type ref doesn't fit.", File); } assert(RealSize == ULEBsize && "padding failed"); ArrayRef ULEBbytes(ULEB, ULEBsize); OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end()); } else { // Copy over everything else unmodified. StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset()); OutputBuffer.append(Bytes.begin(), Bytes.end()); } OpOffset = Op.getEndOffset(); } } unsigned DWARFLinker::DIECloner::cloneBlockAttribute( DIE &Die, const DwarfFile &File, CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) { DIEValueList *Attr; DIEValue Value; DIELoc *Loc = nullptr; DIEBlock *Block = nullptr; if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { Loc = new (DIEAlloc) DIELoc; Linker.DIELocs.push_back(Loc); } else { Block = new (DIEAlloc) DIEBlock; Linker.DIEBlocks.push_back(Block); } Attr = Loc ? static_cast(Loc) : static_cast(Block); if (Loc) Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Loc); else Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Block); // If the block is a DWARF Expression, clone it into the temporary // buffer using cloneExpression(), otherwise copy the data directly. SmallVector Buffer; ArrayRef Bytes = *Val.getAsBlock(); if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) && (Val.isFormClass(DWARFFormValue::FC_Block) || Val.isFormClass(DWARFFormValue::FC_Exprloc))) { DWARFUnit &OrigUnit = Unit.getOrigUnit(); DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()), IsLittleEndian, OrigUnit.getAddressByteSize()); DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(), OrigUnit.getFormParams().Format); cloneExpression(Data, Expr, File, Unit, Buffer); Bytes = Buffer; } for (auto Byte : Bytes) Attr->addValue(DIEAlloc, static_cast(0), dwarf::DW_FORM_data1, DIEInteger(Byte)); // FIXME: If DIEBlock and DIELoc just reuses the Size field of // the DIE class, this "if" could be replaced by // Attr->setSize(Bytes.size()). if (Loc) Loc->setSize(Bytes.size()); else Block->setSize(Bytes.size()); Die.addValue(DIEAlloc, Value); return AttrSize; } unsigned DWARFLinker::DIECloner::cloneAddressAttribute( DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info) { uint64_t Addr = *Val.getAsAddress(); if (LLVM_UNLIKELY(Linker.Options.Update)) { if (AttrSpec.Attr == dwarf::DW_AT_low_pc) Info.HasLowPc = true; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEInteger(Addr)); return Unit.getOrigUnit().getAddressByteSize(); } if (AttrSpec.Attr == dwarf::DW_AT_low_pc) { if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine || Die.getTag() == dwarf::DW_TAG_lexical_block) // The low_pc of a block or inline subroutine might get // relocated because it happens to match the low_pc of the // enclosing subprogram. To prevent issues with that, always use // the low_pc from the input DIE if relocations have been applied. Addr = (Info.OrigLowPc != std::numeric_limits::max() ? Info.OrigLowPc : Addr) + Info.PCOffset; else if (Die.getTag() == dwarf::DW_TAG_compile_unit) { Addr = Unit.getLowPc(); if (Addr == std::numeric_limits::max()) return 0; } Info.HasLowPc = true; } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) { if (Die.getTag() == dwarf::DW_TAG_compile_unit) { if (uint64_t HighPc = Unit.getHighPc()) Addr = HighPc; else return 0; } else // If we have a high_pc recorded for the input DIE, use // it. Otherwise (when no relocations where applied) just use the // one we just decoded. Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset; } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) { // Relocate a return PC address within a call site entry. if (Die.getTag() == dwarf::DW_TAG_call_site) Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) + Info.PCOffset; } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) { // Relocate the address of a branch instruction within a call site entry. if (Die.getTag() == dwarf::DW_TAG_call_site) Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset; } Die.addValue(DIEAlloc, static_cast(AttrSpec.Attr), static_cast(AttrSpec.Form), DIEInteger(Addr)); return Unit.getOrigUnit().getAddressByteSize(); } unsigned DWARFLinker::DIECloner::cloneScalarAttribute( DIE &Die, const DWARFDie &InputDIE, const DwarfFile &File, CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, AttributesInfo &Info) { uint64_t Value; if (LLVM_UNLIKELY(Linker.Options.Update)) { if (auto OptionalValue = Val.getAsUnsignedConstant()) Value = *OptionalValue; else if (auto OptionalValue = Val.getAsSignedConstant()) Value = *OptionalValue; else if (auto OptionalValue = Val.getAsSectionOffset()) Value = *OptionalValue; else { Linker.reportWarning( "Unsupported scalar attribute form. Dropping attribute.", File, &InputDIE); return 0; } if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) Info.IsDeclaration = true; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEInteger(Value)); return AttrSize; } if (AttrSpec.Attr == dwarf::DW_AT_high_pc && Die.getTag() == dwarf::DW_TAG_compile_unit) { if (Unit.getLowPc() == -1ULL) return 0; // Dwarf >= 4 high_pc is an size, not an address. Value = Unit.getHighPc() - Unit.getLowPc(); } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) Value = *Val.getAsSectionOffset(); else if (AttrSpec.Form == dwarf::DW_FORM_sdata) Value = *Val.getAsSignedConstant(); else if (auto OptionalValue = Val.getAsUnsignedConstant()) Value = *OptionalValue; else { Linker.reportWarning( "Unsupported scalar attribute form. Dropping attribute.", File, &InputDIE); return 0; } PatchLocation Patch = Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEInteger(Value)); if (AttrSpec.Attr == dwarf::DW_AT_ranges) { Unit.noteRangeAttribute(Die, Patch); Info.HasRanges = true; } // A more generic way to check for location attributes would be // nice, but it's very unlikely that any other attribute needs a // location list. // FIXME: use DWARFAttribute::mayHaveLocationDescription(). else if (AttrSpec.Attr == dwarf::DW_AT_location || AttrSpec.Attr == dwarf::DW_AT_frame_base) { Unit.noteLocationAttribute(Patch, Info.PCOffset); } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) Info.IsDeclaration = true; return AttrSize; } /// Clone \p InputDIE's attribute described by \p AttrSpec with /// value \p Val, and add it to \p Die. /// \returns the size of the cloned attribute. unsigned DWARFLinker::DIECloner::cloneAttribute( DIE &Die, const DWARFDie &InputDIE, const DwarfFile &File, CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info, bool IsLittleEndian) { const DWARFUnit &U = Unit.getOrigUnit(); switch (AttrSpec.Form) { case dwarf::DW_FORM_strp: case dwarf::DW_FORM_string: return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info); case dwarf::DW_FORM_ref_addr: case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, File, Unit); case dwarf::DW_FORM_block: case dwarf::DW_FORM_block1: case dwarf::DW_FORM_block2: case dwarf::DW_FORM_block4: case dwarf::DW_FORM_exprloc: return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize, IsLittleEndian); case dwarf::DW_FORM_addr: return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info); case dwarf::DW_FORM_data1: case dwarf::DW_FORM_data2: case dwarf::DW_FORM_data4: case dwarf::DW_FORM_data8: case dwarf::DW_FORM_udata: case dwarf::DW_FORM_sdata: case dwarf::DW_FORM_sec_offset: case dwarf::DW_FORM_flag: case dwarf::DW_FORM_flag_present: return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val, AttrSize, Info); default: Linker.reportWarning( "Unsupported attribute form in cloneAttribute. Dropping.", File, &InputDIE); } return 0; } static bool isObjCSelector(StringRef Name) { return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') && (Name[1] == '['); } void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit, const DIE *Die, DwarfStringPoolEntryRef Name, OffsetsStringPool &StringPool, bool SkipPubSection) { assert(isObjCSelector(Name.getString()) && "not an objc selector"); // Objective C method or class function. // "- [Class(Category) selector :withArg ...]" StringRef ClassNameStart(Name.getString().drop_front(2)); size_t FirstSpace = ClassNameStart.find(' '); if (FirstSpace == StringRef::npos) return; StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1); if (!SelectorStart.size()) return; StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1); Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection); // Add an entry for the class name that points to this // method/class function. StringRef ClassName(ClassNameStart.data(), FirstSpace); Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection); if (ClassName[ClassName.size() - 1] == ')') { size_t OpenParens = ClassName.find('('); if (OpenParens != StringRef::npos) { StringRef ClassNameNoCategory(ClassName.data(), OpenParens); Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory), SkipPubSection); std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2); // FIXME: The missing space here may be a bug, but // dsymutil-classic also does it this way. MethodNameNoCategory.append(std::string(SelectorStart)); Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory), SkipPubSection); } } } static bool shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, uint16_t Tag, bool InDebugMap, bool SkipPC, bool InFunctionScope) { switch (AttrSpec.Attr) { default: return false; case dwarf::DW_AT_low_pc: case dwarf::DW_AT_high_pc: case dwarf::DW_AT_ranges: return SkipPC; case dwarf::DW_AT_location: case dwarf::DW_AT_frame_base: // FIXME: for some reason dsymutil-classic keeps the location attributes // when they are of block type (i.e. not location lists). This is totally // wrong for globals where we will keep a wrong address. It is mostly // harmless for locals, but there is no point in keeping these anyway when // the function wasn't linked. return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable && !InDebugMap)) && !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block); } } DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE, const DwarfFile &File, CompileUnit &Unit, OffsetsStringPool &StringPool, int64_t PCOffset, uint32_t OutOffset, unsigned Flags, bool IsLittleEndian, DIE *Die) { DWARFUnit &U = Unit.getOrigUnit(); unsigned Idx = U.getDIEIndex(InputDIE); CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); // Should the DIE appear in the output? if (!Unit.getInfo(Idx).Keep) return nullptr; uint64_t Offset = InputDIE.getOffset(); assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"); if (!Die) { // The DIE might have been already created by a forward reference // (see cloneDieReferenceAttribute()). if (!Info.Clone) Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); Die = Info.Clone; } assert(Die->getTag() == InputDIE.getTag()); Die->setOffset(OutOffset); if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete && Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt && Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt && !Info.Ctxt->getCanonicalDIEOffset()) { // We are about to emit a DIE that is the root of its own valid // DeclContext tree. Make the current offset the canonical offset // for this context. Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); } // Extract and clone every attribute. DWARFDataExtractor Data = U.getDebugInfoExtractor(); // Point to the next DIE (generally there is always at least a NULL // entry after the current one). If this is a lone // DW_TAG_compile_unit without any children, point to the next unit. uint64_t NextOffset = (Idx + 1 < U.getNumDIEs()) ? U.getDIEAtIndex(Idx + 1).getOffset() : U.getNextUnitOffset(); AttributesInfo AttrInfo; // We could copy the data only if we need to apply a relocation to it. After // testing, it seems there is no performance downside to doing the copy // unconditionally, and it makes the code simpler. SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); Data = DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); // Modify the copy with relocated addresses. if (ObjFile.Addresses->areRelocationsResolved() && ObjFile.Addresses->applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) { // If we applied relocations, we store the value of high_pc that was // potentially stored in the input DIE. If high_pc is an address // (Dwarf version == 2), then it might have been relocated to a // totally unrelated value (because the end address in the object // file might be start address of another function which got moved // independently by the linker). The computation of the actual // high_pc value is done in cloneAddressAttribute(). AttrInfo.OrigHighPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0); // Also store the low_pc. It might get relocated in an // inline_subprogram that happens at the beginning of its // inlining function. AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc), std::numeric_limits::max()); AttrInfo.OrigCallReturnPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0); AttrInfo.OrigCallPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0); } // Reset the Offset to 0 as we will be working on the local copy of // the data. Offset = 0; const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); Offset += getULEB128Size(Abbrev->getCode()); // We are entering a subprogram. Get and propagate the PCOffset. if (Die->getTag() == dwarf::DW_TAG_subprogram) PCOffset = Info.AddrAdjust; AttrInfo.PCOffset = PCOffset; if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { Flags |= TF_InFunctionScope; if (!Info.InDebugMap && LLVM_LIKELY(!Update)) Flags |= TF_SkipPC; } bool Copied = false; for (const auto &AttrSpec : Abbrev->attributes()) { if (LLVM_LIKELY(!Update) && shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap, Flags & TF_SkipPC, Flags & TF_InFunctionScope)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, U.getFormParams()); // FIXME: dsymutil-classic keeps the old abbreviation around // even if it's not used. We can remove this (and the copyAbbrev // helper) as soon as bit-for-bit compatibility is not a goal anymore. if (!Copied) { copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR()); Copied = true; } continue; } DWARFFormValue Val(AttrSpec.Form); uint64_t AttrSize = Offset; Val.extractValue(Data, &Offset, U.getFormParams(), &U); AttrSize = Offset - AttrSize; OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val, AttrSpec, AttrSize, AttrInfo, IsLittleEndian); } // Look for accelerator entries. uint16_t Tag = InputDIE.getTag(); // FIXME: This is slightly wrong. An inline_subroutine without a // low_pc, but with AT_ranges might be interesting to get into the // accelerator tables too. For now stick with dsymutil's behavior. if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) && Tag != dwarf::DW_TAG_compile_unit && getDIENames(InputDIE, AttrInfo, StringPool, Tag != dwarf::DW_TAG_inlined_subroutine)) { if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) Unit.addNameAccelerator(Die, AttrInfo.MangledName, Tag == dwarf::DW_TAG_inlined_subroutine); if (AttrInfo.Name) { if (AttrInfo.NameWithoutTemplate) Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate, /* SkipPubSection */ true); Unit.addNameAccelerator(Die, AttrInfo.Name, Tag == dwarf::DW_TAG_inlined_subroutine); } if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString())) addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool, /* SkipPubSection =*/true); } else if (Tag == dwarf::DW_TAG_namespace) { if (!AttrInfo.Name) AttrInfo.Name = StringPool.getEntry("(anonymous namespace)"); Unit.addNamespaceAccelerator(Die, AttrInfo.Name); } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name && AttrInfo.Name.getString()[0]) { uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File); uint64_t RuntimeLang = dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class)) .getValueOr(0); bool ObjCClassIsImplementation = (RuntimeLang == dwarf::DW_LANG_ObjC || RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) && dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type)) .getValueOr(0); Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation, Hash); } // Determine whether there are any children that we want to keep. bool HasChildren = false; for (auto Child : InputDIE.children()) { unsigned Idx = U.getDIEIndex(Child); if (Unit.getInfo(Idx).Keep) { HasChildren = true; break; } } DIEAbbrev NewAbbrev = Die->generateAbbrev(); if (HasChildren) NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); // Assign a permanent abbrev number Linker.assignAbbrev(NewAbbrev); Die->setAbbrevNumber(NewAbbrev.getNumber()); // Add the size of the abbreviation number to the output offset. OutOffset += getULEB128Size(Die->getAbbrevNumber()); if (!HasChildren) { // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } // Recursively clone children. for (auto Child : InputDIE.children()) { if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset, OutOffset, Flags, IsLittleEndian)) { Die->addChild(Clone); OutOffset = Clone->getOffset() + Clone->getSize(); } } // Account for the end of children marker. OutOffset += sizeof(int8_t); // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } /// Patch the input object file relevant debug_ranges entries /// and emit them in the output file. Update the relevant attributes /// to point at the new entries. void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit, DWARFContext &OrigDwarf, const DwarfFile &File) const { DWARFDebugRangeList RangeList; const auto &FunctionRanges = Unit.getFunctionRanges(); unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getRangesSection(), OrigDwarf.isLittleEndian(), AddressSize); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; DWARFUnit &OrigUnit = Unit.getOrigUnit(); auto OrigUnitDie = OrigUnit.getUnitDIE(false); uint64_t OrigLowPc = dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL); // Ranges addresses are based on the unit's low_pc. Compute the // offset we need to apply to adapt to the new unit's low_pc. int64_t UnitPcOffset = 0; if (OrigLowPc != -1ULL) UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); for (const auto &RangeAttribute : Unit.getRangesAttributes()) { uint64_t Offset = RangeAttribute.get(); RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize()); if (Error E = RangeList.extract(RangeExtractor, &Offset)) { llvm::consumeError(std::move(E)); reportWarning("invalid range list ignored.", File); RangeList.clear(); } const auto &Entries = RangeList.getEntries(); if (!Entries.empty()) { const DWARFDebugRangeList::RangeListEntry &First = Entries.front(); if (CurrRange == InvalidRange || First.StartAddress + OrigLowPc < CurrRange.start() || First.StartAddress + OrigLowPc >= CurrRange.stop()) { CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc); if (CurrRange == InvalidRange || CurrRange.start() > First.StartAddress + OrigLowPc) { reportWarning("no mapping for range.", File); continue; } } } TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries, AddressSize); } } /// Generate the debug_aranges entries for \p Unit and if the /// unit has a DW_AT_ranges attribute, also emit the debug_ranges /// contribution for this attribute. /// FIXME: this could actually be done right in patchRangesForUnit, /// but for the sake of initial bit-for-bit compatibility with legacy /// dsymutil, we have to do it in a delayed pass. void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const { auto Attr = Unit.getUnitRangesAttribute(); if (Attr) Attr->set(TheDwarfEmitter->getRangesSectionSize()); TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast(Attr)); } /// Insert the new line info sequence \p Seq into the current /// set of already linked line info \p Rows. static void insertLineSequence(std::vector &Seq, std::vector &Rows) { if (Seq.empty()) return; if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { Rows.insert(Rows.end(), Seq.begin(), Seq.end()); Seq.clear(); return; } object::SectionedAddress Front = Seq.front().Address; auto InsertPoint = partition_point( Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; }); // FIXME: this only removes the unneeded end_sequence if the // sequences have been inserted in order. Using a global sort like // described in patchLineTableForUnit() and delaying the end_sequene // elimination to emitLineTableForUnit() we can get rid of all of them. if (InsertPoint != Rows.end() && InsertPoint->Address == Front && InsertPoint->EndSequence) { *InsertPoint = Seq.front(); Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); } else { Rows.insert(InsertPoint, Seq.begin(), Seq.end()); } Seq.clear(); } static void patchStmtList(DIE &Die, DIEInteger Offset) { for (auto &V : Die.values()) if (V.getAttribute() == dwarf::DW_AT_stmt_list) { V = DIEValue(V.getAttribute(), V.getForm(), Offset); return; } llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); } /// Extract the line table for \p Unit from \p OrigDwarf, and /// recreate a relocated version of these for the address ranges that /// are present in the binary. void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf, const DwarfFile &File) { DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE(); auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); if (!StmtList) return; // Update the cloned DW_AT_stmt_list with the correct debug_line offset. if (auto *OutputDIE = Unit.getOutputUnitDIE()) patchStmtList(*OutputDIE, DIEInteger(TheDwarfEmitter->getLineSectionSize())); RangesTy &Ranges = File.Addresses->getValidAddressRanges(); // Parse the original line info for the unit. DWARFDebugLine::LineTable LineTable; uint64_t StmtOffset = *StmtList; DWARFDataExtractor LineExtractor( OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(), OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize()); if (needToTranslateStrings()) return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset); if (Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf, &Unit.getOrigUnit(), OrigDwarf.getWarningHandler())) OrigDwarf.getWarningHandler()(std::move(Err)); // This vector is the output line table. std::vector NewRows; NewRows.reserve(LineTable.Rows.size()); // Current sequence of rows being extracted, before being inserted // in NewRows. std::vector Seq; const auto &FunctionRanges = Unit.getFunctionRanges(); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; // FIXME: This logic is meant to generate exactly the same output as // Darwin's classic dsymutil. There is a nicer way to implement this // by simply putting all the relocated line info in NewRows and simply // sorting NewRows before passing it to emitLineTableForUnit. This // should be correct as sequences for a function should stay // together in the sorted output. There are a few corner cases that // look suspicious though, and that required to implement the logic // this way. Revisit that once initial validation is finished. // Iterate over the object file line info and extract the sequences // that correspond to linked functions. for (auto &Row : LineTable.Rows) { // Check whether we stepped out of the range. The range is // half-open, but consider accept the end address of the range if // it is marked as end_sequence in the input (because in that // case, the relocation offset is accurate and that entry won't // serve as the start of another function). if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() || Row.Address.Address > CurrRange.stop() || (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) { // We just stepped out of a known range. Insert a end_sequence // corresponding to the end of the range. uint64_t StopAddress = CurrRange != InvalidRange ? CurrRange.stop() + CurrRange.value() : -1ULL; CurrRange = FunctionRanges.find(Row.Address.Address); bool CurrRangeValid = CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address; if (!CurrRangeValid) { CurrRange = InvalidRange; if (StopAddress != -1ULL) { // Try harder by looking in the Address ranges map. // There are corner cases where this finds a // valid entry. It's unclear if this is right or wrong, but // for now do as dsymutil. // FIXME: Understand exactly what cases this addresses and // potentially remove it along with the Ranges map. auto Range = Ranges.lower_bound(Row.Address.Address); if (Range != Ranges.begin() && Range != Ranges.end()) --Range; if (Range != Ranges.end() && Range->first <= Row.Address.Address && Range->second.HighPC >= Row.Address.Address) { StopAddress = Row.Address.Address + Range->second.Offset; } } } if (StopAddress != -1ULL && !Seq.empty()) { // Insert end sequence row with the computed end address, but // the same line as the previous one. auto NextLine = Seq.back(); NextLine.Address.Address = StopAddress; NextLine.EndSequence = 1; NextLine.PrologueEnd = 0; NextLine.BasicBlock = 0; NextLine.EpilogueBegin = 0; Seq.push_back(NextLine); insertLineSequence(Seq, NewRows); } if (!CurrRangeValid) continue; } // Ignore empty sequences. if (Row.EndSequence && Seq.empty()) continue; // Relocate row address and add it to the current sequence. Row.Address.Address += CurrRange.value(); Seq.emplace_back(Row); if (Row.EndSequence) insertLineSequence(Seq, NewRows); } // Finished extracting, now emit the line tables. // FIXME: LLVM hard-codes its prologue values. We just copy the // prologue over and that works because we act as both producer and // consumer. It would be nicer to have a real configurable line // table emitter. if (LineTable.Prologue.getVersion() < 2 || LineTable.Prologue.getVersion() > 5 || LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT || LineTable.Prologue.OpcodeBase > 13) reportWarning("line table parameters mismatch. Cannot emit.", File); else { uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength; // DWARF v5 has an extra 2 bytes of information before the header_length // field. if (LineTable.Prologue.getVersion() == 5) PrologueEnd += 2; StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data; MCDwarfLineTableParams Params; Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase; Params.DWARF2LineBase = LineTable.Prologue.LineBase; Params.DWARF2LineRange = LineTable.Prologue.LineRange; TheDwarfEmitter->emitLineTableForUnit( Params, LineData.slice(*StmtList + 4, PrologueEnd), LineTable.Prologue.MinInstLength, NewRows, Unit.getOrigUnit().getAddressByteSize()); } } void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { switch (Options.TheAccelTableKind) { case AccelTableKind::Apple: emitAppleAcceleratorEntriesForUnit(Unit); break; case AccelTableKind::Dwarf: emitDwarfAcceleratorEntriesForUnit(Unit); break; case AccelTableKind::Default: llvm_unreachable("The default must be updated to a concrete value."); break; } } void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) { // Add namespaces. for (const auto &Namespace : Unit.getNamespaces()) AppleNamespaces.addName(Namespace.Name, Namespace.Die->getOffset() + Unit.getStartOffset()); /// Add names. TheDwarfEmitter->emitPubNamesForUnit(Unit); for (const auto &Pubname : Unit.getPubnames()) AppleNames.addName(Pubname.Name, Pubname.Die->getOffset() + Unit.getStartOffset()); /// Add types. TheDwarfEmitter->emitPubTypesForUnit(Unit); for (const auto &Pubtype : Unit.getPubtypes()) AppleTypes.addName( Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(), Pubtype.Die->getTag(), Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation : 0, Pubtype.QualifiedNameHash); /// Add ObjC names. for (const auto &ObjC : Unit.getObjC()) AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset()); } void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) { for (const auto &Namespace : Unit.getNamespaces()) DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(), Namespace.Die->getTag(), Unit.getUniqueID()); for (const auto &Pubname : Unit.getPubnames()) DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(), Pubname.Die->getTag(), Unit.getUniqueID()); for (const auto &Pubtype : Unit.getPubtypes()) DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(), Pubtype.Die->getTag(), Unit.getUniqueID()); } /// Read the frame info stored in the object, and emit the /// patched frame descriptions for the resulting file. /// /// This is actually pretty easy as the data of the CIEs and FDEs can /// be considered as black boxes and moved as is. The only thing to do /// is to patch the addresses in the headers. void DWARFLinker::patchFrameInfoForObject(const DwarfFile &File, RangesTy &Ranges, DWARFContext &OrigDwarf, unsigned AddrSize) { StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data; if (FrameData.empty()) return; DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); uint64_t InputOffset = 0; // Store the data of the CIEs defined in this object, keyed by their // offsets. DenseMap LocalCIES; while (Data.isValidOffset(InputOffset)) { uint64_t EntryOffset = InputOffset; uint32_t InitialLength = Data.getU32(&InputOffset); if (InitialLength == 0xFFFFFFFF) return reportWarning("Dwarf64 bits no supported", File); uint32_t CIEId = Data.getU32(&InputOffset); if (CIEId == 0xFFFFFFFF) { // This is a CIE, store it. StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); LocalCIES[EntryOffset] = CIEData; // The -4 is to account for the CIEId we just read. InputOffset += InitialLength - 4; continue; } uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize); // Some compilers seem to emit frame info that doesn't start at // the function entry point, thus we can't just lookup the address // in the debug map. Use the AddressInfo's range map to see if the FDE // describes something that we can relocate. auto Range = Ranges.upper_bound(Loc); if (Range != Ranges.begin()) --Range; if (Range == Ranges.end() || Range->first > Loc || Range->second.HighPC <= Loc) { // The +4 is to account for the size of the InitialLength field itself. InputOffset = EntryOffset + InitialLength + 4; continue; } // This is an FDE, and we have a mapping. // Have we already emitted a corresponding CIE? StringRef CIEData = LocalCIES[CIEId]; if (CIEData.empty()) return reportWarning("Inconsistent debug_frame content. Dropping.", File); // Look if we already emitted a CIE that corresponds to the // referenced one (the CIE data is the key of that lookup). auto IteratorInserted = EmittedCIEs.insert( std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize())); // If there is no CIE yet for this ID, emit it. if (IteratorInserted.second || // FIXME: dsymutil-classic only caches the last used CIE for // reuse. Mimic that behavior for now. Just removing that // second half of the condition and the LastCIEOffset variable // makes the code DTRT. LastCIEOffset != IteratorInserted.first->getValue()) { LastCIEOffset = TheDwarfEmitter->getFrameSectionSize(); IteratorInserted.first->getValue() = LastCIEOffset; TheDwarfEmitter->emitCIE(CIEData); } // Emit the FDE with updated address and CIE pointer. // (4 + AddrSize) is the size of the CIEId + initial_location // fields that will get reconstructed by emitFDE(). unsigned FDERemainingBytes = InitialLength - (4 + AddrSize); TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize, Loc + Range->second.Offset, FrameData.substr(InputOffset, FDERemainingBytes)); InputOffset += FDERemainingBytes; } } void DWARFLinker::DIECloner::copyAbbrev( const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) { DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()), dwarf::Form(Abbrev.hasChildren())); for (const auto &Attr : Abbrev.attributes()) { uint16_t Form = Attr.Form; if (HasODR && isODRAttribute(Attr.Attr)) Form = dwarf::DW_FORM_ref_addr; Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form)); } Linker.assignAbbrev(Copy); } uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE, CompileUnit &U, const DwarfFile &File, int ChildRecurseDepth) { const char *Name = nullptr; DWARFUnit *OrigUnit = &U.getOrigUnit(); CompileUnit *CU = &U; Optional Ref; while (1) { if (const char *CurrentName = DIE.getName(DINameKind::ShortName)) Name = CurrentName; if (!(Ref = DIE.find(dwarf::DW_AT_specification)) && !(Ref = DIE.find(dwarf::DW_AT_abstract_origin))) break; if (!Ref->isFormClass(DWARFFormValue::FC_Reference)) break; CompileUnit *RefCU; if (auto RefDIE = Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) { CU = RefCU; OrigUnit = &RefCU->getOrigUnit(); DIE = RefDIE; } } unsigned Idx = OrigUnit->getDIEIndex(DIE); if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace) Name = "(anonymous namespace)"; if (CU->getInfo(Idx).ParentIdx == 0 || // FIXME: dsymutil-classic compatibility. Ignore modules. CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() == dwarf::DW_TAG_module) return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::")); DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx); return djbHash( (Name ? Name : ""), djbHash((Name ? "::" : ""), hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth))); } static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) { auto DwoId = dwarf::toUnsigned( CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id})); if (DwoId) return *DwoId; return 0; } static std::string remapPath(StringRef Path, const objectPrefixMap &ObjectPrefixMap) { if (ObjectPrefixMap.empty()) return Path.str(); SmallString<256> p = Path; for (const auto &Entry : ObjectPrefixMap) if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second)) break; return p.str().str(); } bool DWARFLinker::registerModuleReference( DWARFDie CUDie, const DWARFUnit &Unit, const DwarfFile &File, OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian, unsigned Indent, bool Quiet) { std::string PCMfile = dwarf::toString( CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), ""); if (PCMfile.empty()) return false; if (Options.ObjectPrefixMap) PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap); // Clang module DWARF skeleton CUs abuse this for the path to the module. uint64_t DwoId = getDwoId(CUDie, Unit); std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); if (Name.empty()) { if (!Quiet) reportWarning("Anonymous module skeleton CU for " + PCMfile, File); return true; } if (!Quiet && Options.Verbose) { outs().indent(Indent); outs() << "Found clang module reference " << PCMfile; } auto Cached = ClangModules.find(PCMfile); if (Cached != ClangModules.end()) { // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is // fixed in clang, only warn about DWO_id mismatches in verbose mode. // ASTFileSignatures will change randomly when a module is rebuilt. if (!Quiet && Options.Verbose && (Cached->second != DwoId)) reportWarning(Twine("hash mismatch: this object file was built against a " "different version of the module ") + PCMfile, File); if (!Quiet && Options.Verbose) outs() << " [cached].\n"; return true; } if (!Quiet && Options.Verbose) outs() << " ...\n"; // Cyclic dependencies are disallowed by Clang, but we still // shouldn't run into an infinite loop, so mark it as processed now. ClangModules.insert({PCMfile, DwoId}); if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool, UniquingStringPool, ODRContexts, ModulesEndOffset, UnitID, IsLittleEndian, Indent + 2, Quiet)) { consumeError(std::move(E)); return false; } return true; } Error DWARFLinker::loadClangModule( DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId, const DwarfFile &File, OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian, unsigned Indent, bool Quiet) { /// Using a SmallString<0> because loadClangModule() is recursive. SmallString<0> Path(Options.PrependPath); if (sys::path::is_relative(Filename)) resolveRelativeObjectPath(Path, CUDie); sys::path::append(Path, Filename); // Don't use the cached binary holder because we have no thread-safety // guarantee and the lifetime is limited. if (Options.ObjFileLoader == nullptr) return Error::success(); auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path); if (!ErrOrObj) return Error::success(); std::unique_ptr Unit; for (const auto &CU : ErrOrObj->Dwarf->compile_units()) { updateDwarfVersion(CU->getVersion()); // Recursively get all modules imported by this one. auto CUDie = CU->getUnitDIE(false); if (!CUDie) continue; if (!registerModuleReference( CUDie, *CU, File, StringPool, UniquingStringPool, ODRContexts, ModulesEndOffset, UnitID, IsLittleEndian, Indent, Quiet)) { if (Unit) { std::string Err = (Filename + ": Clang modules are expected to have exactly 1 compile unit.\n") .str(); reportError(Err, File); return make_error(Err, inconvertibleErrorCode()); } // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is // fixed in clang, only warn about DWO_id mismatches in verbose mode. // ASTFileSignatures will change randomly when a module is rebuilt. uint64_t PCMDwoId = getDwoId(CUDie, *CU); if (PCMDwoId != DwoId) { if (!Quiet && Options.Verbose) reportWarning( Twine("hash mismatch: this object file was built against a " "different version of the module ") + Filename, File); // Update the cache entry with the DwoId of the module loaded from disk. ClangModules[Filename] = PCMDwoId; } // Add this module. Unit = std::make_unique(*CU, UnitID++, !Options.NoODR, ModuleName); Unit->setHasInterestingContent(); analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), UniquingStringPool, ODRContexts, ModulesEndOffset, Options.ParseableSwiftInterfaces, [&](const Twine &Warning, const DWARFDie &DIE) { reportWarning(Warning, File, &DIE); }); // Keep everything. Unit->markEverythingAsKept(); } } if (!Unit->getOrigUnit().getUnitDIE().hasChildren()) return Error::success(); if (!Quiet && Options.Verbose) { outs().indent(Indent); outs() << "cloning .debug_info from " << Filename << "\n"; } UnitListTy CompileUnits; CompileUnits.push_back(std::move(Unit)); assert(TheDwarfEmitter); DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits, Options.Update) .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool, IsLittleEndian); return Error::success(); } uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits( DWARFContext &DwarfContext, const DwarfFile &File, OffsetsStringPool &StringPool, bool IsLittleEndian) { uint64_t OutputDebugInfoSize = Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize(); const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize; for (auto &CurrentUnit : CompileUnits) { auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE(); CurrentUnit->setStartOffset(OutputDebugInfoSize); if (!InputDIE) { OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(); continue; } if (CurrentUnit->getInfo(0).Keep) { // Clone the InputDIE into your Unit DIE in our compile unit since it // already has a DIE inside of it. CurrentUnit->createOutputDIE(); cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */, 11 /* Unit Header size */, 0, IsLittleEndian, CurrentUnit->getOutputUnitDIE()); } OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(); if (!Linker.Options.NoOutput) { assert(Emitter); if (LLVM_LIKELY(!Linker.Options.Update) || Linker.needToTranslateStrings()) Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File); Linker.emitAcceleratorEntriesForUnit(*CurrentUnit); if (LLVM_UNLIKELY(Linker.Options.Update)) continue; Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File); auto ProcessExpr = [&](StringRef Bytes, SmallVectorImpl &Buffer) { DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit(); DataExtractor Data(Bytes, IsLittleEndian, OrigUnit.getAddressByteSize()); cloneExpression(Data, DWARFExpression(Data, OrigUnit.getAddressByteSize(), OrigUnit.getFormParams().Format), File, *CurrentUnit, Buffer); }; Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr); } } if (!Linker.Options.NoOutput) { assert(Emitter); // Emit all the compile unit's debug information. for (auto &CurrentUnit : CompileUnits) { if (LLVM_LIKELY(!Linker.Options.Update)) Linker.generateUnitRanges(*CurrentUnit); CurrentUnit->fixupForwardReferences(); if (!CurrentUnit->getOutputUnitDIE()) continue; assert(Emitter->getDebugInfoSectionSize() == CurrentUnit->getStartOffset()); Emitter->emitCompileUnitHeader(*CurrentUnit); Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE()); assert(Emitter->getDebugInfoSectionSize() == CurrentUnit->computeNextUnitOffset()); } } return OutputDebugInfoSize - StartOutputDebugInfoSize; } void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) { if (Options.TheAccelTableKind != AccelTableKind::Default) return; auto &DwarfObj = Dwarf.getDWARFObj(); if (!AtLeastOneDwarfAccelTable && (!DwarfObj.getAppleNamesSection().Data.empty() || !DwarfObj.getAppleTypesSection().Data.empty() || !DwarfObj.getAppleNamespacesSection().Data.empty() || !DwarfObj.getAppleObjCSection().Data.empty())) { AtLeastOneAppleAccelTable = true; } if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) { AtLeastOneDwarfAccelTable = true; } } bool DWARFLinker::emitPaperTrailWarnings(const DwarfFile &File, OffsetsStringPool &StringPool) { if (File.Warnings.empty()) return false; DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit); CUDie->setOffset(11); StringRef Producer; StringRef WarningHeader; switch (DwarfLinkerClientID) { case DwarfLinkerClient::Dsymutil: Producer = StringPool.internString("dsymutil"); WarningHeader = "dsymutil_warning"; break; default: Producer = StringPool.internString("dwarfopt"); WarningHeader = "dwarfopt_warning"; break; } StringRef FileName = StringPool.internString(File.FileName); CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp, DIEInteger(StringPool.getStringOffset(Producer))); DIEBlock *String = new (DIEAlloc) DIEBlock(); DIEBlocks.push_back(String); for (auto &C : FileName) String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, DIEInteger(C)); String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, DIEInteger(0)); CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String); for (const auto &Warning : File.Warnings) { DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant)); ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp, DIEInteger(StringPool.getStringOffset(WarningHeader))); ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag, DIEInteger(1)); ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp, DIEInteger(StringPool.getStringOffset(Warning))); } unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 + File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */; DIEAbbrev Abbrev = CUDie->generateAbbrev(); assignAbbrev(Abbrev); CUDie->setAbbrevNumber(Abbrev.getNumber()); Size += getULEB128Size(Abbrev.getNumber()); // Abbreviation ordering needed for classic compatibility. for (auto &Child : CUDie->children()) { Abbrev = Child.generateAbbrev(); assignAbbrev(Abbrev); Child.setAbbrevNumber(Abbrev.getNumber()); Size += getULEB128Size(Abbrev.getNumber()); } CUDie->setSize(Size); TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie); return true; } void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) { if (!needToTranslateStrings()) TheDwarfEmitter->emitSectionContents( Dwarf.getDWARFObj().getLineSection().Data, "debug_line"); TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data, "debug_loc"); TheDwarfEmitter->emitSectionContents( Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges"); TheDwarfEmitter->emitSectionContents( Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame"); TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(), "debug_aranges"); } void DWARFLinker::addObjectFile(DwarfFile &File) { ObjectContexts.emplace_back(LinkContext(File)); if (ObjectContexts.back().File.Dwarf) updateAccelKind(*ObjectContexts.back().File.Dwarf); } bool DWARFLinker::link() { assert(Options.NoOutput || TheDwarfEmitter); // A unique ID that identifies each compile unit. unsigned UnitID = 0; // First populate the data structure we need for each iteration of the // parallel loop. unsigned NumObjects = ObjectContexts.size(); // This Dwarf string pool which is only used for uniquing. This one should // never be used for offsets as its not thread-safe or predictable. UniquingStringPool UniquingStringPool(nullptr, true); // This Dwarf string pool which is used for emission. It must be used // serially as the order of calling getStringOffset matters for // reproducibility. OffsetsStringPool OffsetsStringPool(StringsTranslator, true); // ODR Contexts for the optimize. DeclContextTree ODRContexts; // If we haven't decided on an accelerator table kind yet, we base ourselves // on the DWARF we have seen so far. At this point we haven't pulled in debug // information from modules yet, so it is technically possible that they // would affect the decision. However, as they're built with the same // compiler and flags, it is safe to assume that they will follow the // decision made here. if (Options.TheAccelTableKind == AccelTableKind::Default) { if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable) Options.TheAccelTableKind = AccelTableKind::Dwarf; else Options.TheAccelTableKind = AccelTableKind::Apple; } for (LinkContext &OptContext : ObjectContexts) { if (Options.Verbose) { if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil) outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n"; else outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n"; } if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool)) continue; if (!OptContext.File.Dwarf) continue; // Look for relocations that correspond to address map entries. // there was findvalidrelocations previously ... probably we need to gather // info here if (LLVM_LIKELY(!Options.Update) && !OptContext.File.Addresses->hasValidRelocs()) { if (Options.Verbose) outs() << "No valid relocations found. Skipping.\n"; // Set "Skip" flag as a signal to other loops that we should not // process this iteration. OptContext.Skip = true; continue; } // Setup access to the debug info. if (!OptContext.File.Dwarf) continue; // In a first phase, just read in the debug info and load all clang modules. OptContext.CompileUnits.reserve( OptContext.File.Dwarf->getNumCompileUnits()); for (const auto &CU : OptContext.File.Dwarf->compile_units()) { updateDwarfVersion(CU->getVersion()); auto CUDie = CU->getUnitDIE(false); if (Options.Verbose) { outs() << "Input compilation unit:"; DIDumpOptions DumpOpts; DumpOpts.ChildRecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; CUDie.dump(outs(), 0, DumpOpts); } if (CUDie && !LLVM_UNLIKELY(Options.Update)) registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool, UniquingStringPool, ODRContexts, 0, UnitID, OptContext.File.Dwarf->isLittleEndian()); } } // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway. if (MaxDwarfVersion == 0) MaxDwarfVersion = 3; // At this point we know how much data we have emitted. We use this value to // compare canonical DIE offsets in analyzeContextInfo to see if a definition // is already emitted, without being affected by canonical die offsets set // later. This prevents undeterminism when analyze and clone execute // concurrently, as clone set the canonical DIE offset and analyze reads it. const uint64_t ModulesEndOffset = Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize(); // These variables manage the list of processed object files. // The mutex and condition variable are to ensure that this is thread safe. std::mutex ProcessedFilesMutex; std::condition_variable ProcessedFilesConditionVariable; BitVector ProcessedFiles(NumObjects, false); // Analyzing the context info is particularly expensive so it is executed in // parallel with emitting the previous compile unit. auto AnalyzeLambda = [&](size_t I) { auto &Context = ObjectContexts[I]; if (Context.Skip || !Context.File.Dwarf) return; for (const auto &CU : Context.File.Dwarf->compile_units()) { updateDwarfVersion(CU->getVersion()); // The !registerModuleReference() condition effectively skips // over fully resolved skeleton units. This second pass of // registerModuleReferences doesn't do any new work, but it // will collect top-level errors, which are suppressed. Module // warnings were already displayed in the first iteration. bool Quiet = true; auto CUDie = CU->getUnitDIE(false); if (!CUDie || LLVM_UNLIKELY(Options.Update) || !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool, UniquingStringPool, ODRContexts, ModulesEndOffset, UnitID, Quiet)) { Context.CompileUnits.push_back(std::make_unique( *CU, UnitID++, !Options.NoODR && !Options.Update, "")); } } // Now build the DIE parent links that we will use during the next phase. for (auto &CurrentUnit : Context.CompileUnits) { auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE(); if (!CUDie) continue; analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0, *CurrentUnit, &ODRContexts.getRoot(), UniquingStringPool, ODRContexts, ModulesEndOffset, Options.ParseableSwiftInterfaces, [&](const Twine &Warning, const DWARFDie &DIE) { reportWarning(Warning, Context.File, &DIE); }); } }; // For each object file map how many bytes were emitted. StringMap SizeByObject; // And then the remaining work in serial again. // Note, although this loop runs in serial, it can run in parallel with // the analyzeContextInfo loop so long as we process files with indices >= // than those processed by analyzeContextInfo. auto CloneLambda = [&](size_t I) { auto &OptContext = ObjectContexts[I]; if (OptContext.Skip || !OptContext.File.Dwarf) return; // Then mark all the DIEs that need to be present in the generated output // and collect some information about them. // Note that this loop can not be merged with the previous one because // cross-cu references require the ParentIdx to be setup for every CU in // the object file before calling this. if (LLVM_UNLIKELY(Options.Update)) { for (auto &CurrentUnit : OptContext.CompileUnits) CurrentUnit->markEverythingAsKept(); copyInvariantDebugSection(*OptContext.File.Dwarf); } else { for (auto &CurrentUnit : OptContext.CompileUnits) lookForDIEsToKeep(*OptContext.File.Addresses, OptContext.File.Addresses->getValidAddressRanges(), OptContext.CompileUnits, CurrentUnit->getOrigUnit().getUnitDIE(), OptContext.File, *CurrentUnit, 0); } // The calls to applyValidRelocs inside cloneDIE will walk the reloc // array again (in the same way findValidRelocsInDebugInfo() did). We // need to reset the NextValidReloc index to the beginning. if (OptContext.File.Addresses->hasValidRelocs() || LLVM_UNLIKELY(Options.Update)) { SizeByObject[OptContext.File.FileName].Input = getDebugInfoSize(*OptContext.File.Dwarf); SizeByObject[OptContext.File.FileName].Output = DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc, OptContext.CompileUnits, Options.Update) .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File, OffsetsStringPool, OptContext.File.Dwarf->isLittleEndian()); } if (!Options.NoOutput && !OptContext.CompileUnits.empty() && LLVM_LIKELY(!Options.Update)) patchFrameInfoForObject( OptContext.File, OptContext.File.Addresses->getValidAddressRanges(), *OptContext.File.Dwarf, OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize()); // Clean-up before starting working on the next object. cleanupAuxiliarryData(OptContext); }; auto EmitLambda = [&]() { // Emit everything that's global. if (!Options.NoOutput) { TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion); TheDwarfEmitter->emitStrings(OffsetsStringPool); switch (Options.TheAccelTableKind) { case AccelTableKind::Apple: TheDwarfEmitter->emitAppleNames(AppleNames); TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces); TheDwarfEmitter->emitAppleTypes(AppleTypes); TheDwarfEmitter->emitAppleObjc(AppleObjc); break; case AccelTableKind::Dwarf: TheDwarfEmitter->emitDebugNames(DebugNames); break; case AccelTableKind::Default: llvm_unreachable("Default should have already been resolved."); break; } } }; auto AnalyzeAll = [&]() { for (unsigned I = 0, E = NumObjects; I != E; ++I) { AnalyzeLambda(I); std::unique_lock LockGuard(ProcessedFilesMutex); ProcessedFiles.set(I); ProcessedFilesConditionVariable.notify_one(); } }; auto CloneAll = [&]() { for (unsigned I = 0, E = NumObjects; I != E; ++I) { { std::unique_lock LockGuard(ProcessedFilesMutex); if (!ProcessedFiles[I]) { ProcessedFilesConditionVariable.wait( LockGuard, [&]() { return ProcessedFiles[I]; }); } } CloneLambda(I); } EmitLambda(); }; // To limit memory usage in the single threaded case, analyze and clone are // run sequentially so the OptContext is freed after processing each object // in endDebugObject. if (Options.Threads == 1) { for (unsigned I = 0, E = NumObjects; I != E; ++I) { AnalyzeLambda(I); CloneLambda(I); } EmitLambda(); } else { ThreadPool Pool(hardware_concurrency(2)); Pool.async(AnalyzeAll); Pool.async(CloneAll); Pool.wait(); } if (Options.Statistics) { // Create a vector sorted in descending order by output size. std::vector> Sorted; for (auto &E : SizeByObject) Sorted.emplace_back(E.first(), E.second); llvm::sort(Sorted.begin(), Sorted.end(), [](auto &LHS, auto &RHS) { return LHS.second.Output > RHS.second.Output; }); auto ComputePercentange = [](int64_t Input, int64_t Output) -> float { const float Difference = Output - Input; const float Sum = Input + Output; if (Sum == 0) return 0; return (Difference / (Sum / 2)); }; int64_t InputTotal = 0; int64_t OutputTotal = 0; const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n"; // Print header. outs() << ".debug_info section size (in bytes)\n"; outs() << "----------------------------------------------------------------" "---------------\n"; outs() << "Filename Object " " dSYM Change\n"; outs() << "----------------------------------------------------------------" "---------------\n"; // Print body. for (auto &E : Sorted) { InputTotal += E.second.Input; OutputTotal += E.second.Output; llvm::outs() << formatv( FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input, E.second.Output, ComputePercentange(E.second.Input, E.second.Output)); } // Print total and footer. outs() << "----------------------------------------------------------------" "---------------\n"; llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal, ComputePercentange(InputTotal, OutputTotal)); outs() << "----------------------------------------------------------------" "---------------\n\n"; } return true; } } // namespace llvm