//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements some simple delegations needed for call lowering. /// //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "call-lowering" using namespace llvm; void CallLowering::anchor() {} bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, ArrayRef ResRegs, ArrayRef> ArgRegs, Register SwiftErrorVReg, std::function GetCalleeReg) const { CallLoweringInfo Info; const DataLayout &DL = MIRBuilder.getDataLayout(); // First step is to marshall all the function's parameters into the correct // physregs and memory locations. Gather the sequence of argument types that // we'll pass to the assigner function. unsigned i = 0; unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); for (auto &Arg : CB.args()) { ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{}, i < NumFixedArgs}; setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); Info.OrigArgs.push_back(OrigArg); ++i; } // Try looking through a bitcast from one function type to another. // Commonly happens with calls to objc_msgSend(). const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); if (const Function *F = dyn_cast(CalleeV)) Info.Callee = MachineOperand::CreateGA(F, 0); else Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); Info.OrigRet = ArgInfo{ResRegs, CB.getType(), ISD::ArgFlagsTy{}}; if (!Info.OrigRet.Ty->isVoidTy()) setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); MachineFunction &MF = MIRBuilder.getMF(); Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); Info.CallConv = CB.getCallingConv(); Info.SwiftErrorVReg = SwiftErrorVReg; Info.IsMustTailCall = CB.isMustTailCall(); Info.IsTailCall = CB.isTailCall() && isInTailCallPosition(CB, MF.getTarget()) && (MF.getFunction() .getFnAttribute("disable-tail-calls") .getValueAsString() != "true"); Info.IsVarArg = CB.getFunctionType()->isVarArg(); return lowerCall(MIRBuilder, Info); } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const { auto &Flags = Arg.Flags[0]; const AttributeList &Attrs = FuncInfo.getAttributes(); if (Attrs.hasAttribute(OpIdx, Attribute::ZExt)) Flags.setZExt(); if (Attrs.hasAttribute(OpIdx, Attribute::SExt)) Flags.setSExt(); if (Attrs.hasAttribute(OpIdx, Attribute::InReg)) Flags.setInReg(); if (Attrs.hasAttribute(OpIdx, Attribute::StructRet)) Flags.setSRet(); if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf)) Flags.setSwiftSelf(); if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError)) Flags.setSwiftError(); if (Attrs.hasAttribute(OpIdx, Attribute::ByVal)) Flags.setByVal(); if (Attrs.hasAttribute(OpIdx, Attribute::Preallocated)) Flags.setPreallocated(); if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca)) Flags.setInAlloca(); if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { Type *ElementTy = cast(Arg.Ty)->getElementType(); auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); // For ByVal, alignment should be passed from FE. BE will guess if // this info is not there but there are cases it cannot get right. Align FrameAlign; if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2)) FrameAlign = *ParamAlign; else FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); Flags.setByValAlign(FrameAlign); } if (Attrs.hasAttribute(OpIdx, Attribute::Nest)) Flags.setNest(); Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const Function &FuncInfo) const; template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const CallBase &FuncInfo) const; Register CallLowering::packRegs(ArrayRef SrcRegs, Type *PackedTy, MachineIRBuilder &MIRBuilder) const { assert(SrcRegs.size() > 1 && "Nothing to pack"); const DataLayout &DL = MIRBuilder.getMF().getDataLayout(); MachineRegisterInfo *MRI = MIRBuilder.getMRI(); LLT PackedLLT = getLLTForType(*PackedTy, DL); SmallVector LLTs; SmallVector Offsets; computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch"); Register Dst = MRI->createGenericVirtualRegister(PackedLLT); MIRBuilder.buildUndef(Dst); for (unsigned i = 0; i < SrcRegs.size(); ++i) { Register NewDst = MRI->createGenericVirtualRegister(PackedLLT); MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]); Dst = NewDst; } return Dst; } void CallLowering::unpackRegs(ArrayRef DstRegs, Register SrcReg, Type *PackedTy, MachineIRBuilder &MIRBuilder) const { assert(DstRegs.size() > 1 && "Nothing to unpack"); const DataLayout &DL = MIRBuilder.getDataLayout(); SmallVector LLTs; SmallVector Offsets; computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); for (unsigned i = 0; i < DstRegs.size(); ++i) MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); } bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, SmallVectorImpl &Args, ValueHandler &Handler) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = MF.getFunction(); SmallVector ArgLocs; CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler); } bool CallLowering::handleAssignments(CCState &CCInfo, SmallVectorImpl &ArgLocs, MachineIRBuilder &MIRBuilder, SmallVectorImpl &Args, ValueHandler &Handler) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = MF.getFunction(); const DataLayout &DL = F.getParent()->getDataLayout(); unsigned NumArgs = Args.size(); for (unsigned i = 0; i != NumArgs; ++i) { EVT CurVT = EVT::getEVT(Args[i].Ty); if (!CurVT.isSimple() || Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), CCValAssign::Full, Args[i], Args[i].Flags[0], CCInfo)) { MVT NewVT = TLI->getRegisterTypeForCallingConv( F.getContext(), F.getCallingConv(), EVT(CurVT)); // If we need to split the type over multiple regs, check it's a scenario // we currently support. unsigned NumParts = TLI->getNumRegistersForCallingConv( F.getContext(), F.getCallingConv(), CurVT); if (NumParts > 1) { // For now only handle exact splits. if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits()) return false; } // For incoming arguments (physregs to vregs), we could have values in // physregs (or memlocs) which we want to extract and copy to vregs. // During this, we might have to deal with the LLT being split across // multiple regs, so we have to record this information for later. // // If we have outgoing args, then we have the opposite case. We have a // vreg with an LLT which we want to assign to a physical location, and // we might have to record that the value has to be split later. if (Handler.isIncomingArgumentHandler()) { if (NumParts == 1) { // Try to use the register type if we couldn't assign the VT. if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], Args[i].Flags[0], CCInfo)) return false; } else { // We're handling an incoming arg which is split over multiple regs. // E.g. passing an s128 on AArch64. ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; Args[i].OrigRegs.push_back(Args[i].Regs[0]); Args[i].Regs.clear(); Args[i].Flags.clear(); LLT NewLLT = getLLTForMVT(NewVT); // For each split register, create and assign a vreg that will store // the incoming component of the larger value. These will later be // merged to form the final vreg. for (unsigned Part = 0; Part < NumParts; ++Part) { Register Reg = MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT); ISD::ArgFlagsTy Flags = OrigFlags; if (Part == 0) { Flags.setSplit(); } else { Flags.setOrigAlign(Align(1)); if (Part == NumParts - 1) Flags.setSplitEnd(); } Args[i].Regs.push_back(Reg); Args[i].Flags.push_back(Flags); if (Handler.assignArg(i + Part, NewVT, NewVT, CCValAssign::Full, Args[i], Args[i].Flags[Part], CCInfo)) { // Still couldn't assign this smaller part type for some reason. return false; } } } } else { // Handling an outgoing arg that might need to be split. if (NumParts < 2) return false; // Don't know how to deal with this type combination. // This type is passed via multiple registers in the calling convention. // We need to extract the individual parts. Register LargeReg = Args[i].Regs[0]; LLT SmallTy = LLT::scalar(NewVT.getSizeInBits()); auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg); assert(Unmerge->getNumOperands() == NumParts + 1); ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; // We're going to replace the regs and flags with the split ones. Args[i].Regs.clear(); Args[i].Flags.clear(); for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { ISD::ArgFlagsTy Flags = OrigFlags; if (PartIdx == 0) { Flags.setSplit(); } else { Flags.setOrigAlign(Align(1)); if (PartIdx == NumParts - 1) Flags.setSplitEnd(); } Args[i].Regs.push_back(Unmerge.getReg(PartIdx)); Args[i].Flags.push_back(Flags); if (Handler.assignArg(i + PartIdx, NewVT, NewVT, CCValAssign::Full, Args[i], Args[i].Flags[PartIdx], CCInfo)) return false; } } } } for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { assert(j < ArgLocs.size() && "Skipped too many arg locs"); CCValAssign &VA = ArgLocs[j]; assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); if (VA.needsCustom()) { unsigned NumArgRegs = Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); if (!NumArgRegs) return false; j += NumArgRegs; continue; } // FIXME: Pack registers if we have more than one. Register ArgReg = Args[i].Regs[0]; EVT OrigVT = EVT::getEVT(Args[i].Ty); EVT VAVT = VA.getValVT(); const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); if (VA.isRegLoc()) { if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) { if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) { // Expected to be multiple regs for a single incoming arg. unsigned NumArgRegs = Args[i].Regs.size(); if (NumArgRegs < 2) return false; assert((j + (NumArgRegs - 1)) < ArgLocs.size() && "Too many regs for number of args"); for (unsigned Part = 0; Part < NumArgRegs; ++Part) { // There should be Regs.size() ArgLocs per argument. VA = ArgLocs[j + Part]; Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA); } j += NumArgRegs - 1; // Merge the split registers into the expected larger result vreg // of the original call. MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs); continue; } const LLT VATy(VAVT.getSimpleVT()); Register NewReg = MIRBuilder.getMRI()->createGenericVirtualRegister(VATy); Handler.assignValueToReg(NewReg, VA.getLocReg(), VA); // If it's a vector type, we either need to truncate the elements // or do an unmerge to get the lower block of elements. if (VATy.isVector() && VATy.getNumElements() > OrigVT.getVectorNumElements()) { // Just handle the case where the VA type is 2 * original type. if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) { LLVM_DEBUG(dbgs() << "Incoming promoted vector arg has too many elts"); return false; } auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg}); MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0)); } else { MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0); } } else if (!Handler.isIncomingArgumentHandler()) { assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() && "Too many regs for number of args"); // This is an outgoing argument that might have been split. for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) { // There should be Regs.size() ArgLocs per argument. VA = ArgLocs[j + Part]; Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA); } j += Args[i].Regs.size() - 1; } else { Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); } } else if (VA.isMemLoc()) { // Don't currently support loading/storing a type that needs to be split // to the stack. Should be easy, just not implemented yet. if (Args[i].Regs.size() > 1) { LLVM_DEBUG( dbgs() << "Load/store a split arg to/from the stack not implemented yet"); return false; } EVT LocVT = VA.getValVT(); unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() : LocVT.getStoreSize(); unsigned Offset = VA.getLocMemOffset(); MachinePointerInfo MPO; Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO); Handler.assignValueToAddress(Args[i], StackAddr, MemSize, MPO, VA); } else { // FIXME: Support byvals and other weirdness return false; } } return true; } bool CallLowering::analyzeArgInfo(CCState &CCState, SmallVectorImpl &Args, CCAssignFn &AssignFnFixed, CCAssignFn &AssignFnVarArg) const { for (unsigned i = 0, e = Args.size(); i < e; ++i) { MVT VT = MVT::getVT(Args[i].Ty); CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { // Bail out on anything we can't handle. LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() << " (arg number = " << i << "\n"); return false; } } return true; } bool CallLowering::resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl &InArgs, CCAssignFn &CalleeAssignFnFixed, CCAssignFn &CalleeAssignFnVarArg, CCAssignFn &CallerAssignFnFixed, CCAssignFn &CallerAssignFnVarArg) const { const Function &F = MF.getFunction(); CallingConv::ID CalleeCC = Info.CallConv; CallingConv::ID CallerCC = F.getCallingConv(); if (CallerCC == CalleeCC) return true; SmallVector ArgLocs1; CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, CalleeAssignFnVarArg)) return false; SmallVector ArgLocs2; CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, CalleeAssignFnVarArg)) return false; // We need the argument locations to match up exactly. If there's more in // one than the other, then we are done. if (ArgLocs1.size() != ArgLocs2.size()) return false; // Make sure that each location is passed in exactly the same way. for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { const CCValAssign &Loc1 = ArgLocs1[i]; const CCValAssign &Loc2 = ArgLocs2[i]; // We need both of them to be the same. So if one is a register and one // isn't, we're done. if (Loc1.isRegLoc() != Loc2.isRegLoc()) return false; if (Loc1.isRegLoc()) { // If they don't have the same register location, we're done. if (Loc1.getLocReg() != Loc2.getLocReg()) return false; // They matched, so we can move to the next ArgLoc. continue; } // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) return false; } return true; } Register CallLowering::ValueHandler::extendRegister(Register ValReg, CCValAssign &VA, unsigned MaxSizeBits) { LLT LocTy{VA.getLocVT()}; LLT ValTy = MRI.getType(ValReg); if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) return ValReg; if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { if (MaxSizeBits <= ValTy.getSizeInBits()) return ValReg; LocTy = LLT::scalar(MaxSizeBits); } switch (VA.getLocInfo()) { default: break; case CCValAssign::Full: case CCValAssign::BCvt: // FIXME: bitconverting between vector types may or may not be a // nop in big-endian situations. return ValReg; case CCValAssign::AExt: { auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); return MIB.getReg(0); } case CCValAssign::SExt: { Register NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildSExt(NewReg, ValReg); return NewReg; } case CCValAssign::ZExt: { Register NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildZExt(NewReg, ValReg); return NewReg; } } llvm_unreachable("unable to extend register"); } void CallLowering::ValueHandler::anchor() {}