//===- BitcodeAnalyzer.cpp - Internal BitcodeAnalyzer implementation ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/BitcodeAnalyzer.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Bitstream/BitCodes.h" #include "llvm/Bitstream/BitstreamReader.h" #include "llvm/Support/Format.h" #include "llvm/Support/SHA1.h" using namespace llvm; static Error reportError(StringRef Message) { return createStringError(std::errc::illegal_byte_sequence, Message.data()); } /// Return a symbolic block name if known, otherwise return null. static Optional GetBlockName(unsigned BlockID, const BitstreamBlockInfo &BlockInfo, CurStreamTypeType CurStreamType) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) return "BLOCKINFO_BLOCK"; return None; } // Check to see if we have a blockinfo record for this block, with a name. if (const BitstreamBlockInfo::BlockInfo *Info = BlockInfo.getBlockInfo(BlockID)) { if (!Info->Name.empty()) return Info->Name.c_str(); } if (CurStreamType != LLVMIRBitstream) return None; switch (BlockID) { default: return None; case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: return "OPERAND_BUNDLE_TAGS_BLOCK"; case bitc::MODULE_BLOCK_ID: return "MODULE_BLOCK"; case bitc::PARAMATTR_BLOCK_ID: return "PARAMATTR_BLOCK"; case bitc::PARAMATTR_GROUP_BLOCK_ID: return "PARAMATTR_GROUP_BLOCK_ID"; case bitc::TYPE_BLOCK_ID_NEW: return "TYPE_BLOCK_ID"; case bitc::CONSTANTS_BLOCK_ID: return "CONSTANTS_BLOCK"; case bitc::FUNCTION_BLOCK_ID: return "FUNCTION_BLOCK"; case bitc::IDENTIFICATION_BLOCK_ID: return "IDENTIFICATION_BLOCK_ID"; case bitc::VALUE_SYMTAB_BLOCK_ID: return "VALUE_SYMTAB"; case bitc::METADATA_BLOCK_ID: return "METADATA_BLOCK"; case bitc::METADATA_KIND_BLOCK_ID: return "METADATA_KIND_BLOCK"; case bitc::METADATA_ATTACHMENT_ID: return "METADATA_ATTACHMENT_BLOCK"; case bitc::USELIST_BLOCK_ID: return "USELIST_BLOCK_ID"; case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: return "GLOBALVAL_SUMMARY_BLOCK"; case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: return "FULL_LTO_GLOBALVAL_SUMMARY_BLOCK"; case bitc::MODULE_STRTAB_BLOCK_ID: return "MODULE_STRTAB_BLOCK"; case bitc::STRTAB_BLOCK_ID: return "STRTAB_BLOCK"; case bitc::SYMTAB_BLOCK_ID: return "SYMTAB_BLOCK"; } } /// Return a symbolic code name if known, otherwise return null. static Optional GetCodeName(unsigned CodeID, unsigned BlockID, const BitstreamBlockInfo &BlockInfo, CurStreamTypeType CurStreamType) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { switch (CodeID) { default: return None; case bitc::BLOCKINFO_CODE_SETBID: return "SETBID"; case bitc::BLOCKINFO_CODE_BLOCKNAME: return "BLOCKNAME"; case bitc::BLOCKINFO_CODE_SETRECORDNAME: return "SETRECORDNAME"; } } return None; } // Check to see if we have a blockinfo record for this record, with a name. if (const BitstreamBlockInfo::BlockInfo *Info = BlockInfo.getBlockInfo(BlockID)) { for (unsigned i = 0, e = Info->RecordNames.size(); i != e; ++i) if (Info->RecordNames[i].first == CodeID) return Info->RecordNames[i].second.c_str(); } if (CurStreamType != LLVMIRBitstream) return None; #define STRINGIFY_CODE(PREFIX, CODE) \ case bitc::PREFIX##_##CODE: \ return #CODE; switch (BlockID) { default: return None; case bitc::MODULE_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(MODULE_CODE, VERSION) STRINGIFY_CODE(MODULE_CODE, TRIPLE) STRINGIFY_CODE(MODULE_CODE, DATALAYOUT) STRINGIFY_CODE(MODULE_CODE, ASM) STRINGIFY_CODE(MODULE_CODE, SECTIONNAME) STRINGIFY_CODE(MODULE_CODE, DEPLIB) // Deprecated, present in old bitcode STRINGIFY_CODE(MODULE_CODE, GLOBALVAR) STRINGIFY_CODE(MODULE_CODE, FUNCTION) STRINGIFY_CODE(MODULE_CODE, ALIAS) STRINGIFY_CODE(MODULE_CODE, GCNAME) STRINGIFY_CODE(MODULE_CODE, VSTOFFSET) STRINGIFY_CODE(MODULE_CODE, METADATA_VALUES_UNUSED) STRINGIFY_CODE(MODULE_CODE, SOURCE_FILENAME) STRINGIFY_CODE(MODULE_CODE, HASH) } case bitc::IDENTIFICATION_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(IDENTIFICATION_CODE, STRING) STRINGIFY_CODE(IDENTIFICATION_CODE, EPOCH) } case bitc::PARAMATTR_BLOCK_ID: switch (CodeID) { default: return None; // FIXME: Should these be different? case bitc::PARAMATTR_CODE_ENTRY_OLD: return "ENTRY"; case bitc::PARAMATTR_CODE_ENTRY: return "ENTRY"; } case bitc::PARAMATTR_GROUP_BLOCK_ID: switch (CodeID) { default: return None; case bitc::PARAMATTR_GRP_CODE_ENTRY: return "ENTRY"; } case bitc::TYPE_BLOCK_ID_NEW: switch (CodeID) { default: return None; STRINGIFY_CODE(TYPE_CODE, NUMENTRY) STRINGIFY_CODE(TYPE_CODE, VOID) STRINGIFY_CODE(TYPE_CODE, FLOAT) STRINGIFY_CODE(TYPE_CODE, DOUBLE) STRINGIFY_CODE(TYPE_CODE, LABEL) STRINGIFY_CODE(TYPE_CODE, OPAQUE) STRINGIFY_CODE(TYPE_CODE, INTEGER) STRINGIFY_CODE(TYPE_CODE, POINTER) STRINGIFY_CODE(TYPE_CODE, ARRAY) STRINGIFY_CODE(TYPE_CODE, VECTOR) STRINGIFY_CODE(TYPE_CODE, X86_FP80) STRINGIFY_CODE(TYPE_CODE, FP128) STRINGIFY_CODE(TYPE_CODE, PPC_FP128) STRINGIFY_CODE(TYPE_CODE, METADATA) STRINGIFY_CODE(TYPE_CODE, STRUCT_ANON) STRINGIFY_CODE(TYPE_CODE, STRUCT_NAME) STRINGIFY_CODE(TYPE_CODE, STRUCT_NAMED) STRINGIFY_CODE(TYPE_CODE, FUNCTION) } case bitc::CONSTANTS_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(CST_CODE, SETTYPE) STRINGIFY_CODE(CST_CODE, NULL) STRINGIFY_CODE(CST_CODE, UNDEF) STRINGIFY_CODE(CST_CODE, INTEGER) STRINGIFY_CODE(CST_CODE, WIDE_INTEGER) STRINGIFY_CODE(CST_CODE, FLOAT) STRINGIFY_CODE(CST_CODE, AGGREGATE) STRINGIFY_CODE(CST_CODE, STRING) STRINGIFY_CODE(CST_CODE, CSTRING) STRINGIFY_CODE(CST_CODE, CE_BINOP) STRINGIFY_CODE(CST_CODE, CE_CAST) STRINGIFY_CODE(CST_CODE, CE_GEP) STRINGIFY_CODE(CST_CODE, CE_INBOUNDS_GEP) STRINGIFY_CODE(CST_CODE, CE_SELECT) STRINGIFY_CODE(CST_CODE, CE_EXTRACTELT) STRINGIFY_CODE(CST_CODE, CE_INSERTELT) STRINGIFY_CODE(CST_CODE, CE_SHUFFLEVEC) STRINGIFY_CODE(CST_CODE, CE_CMP) STRINGIFY_CODE(CST_CODE, INLINEASM) STRINGIFY_CODE(CST_CODE, CE_SHUFVEC_EX) STRINGIFY_CODE(CST_CODE, CE_UNOP) case bitc::CST_CODE_BLOCKADDRESS: return "CST_CODE_BLOCKADDRESS"; STRINGIFY_CODE(CST_CODE, DATA) } case bitc::FUNCTION_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(FUNC_CODE, DECLAREBLOCKS) STRINGIFY_CODE(FUNC_CODE, INST_BINOP) STRINGIFY_CODE(FUNC_CODE, INST_CAST) STRINGIFY_CODE(FUNC_CODE, INST_GEP_OLD) STRINGIFY_CODE(FUNC_CODE, INST_INBOUNDS_GEP_OLD) STRINGIFY_CODE(FUNC_CODE, INST_SELECT) STRINGIFY_CODE(FUNC_CODE, INST_EXTRACTELT) STRINGIFY_CODE(FUNC_CODE, INST_INSERTELT) STRINGIFY_CODE(FUNC_CODE, INST_SHUFFLEVEC) STRINGIFY_CODE(FUNC_CODE, INST_CMP) STRINGIFY_CODE(FUNC_CODE, INST_RET) STRINGIFY_CODE(FUNC_CODE, INST_BR) STRINGIFY_CODE(FUNC_CODE, INST_SWITCH) STRINGIFY_CODE(FUNC_CODE, INST_INVOKE) STRINGIFY_CODE(FUNC_CODE, INST_UNOP) STRINGIFY_CODE(FUNC_CODE, INST_UNREACHABLE) STRINGIFY_CODE(FUNC_CODE, INST_CLEANUPRET) STRINGIFY_CODE(FUNC_CODE, INST_CATCHRET) STRINGIFY_CODE(FUNC_CODE, INST_CATCHPAD) STRINGIFY_CODE(FUNC_CODE, INST_PHI) STRINGIFY_CODE(FUNC_CODE, INST_ALLOCA) STRINGIFY_CODE(FUNC_CODE, INST_LOAD) STRINGIFY_CODE(FUNC_CODE, INST_VAARG) STRINGIFY_CODE(FUNC_CODE, INST_STORE) STRINGIFY_CODE(FUNC_CODE, INST_EXTRACTVAL) STRINGIFY_CODE(FUNC_CODE, INST_INSERTVAL) STRINGIFY_CODE(FUNC_CODE, INST_CMP2) STRINGIFY_CODE(FUNC_CODE, INST_VSELECT) STRINGIFY_CODE(FUNC_CODE, DEBUG_LOC_AGAIN) STRINGIFY_CODE(FUNC_CODE, INST_CALL) STRINGIFY_CODE(FUNC_CODE, DEBUG_LOC) STRINGIFY_CODE(FUNC_CODE, INST_GEP) STRINGIFY_CODE(FUNC_CODE, OPERAND_BUNDLE) STRINGIFY_CODE(FUNC_CODE, INST_FENCE) STRINGIFY_CODE(FUNC_CODE, INST_ATOMICRMW) STRINGIFY_CODE(FUNC_CODE, INST_LOADATOMIC) STRINGIFY_CODE(FUNC_CODE, INST_STOREATOMIC) STRINGIFY_CODE(FUNC_CODE, INST_CMPXCHG) STRINGIFY_CODE(FUNC_CODE, INST_CALLBR) } case bitc::VALUE_SYMTAB_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(VST_CODE, ENTRY) STRINGIFY_CODE(VST_CODE, BBENTRY) STRINGIFY_CODE(VST_CODE, FNENTRY) STRINGIFY_CODE(VST_CODE, COMBINED_ENTRY) } case bitc::MODULE_STRTAB_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(MST_CODE, ENTRY) STRINGIFY_CODE(MST_CODE, HASH) } case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(FS, PERMODULE) STRINGIFY_CODE(FS, PERMODULE_PROFILE) STRINGIFY_CODE(FS, PERMODULE_RELBF) STRINGIFY_CODE(FS, PERMODULE_GLOBALVAR_INIT_REFS) STRINGIFY_CODE(FS, PERMODULE_VTABLE_GLOBALVAR_INIT_REFS) STRINGIFY_CODE(FS, COMBINED) STRINGIFY_CODE(FS, COMBINED_PROFILE) STRINGIFY_CODE(FS, COMBINED_GLOBALVAR_INIT_REFS) STRINGIFY_CODE(FS, ALIAS) STRINGIFY_CODE(FS, COMBINED_ALIAS) STRINGIFY_CODE(FS, COMBINED_ORIGINAL_NAME) STRINGIFY_CODE(FS, VERSION) STRINGIFY_CODE(FS, FLAGS) STRINGIFY_CODE(FS, TYPE_TESTS) STRINGIFY_CODE(FS, TYPE_TEST_ASSUME_VCALLS) STRINGIFY_CODE(FS, TYPE_CHECKED_LOAD_VCALLS) STRINGIFY_CODE(FS, TYPE_TEST_ASSUME_CONST_VCALL) STRINGIFY_CODE(FS, TYPE_CHECKED_LOAD_CONST_VCALL) STRINGIFY_CODE(FS, VALUE_GUID) STRINGIFY_CODE(FS, CFI_FUNCTION_DEFS) STRINGIFY_CODE(FS, CFI_FUNCTION_DECLS) STRINGIFY_CODE(FS, TYPE_ID) STRINGIFY_CODE(FS, TYPE_ID_METADATA) STRINGIFY_CODE(FS, BLOCK_COUNT) STRINGIFY_CODE(FS, PARAM_ACCESS) } case bitc::METADATA_ATTACHMENT_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(METADATA, ATTACHMENT) } case bitc::METADATA_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(METADATA, STRING_OLD) STRINGIFY_CODE(METADATA, VALUE) STRINGIFY_CODE(METADATA, NODE) STRINGIFY_CODE(METADATA, NAME) STRINGIFY_CODE(METADATA, DISTINCT_NODE) STRINGIFY_CODE(METADATA, KIND) // Older bitcode has it in a MODULE_BLOCK STRINGIFY_CODE(METADATA, LOCATION) STRINGIFY_CODE(METADATA, OLD_NODE) STRINGIFY_CODE(METADATA, OLD_FN_NODE) STRINGIFY_CODE(METADATA, NAMED_NODE) STRINGIFY_CODE(METADATA, GENERIC_DEBUG) STRINGIFY_CODE(METADATA, SUBRANGE) STRINGIFY_CODE(METADATA, ENUMERATOR) STRINGIFY_CODE(METADATA, BASIC_TYPE) STRINGIFY_CODE(METADATA, FILE) STRINGIFY_CODE(METADATA, DERIVED_TYPE) STRINGIFY_CODE(METADATA, COMPOSITE_TYPE) STRINGIFY_CODE(METADATA, SUBROUTINE_TYPE) STRINGIFY_CODE(METADATA, COMPILE_UNIT) STRINGIFY_CODE(METADATA, SUBPROGRAM) STRINGIFY_CODE(METADATA, LEXICAL_BLOCK) STRINGIFY_CODE(METADATA, LEXICAL_BLOCK_FILE) STRINGIFY_CODE(METADATA, NAMESPACE) STRINGIFY_CODE(METADATA, TEMPLATE_TYPE) STRINGIFY_CODE(METADATA, TEMPLATE_VALUE) STRINGIFY_CODE(METADATA, GLOBAL_VAR) STRINGIFY_CODE(METADATA, LOCAL_VAR) STRINGIFY_CODE(METADATA, EXPRESSION) STRINGIFY_CODE(METADATA, OBJC_PROPERTY) STRINGIFY_CODE(METADATA, IMPORTED_ENTITY) STRINGIFY_CODE(METADATA, MODULE) STRINGIFY_CODE(METADATA, MACRO) STRINGIFY_CODE(METADATA, MACRO_FILE) STRINGIFY_CODE(METADATA, STRINGS) STRINGIFY_CODE(METADATA, GLOBAL_DECL_ATTACHMENT) STRINGIFY_CODE(METADATA, GLOBAL_VAR_EXPR) STRINGIFY_CODE(METADATA, INDEX_OFFSET) STRINGIFY_CODE(METADATA, INDEX) } case bitc::METADATA_KIND_BLOCK_ID: switch (CodeID) { default: return None; STRINGIFY_CODE(METADATA, KIND) } case bitc::USELIST_BLOCK_ID: switch (CodeID) { default: return None; case bitc::USELIST_CODE_DEFAULT: return "USELIST_CODE_DEFAULT"; case bitc::USELIST_CODE_BB: return "USELIST_CODE_BB"; } case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: switch (CodeID) { default: return None; case bitc::OPERAND_BUNDLE_TAG: return "OPERAND_BUNDLE_TAG"; } case bitc::STRTAB_BLOCK_ID: switch (CodeID) { default: return None; case bitc::STRTAB_BLOB: return "BLOB"; } case bitc::SYMTAB_BLOCK_ID: switch (CodeID) { default: return None; case bitc::SYMTAB_BLOB: return "BLOB"; } } #undef STRINGIFY_CODE } static void printSize(raw_ostream &OS, double Bits) { OS << format("%.2f/%.2fB/%luW", Bits, Bits / 8, (unsigned long)(Bits / 32)); } static void printSize(raw_ostream &OS, uint64_t Bits) { OS << format("%lub/%.2fB/%luW", (unsigned long)Bits, (double)Bits / 8, (unsigned long)(Bits / 32)); } static Expected ReadSignature(BitstreamCursor &Stream) { auto tryRead = [&Stream](char &Dest, size_t size) -> Error { if (Expected MaybeWord = Stream.Read(size)) Dest = MaybeWord.get(); else return MaybeWord.takeError(); return Error::success(); }; char Signature[6]; if (Error Err = tryRead(Signature[0], 8)) return std::move(Err); if (Error Err = tryRead(Signature[1], 8)) return std::move(Err); // Autodetect the file contents, if it is one we know. if (Signature[0] == 'C' && Signature[1] == 'P') { if (Error Err = tryRead(Signature[2], 8)) return std::move(Err); if (Error Err = tryRead(Signature[3], 8)) return std::move(Err); if (Signature[2] == 'C' && Signature[3] == 'H') return ClangSerializedASTBitstream; } else if (Signature[0] == 'D' && Signature[1] == 'I') { if (Error Err = tryRead(Signature[2], 8)) return std::move(Err); if (Error Err = tryRead(Signature[3], 8)) return std::move(Err); if (Signature[2] == 'A' && Signature[3] == 'G') return ClangSerializedDiagnosticsBitstream; } else if (Signature[0] == 'R' && Signature[1] == 'M') { if (Error Err = tryRead(Signature[2], 8)) return std::move(Err); if (Error Err = tryRead(Signature[3], 8)) return std::move(Err); if (Signature[2] == 'R' && Signature[3] == 'K') return LLVMBitstreamRemarks; } else { if (Error Err = tryRead(Signature[2], 4)) return std::move(Err); if (Error Err = tryRead(Signature[3], 4)) return std::move(Err); if (Error Err = tryRead(Signature[4], 4)) return std::move(Err); if (Error Err = tryRead(Signature[5], 4)) return std::move(Err); if (Signature[0] == 'B' && Signature[1] == 'C' && Signature[2] == 0x0 && Signature[3] == 0xC && Signature[4] == 0xE && Signature[5] == 0xD) return LLVMIRBitstream; } return UnknownBitstream; } static Expected analyzeHeader(Optional O, BitstreamCursor &Stream) { ArrayRef Bytes = Stream.getBitcodeBytes(); const unsigned char *BufPtr = (const unsigned char *)Bytes.data(); const unsigned char *EndBufPtr = BufPtr + Bytes.size(); // If we have a wrapper header, parse it and ignore the non-bc file // contents. The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, EndBufPtr)) { if (Bytes.size() < BWH_HeaderSize) return reportError("Invalid bitcode wrapper header"); if (O) { unsigned Magic = support::endian::read32le(&BufPtr[BWH_MagicField]); unsigned Version = support::endian::read32le(&BufPtr[BWH_VersionField]); unsigned Offset = support::endian::read32le(&BufPtr[BWH_OffsetField]); unsigned Size = support::endian::read32le(&BufPtr[BWH_SizeField]); unsigned CPUType = support::endian::read32le(&BufPtr[BWH_CPUTypeField]); O->OS << "\n"; } if (SkipBitcodeWrapperHeader(BufPtr, EndBufPtr, true)) return reportError("Invalid bitcode wrapper header"); } // Use the cursor modified by skipping the wrapper header. Stream = BitstreamCursor(ArrayRef(BufPtr, EndBufPtr)); return ReadSignature(Stream); } static bool canDecodeBlob(unsigned Code, unsigned BlockID) { return BlockID == bitc::METADATA_BLOCK_ID && Code == bitc::METADATA_STRINGS; } Error BitcodeAnalyzer::decodeMetadataStringsBlob(StringRef Indent, ArrayRef Record, StringRef Blob, raw_ostream &OS) { if (Blob.empty()) return reportError("Cannot decode empty blob."); if (Record.size() != 2) return reportError( "Decoding metadata strings blob needs two record entries."); unsigned NumStrings = Record[0]; unsigned StringsOffset = Record[1]; OS << " num-strings = " << NumStrings << " {\n"; StringRef Lengths = Blob.slice(0, StringsOffset); SimpleBitstreamCursor R(Lengths); StringRef Strings = Blob.drop_front(StringsOffset); do { if (R.AtEndOfStream()) return reportError("bad length"); Expected MaybeSize = R.ReadVBR(6); if (!MaybeSize) return MaybeSize.takeError(); uint32_t Size = MaybeSize.get(); if (Strings.size() < Size) return reportError("truncated chars"); OS << Indent << " '"; OS.write_escaped(Strings.slice(0, Size), /*hex=*/true); OS << "'\n"; Strings = Strings.drop_front(Size); } while (--NumStrings); OS << Indent << " }"; return Error::success(); } BitcodeAnalyzer::BitcodeAnalyzer(StringRef Buffer, Optional BlockInfoBuffer) : Stream(Buffer) { if (BlockInfoBuffer) BlockInfoStream.emplace(*BlockInfoBuffer); } Error BitcodeAnalyzer::analyze(Optional O, Optional CheckHash) { Expected MaybeType = analyzeHeader(O, Stream); if (!MaybeType) return MaybeType.takeError(); else CurStreamType = *MaybeType; Stream.setBlockInfo(&BlockInfo); // Read block info from BlockInfoStream, if specified. // The block info must be a top-level block. if (BlockInfoStream) { BitstreamCursor BlockInfoCursor(*BlockInfoStream); Expected H = analyzeHeader(O, BlockInfoCursor); if (!H) return H.takeError(); while (!BlockInfoCursor.AtEndOfStream()) { Expected MaybeCode = BlockInfoCursor.ReadCode(); if (!MaybeCode) return MaybeCode.takeError(); if (MaybeCode.get() != bitc::ENTER_SUBBLOCK) return reportError("Invalid record at top-level in block info file"); Expected MaybeBlockID = BlockInfoCursor.ReadSubBlockID(); if (!MaybeBlockID) return MaybeBlockID.takeError(); if (MaybeBlockID.get() == bitc::BLOCKINFO_BLOCK_ID) { Expected> MaybeNewBlockInfo = BlockInfoCursor.ReadBlockInfoBlock(/*ReadBlockInfoNames=*/true); if (!MaybeNewBlockInfo) return MaybeNewBlockInfo.takeError(); Optional NewBlockInfo = std::move(MaybeNewBlockInfo.get()); if (!NewBlockInfo) return reportError("Malformed BlockInfoBlock in block info file"); BlockInfo = std::move(*NewBlockInfo); break; } if (Error Err = BlockInfoCursor.SkipBlock()) return Err; } } // Parse the top-level structure. We only allow blocks at the top-level. while (!Stream.AtEndOfStream()) { Expected MaybeCode = Stream.ReadCode(); if (!MaybeCode) return MaybeCode.takeError(); if (MaybeCode.get() != bitc::ENTER_SUBBLOCK) return reportError("Invalid record at top-level"); Expected MaybeBlockID = Stream.ReadSubBlockID(); if (!MaybeBlockID) return MaybeBlockID.takeError(); if (Error E = parseBlock(MaybeBlockID.get(), 0, O, CheckHash)) return E; ++NumTopBlocks; } return Error::success(); } void BitcodeAnalyzer::printStats(BCDumpOptions O, Optional Filename) { uint64_t BufferSizeBits = Stream.getBitcodeBytes().size() * CHAR_BIT; // Print a summary of the read file. O.OS << "Summary "; if (Filename) O.OS << "of " << Filename->data() << ":\n"; O.OS << " Total size: "; printSize(O.OS, BufferSizeBits); O.OS << "\n"; O.OS << " Stream type: "; switch (CurStreamType) { case UnknownBitstream: O.OS << "unknown\n"; break; case LLVMIRBitstream: O.OS << "LLVM IR\n"; break; case ClangSerializedASTBitstream: O.OS << "Clang Serialized AST\n"; break; case ClangSerializedDiagnosticsBitstream: O.OS << "Clang Serialized Diagnostics\n"; break; case LLVMBitstreamRemarks: O.OS << "LLVM Remarks\n"; break; } O.OS << " # Toplevel Blocks: " << NumTopBlocks << "\n"; O.OS << "\n"; // Emit per-block stats. O.OS << "Per-block Summary:\n"; for (std::map::iterator I = BlockIDStats.begin(), E = BlockIDStats.end(); I != E; ++I) { O.OS << " Block ID #" << I->first; if (Optional BlockName = GetBlockName(I->first, BlockInfo, CurStreamType)) O.OS << " (" << *BlockName << ")"; O.OS << ":\n"; const PerBlockIDStats &Stats = I->second; O.OS << " Num Instances: " << Stats.NumInstances << "\n"; O.OS << " Total Size: "; printSize(O.OS, Stats.NumBits); O.OS << "\n"; double pct = (Stats.NumBits * 100.0) / BufferSizeBits; O.OS << " Percent of file: " << format("%2.4f%%", pct) << "\n"; if (Stats.NumInstances > 1) { O.OS << " Average Size: "; printSize(O.OS, Stats.NumBits / (double)Stats.NumInstances); O.OS << "\n"; O.OS << " Tot/Avg SubBlocks: " << Stats.NumSubBlocks << "/" << Stats.NumSubBlocks / (double)Stats.NumInstances << "\n"; O.OS << " Tot/Avg Abbrevs: " << Stats.NumAbbrevs << "/" << Stats.NumAbbrevs / (double)Stats.NumInstances << "\n"; O.OS << " Tot/Avg Records: " << Stats.NumRecords << "/" << Stats.NumRecords / (double)Stats.NumInstances << "\n"; } else { O.OS << " Num SubBlocks: " << Stats.NumSubBlocks << "\n"; O.OS << " Num Abbrevs: " << Stats.NumAbbrevs << "\n"; O.OS << " Num Records: " << Stats.NumRecords << "\n"; } if (Stats.NumRecords) { double pct = (Stats.NumAbbreviatedRecords * 100.0) / Stats.NumRecords; O.OS << " Percent Abbrevs: " << format("%2.4f%%", pct) << "\n"; } O.OS << "\n"; // Print a histogram of the codes we see. if (O.Histogram && !Stats.CodeFreq.empty()) { std::vector> FreqPairs; // for (unsigned i = 0, e = Stats.CodeFreq.size(); i != e; ++i) if (unsigned Freq = Stats.CodeFreq[i].NumInstances) FreqPairs.push_back(std::make_pair(Freq, i)); llvm::stable_sort(FreqPairs); std::reverse(FreqPairs.begin(), FreqPairs.end()); O.OS << "\tRecord Histogram:\n"; O.OS << "\t\t Count # Bits b/Rec % Abv Record Kind\n"; for (unsigned i = 0, e = FreqPairs.size(); i != e; ++i) { const PerRecordStats &RecStats = Stats.CodeFreq[FreqPairs[i].second]; O.OS << format("\t\t%7d %9lu", RecStats.NumInstances, (unsigned long)RecStats.TotalBits); if (RecStats.NumInstances > 1) O.OS << format(" %9.1f", (double)RecStats.TotalBits / RecStats.NumInstances); else O.OS << " "; if (RecStats.NumAbbrev) O.OS << format(" %7.2f", (double)RecStats.NumAbbrev / RecStats.NumInstances * 100); else O.OS << " "; O.OS << " "; if (Optional CodeName = GetCodeName( FreqPairs[i].second, I->first, BlockInfo, CurStreamType)) O.OS << *CodeName << "\n"; else O.OS << "UnknownCode" << FreqPairs[i].second << "\n"; } O.OS << "\n"; } } } Error BitcodeAnalyzer::parseBlock(unsigned BlockID, unsigned IndentLevel, Optional O, Optional CheckHash) { std::string Indent(IndentLevel * 2, ' '); uint64_t BlockBitStart = Stream.GetCurrentBitNo(); // Get the statistics for this BlockID. PerBlockIDStats &BlockStats = BlockIDStats[BlockID]; BlockStats.NumInstances++; // BLOCKINFO is a special part of the stream. bool DumpRecords = O.hasValue(); if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { if (O) O->OS << Indent << "\n"; Expected> MaybeNewBlockInfo = Stream.ReadBlockInfoBlock(/*ReadBlockInfoNames=*/true); if (!MaybeNewBlockInfo) return MaybeNewBlockInfo.takeError(); Optional NewBlockInfo = std::move(MaybeNewBlockInfo.get()); if (!NewBlockInfo) return reportError("Malformed BlockInfoBlock"); BlockInfo = std::move(*NewBlockInfo); if (Error Err = Stream.JumpToBit(BlockBitStart)) return Err; // It's not really interesting to dump the contents of the blockinfo // block. DumpRecords = false; } unsigned NumWords = 0; if (Error Err = Stream.EnterSubBlock(BlockID, &NumWords)) return Err; // Keep it for later, when we see a MODULE_HASH record uint64_t BlockEntryPos = Stream.getCurrentByteNo(); Optional BlockName = None; if (DumpRecords) { O->OS << Indent << "<"; if ((BlockName = GetBlockName(BlockID, BlockInfo, CurStreamType))) O->OS << *BlockName; else O->OS << "UnknownBlock" << BlockID; if (!O->Symbolic && BlockName) O->OS << " BlockID=" << BlockID; O->OS << " NumWords=" << NumWords << " BlockCodeSize=" << Stream.getAbbrevIDWidth() << ">\n"; } SmallVector Record; // Keep the offset to the metadata index if seen. uint64_t MetadataIndexOffset = 0; // Read all the records for this block. while (1) { if (Stream.AtEndOfStream()) return reportError("Premature end of bitstream"); uint64_t RecordStartBit = Stream.GetCurrentBitNo(); Expected MaybeEntry = Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); if (!MaybeEntry) return MaybeEntry.takeError(); BitstreamEntry Entry = MaybeEntry.get(); switch (Entry.Kind) { case BitstreamEntry::Error: return reportError("malformed bitcode file"); case BitstreamEntry::EndBlock: { uint64_t BlockBitEnd = Stream.GetCurrentBitNo(); BlockStats.NumBits += BlockBitEnd - BlockBitStart; if (DumpRecords) { O->OS << Indent << "OS << *BlockName << ">\n"; else O->OS << "UnknownBlock" << BlockID << ">\n"; } return Error::success(); } case BitstreamEntry::SubBlock: { uint64_t SubBlockBitStart = Stream.GetCurrentBitNo(); if (Error E = parseBlock(Entry.ID, IndentLevel + 1, O, CheckHash)) return E; ++BlockStats.NumSubBlocks; uint64_t SubBlockBitEnd = Stream.GetCurrentBitNo(); // Don't include subblock sizes in the size of this block. BlockBitStart += SubBlockBitEnd - SubBlockBitStart; continue; } case BitstreamEntry::Record: // The interesting case. break; } if (Entry.ID == bitc::DEFINE_ABBREV) { if (Error Err = Stream.ReadAbbrevRecord()) return Err; ++BlockStats.NumAbbrevs; continue; } Record.clear(); ++BlockStats.NumRecords; StringRef Blob; uint64_t CurrentRecordPos = Stream.GetCurrentBitNo(); Expected MaybeCode = Stream.readRecord(Entry.ID, Record, &Blob); if (!MaybeCode) return MaybeCode.takeError(); unsigned Code = MaybeCode.get(); // Increment the # occurrences of this code. if (BlockStats.CodeFreq.size() <= Code) BlockStats.CodeFreq.resize(Code + 1); BlockStats.CodeFreq[Code].NumInstances++; BlockStats.CodeFreq[Code].TotalBits += Stream.GetCurrentBitNo() - RecordStartBit; if (Entry.ID != bitc::UNABBREV_RECORD) { BlockStats.CodeFreq[Code].NumAbbrev++; ++BlockStats.NumAbbreviatedRecords; } if (DumpRecords) { O->OS << Indent << " <"; Optional CodeName = GetCodeName(Code, BlockID, BlockInfo, CurStreamType); if (CodeName) O->OS << *CodeName; else O->OS << "UnknownCode" << Code; if (!O->Symbolic && CodeName) O->OS << " codeid=" << Code; const BitCodeAbbrev *Abbv = nullptr; if (Entry.ID != bitc::UNABBREV_RECORD) { Abbv = Stream.getAbbrev(Entry.ID); O->OS << " abbrevid=" << Entry.ID; } for (unsigned i = 0, e = Record.size(); i != e; ++i) O->OS << " op" << i << "=" << (int64_t)Record[i]; // If we found a metadata index, let's verify that we had an offset // before and validate its forward reference offset was correct! if (BlockID == bitc::METADATA_BLOCK_ID) { if (Code == bitc::METADATA_INDEX_OFFSET) { if (Record.size() != 2) O->OS << "(Invalid record)"; else { auto Offset = Record[0] + (Record[1] << 32); MetadataIndexOffset = Stream.GetCurrentBitNo() + Offset; } } if (Code == bitc::METADATA_INDEX) { O->OS << " (offset "; if (MetadataIndexOffset == RecordStartBit) O->OS << "match)"; else O->OS << "mismatch: " << MetadataIndexOffset << " vs " << RecordStartBit << ")"; } } // If we found a module hash, let's verify that it matches! if (BlockID == bitc::MODULE_BLOCK_ID && Code == bitc::MODULE_CODE_HASH && CheckHash.hasValue()) { if (Record.size() != 5) O->OS << " (invalid)"; else { // Recompute the hash and compare it to the one in the bitcode SHA1 Hasher; StringRef Hash; Hasher.update(*CheckHash); { int BlockSize = (CurrentRecordPos / 8) - BlockEntryPos; auto Ptr = Stream.getPointerToByte(BlockEntryPos, BlockSize); Hasher.update(ArrayRef(Ptr, BlockSize)); Hash = Hasher.result(); } std::array RecordedHash; int Pos = 0; for (auto &Val : Record) { assert(!(Val >> 32) && "Unexpected high bits set"); support::endian::write32be(&RecordedHash[Pos], Val); Pos += 4; } if (Hash == StringRef(RecordedHash.data(), RecordedHash.size())) O->OS << " (match)"; else O->OS << " (!mismatch!)"; } } O->OS << "/>"; if (Abbv) { for (unsigned i = 1, e = Abbv->getNumOperandInfos(); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (!Op.isEncoding() || Op.getEncoding() != BitCodeAbbrevOp::Array) continue; assert(i + 2 == e && "Array op not second to last"); std::string Str; bool ArrayIsPrintable = true; for (unsigned j = i - 1, je = Record.size(); j != je; ++j) { if (!isPrint(static_cast(Record[j]))) { ArrayIsPrintable = false; break; } Str += (char)Record[j]; } if (ArrayIsPrintable) O->OS << " record string = '" << Str << "'"; break; } } if (Blob.data()) { if (canDecodeBlob(Code, BlockID)) { if (Error E = decodeMetadataStringsBlob(Indent, Record, Blob, O->OS)) return E; } else { O->OS << " blob data = "; if (O->ShowBinaryBlobs) { O->OS << "'"; O->OS.write_escaped(Blob, /*hex=*/true) << "'"; } else { bool BlobIsPrintable = true; for (unsigned i = 0, e = Blob.size(); i != e; ++i) if (!isPrint(static_cast(Blob[i]))) { BlobIsPrintable = false; break; } if (BlobIsPrintable) O->OS << "'" << Blob << "'"; else O->OS << "unprintable, " << Blob.size() << " bytes."; } } } O->OS << "\n"; } // Make sure that we can skip the current record. if (Error Err = Stream.JumpToBit(CurrentRecordPos)) return Err; if (Expected Skipped = Stream.skipRecord(Entry.ID)) ; // Do nothing. else return Skipped.takeError(); } }