//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains routines that help determine which pointers are captured. // A pointer value is captured if the function makes a copy of any part of the // pointer that outlives the call. Not being captured means, more or less, that // the pointer is only dereferenced and not stored in a global. Returning part // of the pointer as the function return value may or may not count as capturing // the pointer, depending on the context. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CaptureTracking.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" using namespace llvm; /// The default value for MaxUsesToExplore argument. It's relatively small to /// keep the cost of analysis reasonable for clients like BasicAliasAnalysis, /// where the results can't be cached. /// TODO: we should probably introduce a caching CaptureTracking analysis and /// use it where possible. The caching version can use much higher limit or /// don't have this cap at all. static cl::opt DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden, cl::desc("Maximal number of uses to explore."), cl::init(20)); unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() { return DefaultMaxUsesToExplore; } CaptureTracker::~CaptureTracker() {} bool CaptureTracker::shouldExplore(const Use *U) { return true; } bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) { // An inbounds GEP can either be a valid pointer (pointing into // or to the end of an allocation), or be null in the default // address space. So for an inbounds GEP there is no way to let // the pointer escape using clever GEP hacking because doing so // would make the pointer point outside of the allocated object // and thus make the GEP result a poison value. Similarly, other // dereferenceable pointers cannot be manipulated without producing // poison. if (auto *GEP = dyn_cast(O)) if (GEP->isInBounds()) return true; bool CanBeNull; return O->getPointerDereferenceableBytes(DL, CanBeNull); } namespace { struct SimpleCaptureTracker : public CaptureTracker { explicit SimpleCaptureTracker(bool ReturnCaptures) : ReturnCaptures(ReturnCaptures), Captured(false) {} void tooManyUses() override { Captured = true; } bool captured(const Use *U) override { if (isa(U->getUser()) && !ReturnCaptures) return false; Captured = true; return true; } bool ReturnCaptures; bool Captured; }; /// Only find pointer captures which happen before the given instruction. Uses /// the dominator tree to determine whether one instruction is before another. /// Only support the case where the Value is defined in the same basic block /// as the given instruction and the use. struct CapturesBefore : public CaptureTracker { CapturesBefore(bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI) : BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {} void tooManyUses() override { Captured = true; } bool isSafeToPrune(Instruction *I) { BasicBlock *BB = I->getParent(); // We explore this usage only if the usage can reach "BeforeHere". // If use is not reachable from entry, there is no need to explore. if (BeforeHere != I && !DT->isReachableFromEntry(BB)) return true; // Compute the case where both instructions are inside the same basic // block. if (BB == BeforeHere->getParent()) { // 'I' dominates 'BeforeHere' => not safe to prune. // // The value defined by an invoke dominates an instruction only // if it dominates every instruction in UseBB. A PHI is dominated only // if the instruction dominates every possible use in the UseBB. Since // UseBB == BB, avoid pruning. if (isa(BeforeHere) || isa(I) || I == BeforeHere) return false; if (!BeforeHere->comesBefore(I)) return false; // 'BeforeHere' comes before 'I', it's safe to prune if we also // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or // by its successors, i.e, prune if: // // (1) BB is an entry block or have no successors. // (2) There's no path coming back through BB successors. if (BB == &BB->getParent()->getEntryBlock() || !BB->getTerminator()->getNumSuccessors()) return true; SmallVector Worklist; Worklist.append(succ_begin(BB), succ_end(BB)); return !isPotentiallyReachableFromMany(Worklist, BB, nullptr, DT); } // If the value is defined in the same basic block as use and BeforeHere, // there is no need to explore the use if BeforeHere dominates use. // Check whether there is a path from I to BeforeHere. if (BeforeHere != I && DT->dominates(BeforeHere, I) && !isPotentiallyReachable(I, BeforeHere, nullptr, DT)) return true; return false; } bool shouldExplore(const Use *U) override { Instruction *I = cast(U->getUser()); if (BeforeHere == I && !IncludeI) return false; if (isSafeToPrune(I)) return false; return true; } bool captured(const Use *U) override { if (isa(U->getUser()) && !ReturnCaptures) return false; if (!shouldExplore(U)) return false; Captured = true; return true; } const Instruction *BeforeHere; const DominatorTree *DT; bool ReturnCaptures; bool IncludeI; bool Captured; }; } /// PointerMayBeCaptured - Return true if this pointer value may be captured /// by the enclosing function (which is required to exist). This routine can /// be expensive, so consider caching the results. The boolean ReturnCaptures /// specifies whether returning the value (or part of it) from the function /// counts as capturing it or not. The boolean StoreCaptures specified whether /// storing the value (or part of it) into memory anywhere automatically /// counts as capturing it or not. bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures, unsigned MaxUsesToExplore) { assert(!isa(V) && "It doesn't make sense to ask whether a global is captured."); // TODO: If StoreCaptures is not true, we could do Fancy analysis // to determine whether this store is not actually an escape point. // In that case, BasicAliasAnalysis should be updated as well to // take advantage of this. (void)StoreCaptures; SimpleCaptureTracker SCT(ReturnCaptures); PointerMayBeCaptured(V, &SCT, MaxUsesToExplore); return SCT.Captured; } /// PointerMayBeCapturedBefore - Return true if this pointer value may be /// captured by the enclosing function (which is required to exist). If a /// DominatorTree is provided, only captures which happen before the given /// instruction are considered. This routine can be expensive, so consider /// caching the results. The boolean ReturnCaptures specifies whether /// returning the value (or part of it) from the function counts as capturing /// it or not. The boolean StoreCaptures specified whether storing the value /// (or part of it) into memory anywhere automatically counts as capturing it /// or not. bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, bool StoreCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI, unsigned MaxUsesToExplore) { assert(!isa(V) && "It doesn't make sense to ask whether a global is captured."); if (!DT) return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, MaxUsesToExplore); // TODO: See comment in PointerMayBeCaptured regarding what could be done // with StoreCaptures. CapturesBefore CB(ReturnCaptures, I, DT, IncludeI); PointerMayBeCaptured(V, &CB, MaxUsesToExplore); return CB.Captured; } void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker, unsigned MaxUsesToExplore) { assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); if (MaxUsesToExplore == 0) MaxUsesToExplore = DefaultMaxUsesToExplore; SmallVector Worklist; Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking()); SmallSet Visited; auto AddUses = [&](const Value *V) { unsigned Count = 0; for (const Use &U : V->uses()) { // If there are lots of uses, conservatively say that the value // is captured to avoid taking too much compile time. if (Count++ >= MaxUsesToExplore) return Tracker->tooManyUses(); if (!Visited.insert(&U).second) continue; if (!Tracker->shouldExplore(&U)) continue; Worklist.push_back(&U); } }; AddUses(V); while (!Worklist.empty()) { const Use *U = Worklist.pop_back_val(); Instruction *I = cast(U->getUser()); V = U->get(); switch (I->getOpcode()) { case Instruction::Call: case Instruction::Invoke: { auto *Call = cast(I); // Not captured if the callee is readonly, doesn't return a copy through // its return value and doesn't unwind (a readonly function can leak bits // by throwing an exception or not depending on the input value). if (Call->onlyReadsMemory() && Call->doesNotThrow() && Call->getType()->isVoidTy()) break; // The pointer is not captured if returned pointer is not captured. // NOTE: CaptureTracking users should not assume that only functions // marked with nocapture do not capture. This means that places like // GetUnderlyingObject in ValueTracking or DecomposeGEPExpression // in BasicAA also need to know about this property. if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true)) { AddUses(Call); break; } // Volatile operations effectively capture the memory location that they // load and store to. if (auto *MI = dyn_cast(Call)) if (MI->isVolatile()) if (Tracker->captured(U)) return; // Not captured if only passed via 'nocapture' arguments. Note that // calling a function pointer does not in itself cause the pointer to // be captured. This is a subtle point considering that (for example) // the callee might return its own address. It is analogous to saying // that loading a value from a pointer does not cause the pointer to be // captured, even though the loaded value might be the pointer itself // (think of self-referential objects). for (auto IdxOpPair : enumerate(Call->data_ops())) { int Idx = IdxOpPair.index(); Value *A = IdxOpPair.value(); if (A == V && !Call->doesNotCapture(Idx)) // The parameter is not marked 'nocapture' - captured. if (Tracker->captured(U)) return; } break; } case Instruction::Load: // Volatile loads make the address observable. if (cast(I)->isVolatile()) if (Tracker->captured(U)) return; break; case Instruction::VAArg: // "va-arg" from a pointer does not cause it to be captured. break; case Instruction::Store: // Stored the pointer - conservatively assume it may be captured. // Volatile stores make the address observable. if (V == I->getOperand(0) || cast(I)->isVolatile()) if (Tracker->captured(U)) return; break; case Instruction::AtomicRMW: { // atomicrmw conceptually includes both a load and store from // the same location. // As with a store, the location being accessed is not captured, // but the value being stored is. // Volatile stores make the address observable. auto *ARMWI = cast(I); if (ARMWI->getValOperand() == V || ARMWI->isVolatile()) if (Tracker->captured(U)) return; break; } case Instruction::AtomicCmpXchg: { // cmpxchg conceptually includes both a load and store from // the same location. // As with a store, the location being accessed is not captured, // but the value being stored is. // Volatile stores make the address observable. auto *ACXI = cast(I); if (ACXI->getCompareOperand() == V || ACXI->getNewValOperand() == V || ACXI->isVolatile()) if (Tracker->captured(U)) return; break; } case Instruction::BitCast: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Select: case Instruction::AddrSpaceCast: // The original value is not captured via this if the new value isn't. AddUses(I); break; case Instruction::ICmp: { unsigned Idx = (I->getOperand(0) == V) ? 0 : 1; unsigned OtherIdx = 1 - Idx; if (auto *CPN = dyn_cast(I->getOperand(OtherIdx))) { // Don't count comparisons of a no-alias return value against null as // captures. This allows us to ignore comparisons of malloc results // with null, for example. if (CPN->getType()->getAddressSpace() == 0) if (isNoAliasCall(V->stripPointerCasts())) break; if (!I->getFunction()->nullPointerIsDefined()) { auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation(); // Comparing a dereferenceable_or_null pointer against null cannot // lead to pointer escapes, because if it is not null it must be a // valid (in-bounds) pointer. if (Tracker->isDereferenceableOrNull(O, I->getModule()->getDataLayout())) break; } } // Comparison against value stored in global variable. Given the pointer // does not escape, its value cannot be guessed and stored separately in a // global variable. auto *LI = dyn_cast(I->getOperand(OtherIdx)); if (LI && isa(LI->getPointerOperand())) break; // Otherwise, be conservative. There are crazy ways to capture pointers // using comparisons. if (Tracker->captured(U)) return; break; } default: // Something else - be conservative and say it is captured. if (Tracker->captured(U)) return; break; } } // All uses examined. }