//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "LayoutPass.h" #include "lld/Core/Instrumentation.h" #include "lld/Core/PassManager.h" #include "lld/ReaderWriter/MachOLinkingContext.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Parallel.h" #include #include #include using namespace lld; #define DEBUG_TYPE "LayoutPass" namespace lld { namespace mach_o { static bool compareAtoms(const LayoutPass::SortKey &, const LayoutPass::SortKey &, LayoutPass::SortOverride customSorter); #ifndef NDEBUG // Return "reason (leftval, rightval)" static std::string formatReason(StringRef reason, int leftVal, int rightVal) { return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")") .str(); } // Less-than relationship of two atoms must be transitive, which is, if a < b // and b < c, a < c must be true. This function checks the transitivity by // checking the sort results. static void checkTransitivity(std::vector &vec, LayoutPass::SortOverride customSorter) { for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) { for (auto j = i + 1; j != e; ++j) { assert(compareAtoms(*i, *j, customSorter)); assert(!compareAtoms(*j, *i, customSorter)); } } } // Helper functions to check follow-on graph. typedef llvm::DenseMap AtomToAtomT; static std::string atomToDebugString(const Atom *atom) { const DefinedAtom *definedAtom = dyn_cast(atom); std::string str; llvm::raw_string_ostream s(str); if (definedAtom->name().empty()) s << ""; else s << definedAtom->name(); s << " in "; if (definedAtom->customSectionName().empty()) s << ""; else s << definedAtom->customSectionName(); s.flush(); return str; } static void showCycleDetectedError(const Registry ®istry, AtomToAtomT &followOnNexts, const DefinedAtom *atom) { const DefinedAtom *start = atom; llvm::dbgs() << "There's a cycle in a follow-on chain!\n"; do { llvm::dbgs() << " " << atomToDebugString(atom) << "\n"; for (const Reference *ref : *atom) { StringRef kindValStr; if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(), ref->kindValue(), kindValStr)) { kindValStr = ""; } llvm::dbgs() << " " << kindValStr << ": " << atomToDebugString(ref->target()) << "\n"; } atom = followOnNexts[atom]; } while (atom != start); llvm::report_fatal_error("Cycle detected"); } /// Exit if there's a cycle in a followon chain reachable from the /// given root atom. Uses the tortoise and hare algorithm to detect a /// cycle. static void checkNoCycleInFollowonChain(const Registry ®istry, AtomToAtomT &followOnNexts, const DefinedAtom *root) { const DefinedAtom *tortoise = root; const DefinedAtom *hare = followOnNexts[root]; while (true) { if (!tortoise || !hare) return; if (tortoise == hare) showCycleDetectedError(registry, followOnNexts, tortoise); tortoise = followOnNexts[tortoise]; hare = followOnNexts[followOnNexts[hare]]; } } static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots, const DefinedAtom *atom) { if (!atom) return; auto i = followOnRoots.find(atom); if (i == followOnRoots.end()) { llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) + "> has no follow-on root!")) .str() .c_str()); } const DefinedAtom *ap = i->second; while (true) { const DefinedAtom *next = followOnRoots[ap]; if (!next) { llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) + "> is not reachable from its root!")) .str() .c_str()); } if (next == ap) return; ap = next; } } static void printDefinedAtoms(const File::AtomRange &atomRange) { for (const DefinedAtom *atom : atomRange) { llvm::dbgs() << " file=" << atom->file().path() << ", name=" << atom->name() << ", size=" << atom->size() << ", type=" << atom->contentType() << ", ordinal=" << atom->ordinal() << "\n"; } } /// Verify that the followon chain is sane. Should not be called in /// release binary. void LayoutPass::checkFollowonChain(const File::AtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain"); // Verify that there's no cycle in follow-on chain. std::set roots; for (const auto &ai : _followOnRoots) roots.insert(ai.second); for (const DefinedAtom *root : roots) checkNoCycleInFollowonChain(_registry, _followOnNexts, root); // Verify that all the atoms in followOnNexts have references to // their roots. for (const auto &ai : _followOnNexts) { checkReachabilityFromRoot(_followOnRoots, ai.first); checkReachabilityFromRoot(_followOnRoots, ai.second); } } #endif // #ifndef NDEBUG /// The function compares atoms by sorting atoms in the following order /// a) Sorts atoms by their ordinal overrides (layout-after/ingroup) /// b) Sorts atoms by their permissions /// c) Sorts atoms by their content /// d) Sorts atoms by custom sorter /// e) Sorts atoms on how they appear using File Ordinality /// f) Sorts atoms on how they appear within the File static bool compareAtomsSub(const LayoutPass::SortKey &lc, const LayoutPass::SortKey &rc, LayoutPass::SortOverride customSorter, std::string &reason) { const DefinedAtom *left = lc._atom.get(); const DefinedAtom *right = rc._atom.get(); if (left == right) { reason = "same"; return false; } // Find the root of the chain if it is a part of a follow-on chain. const DefinedAtom *leftRoot = lc._root; const DefinedAtom *rightRoot = rc._root; // Sort atoms by their ordinal overrides only if they fall in the same // chain. if (leftRoot == rightRoot) { LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override)); return lc._override < rc._override; } // Sort same permissions together. DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions(); DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions(); if (leftPerms != rightPerms) { LLVM_DEBUG( reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms)); return leftPerms < rightPerms; } // Sort same content types together. DefinedAtom::ContentType leftType = leftRoot->contentType(); DefinedAtom::ContentType rightType = rightRoot->contentType(); if (leftType != rightType) { LLVM_DEBUG(reason = formatReason("contentType", (int)leftType, (int)rightType)); return leftType < rightType; } // Use custom sorter if supplied. if (customSorter) { bool leftBeforeRight; if (customSorter(leftRoot, rightRoot, leftBeforeRight)) return leftBeforeRight; } // Sort by .o order. const File *leftFile = &leftRoot->file(); const File *rightFile = &rightRoot->file(); if (leftFile != rightFile) { LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(), (int)rightFile->ordinal())); return leftFile->ordinal() < rightFile->ordinal(); } // Sort by atom order with .o file. uint64_t leftOrdinal = leftRoot->ordinal(); uint64_t rightOrdinal = rightRoot->ordinal(); if (leftOrdinal != rightOrdinal) { LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(), (int)rightRoot->ordinal())); return leftOrdinal < rightOrdinal; } llvm::errs() << "Unordered: <" << left->name() << "> <" << right->name() << ">\n"; llvm_unreachable("Atoms with Same Ordinal!"); } static bool compareAtoms(const LayoutPass::SortKey &lc, const LayoutPass::SortKey &rc, LayoutPass::SortOverride customSorter) { std::string reason; bool result = compareAtomsSub(lc, rc, customSorter, reason); LLVM_DEBUG({ StringRef comp = result ? "<" : ">="; llvm::dbgs() << "Layout: '" << lc._atom.get()->name() << "' " << comp << " '" << rc._atom.get()->name() << "' (" << reason << ")\n"; }); return result; } LayoutPass::LayoutPass(const Registry ®istry, SortOverride sorter) : _registry(registry), _customSorter(std::move(sorter)) {} // Returns the atom immediately followed by the given atom in the followon // chain. const DefinedAtom *LayoutPass::findAtomFollowedBy( const DefinedAtom *targetAtom) { // Start from the beginning of the chain and follow the chain until // we find the targetChain. const DefinedAtom *atom = _followOnRoots[targetAtom]; while (true) { const DefinedAtom *prevAtom = atom; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); // The target atom must be in the chain of its root. assert(targetFollowOnAtomsIter != _followOnNexts.end()); atom = targetFollowOnAtomsIter->second; if (atom == targetAtom) return prevAtom; } } // Check if all the atoms followed by the given target atom are of size zero. // When this method is called, an atom being added is not of size zero and // will be added to the head of the followon chain. All the atoms between the // atom and the targetAtom (specified by layout-after) need to be of size zero // in this case. Otherwise the desired layout is impossible. bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) { const DefinedAtom *atom = _followOnRoots[targetAtom]; while (true) { if (atom == targetAtom) return true; if (atom->size() != 0) // TODO: print warning that an impossible layout is being desired by the // user. return false; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); // The target atom must be in the chain of its root. assert(targetFollowOnAtomsIter != _followOnNexts.end()); atom = targetFollowOnAtomsIter->second; } } // Set the root of all atoms in targetAtom's chain to the given root. void LayoutPass::setChainRoot(const DefinedAtom *targetAtom, const DefinedAtom *root) { // Walk through the followon chain and override each node's root. while (true) { _followOnRoots[targetAtom] = root; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(targetAtom); if (targetFollowOnAtomsIter == _followOnNexts.end()) return; targetAtom = targetFollowOnAtomsIter->second; } } /// This pass builds the followon tables described by two DenseMaps /// followOnRoots and followonNexts. /// The followOnRoots map contains a mapping of a DefinedAtom to its root /// The followOnNexts map contains a mapping of what DefinedAtom follows the /// current Atom /// The algorithm follows a very simple approach /// a) If the atom is first seen, then make that as the root atom /// b) The targetAtom which this Atom contains, has the root thats set to the /// root of the current atom /// c) If the targetAtom is part of a different tree and the root of the /// targetAtom is itself, Chain all the atoms that are contained in the tree /// to the current Tree /// d) If the targetAtom is part of a different chain and the root of the /// targetAtom until the targetAtom has all atoms of size 0, then chain the /// targetAtoms and its tree to the current chain void LayoutPass::buildFollowOnTable(const File::AtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable"); // Set the initial size of the followon and the followonNext hash to the // number of atoms that we have. _followOnRoots.reserve(range.size()); _followOnNexts.reserve(range.size()); for (const DefinedAtom *ai : range) { for (const Reference *r : *ai) { if (r->kindNamespace() != lld::Reference::KindNamespace::all || r->kindValue() != lld::Reference::kindLayoutAfter) continue; const DefinedAtom *targetAtom = dyn_cast(r->target()); _followOnNexts[ai] = targetAtom; // If we find a followon for the first time, let's make that atom as the // root atom. if (_followOnRoots.count(ai) == 0) _followOnRoots[ai] = ai; auto iter = _followOnRoots.find(targetAtom); if (iter == _followOnRoots.end()) { // If the targetAtom is not a root of any chain, let's make the root of // the targetAtom to the root of the current chain. // The expression m[i] = m[j] where m is a DenseMap and i != j is not // safe. m[j] returns a reference, which would be invalidated when a // rehashing occurs. If rehashing occurs to make room for m[i], m[j] // becomes invalid, and that invalid reference would be used as the RHS // value of the expression. // Copy the value to workaround. const DefinedAtom *tmp = _followOnRoots[ai]; _followOnRoots[targetAtom] = tmp; continue; } if (iter->second == targetAtom) { // If the targetAtom is the root of a chain, the chain becomes part of // the current chain. Rewrite the subchain's root to the current // chain's root. setChainRoot(targetAtom, _followOnRoots[ai]); continue; } // The targetAtom is already a part of a chain. If the current atom is // of size zero, we can insert it in the middle of the chain just // before the target atom, while not breaking other atom's followon // relationships. If it's not, we can only insert the current atom at // the beginning of the chain. All the atoms followed by the target // atom must be of size zero in that case to satisfy the followon // relationships. size_t currentAtomSize = ai->size(); if (currentAtomSize == 0) { const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom); _followOnNexts[targetPrevAtom] = ai; const DefinedAtom *tmp = _followOnRoots[targetPrevAtom]; _followOnRoots[ai] = tmp; continue; } if (!checkAllPrevAtomsZeroSize(targetAtom)) break; _followOnNexts[ai] = _followOnRoots[targetAtom]; setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); } } } /// Build an ordinal override map by traversing the followon chain, and /// assigning ordinals to each atom, if the atoms have their ordinals /// already assigned skip the atom and move to the next. This is the /// main map thats used to sort the atoms while comparing two atoms together void LayoutPass::buildOrdinalOverrideMap(const File::AtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap"); uint64_t index = 0; for (const DefinedAtom *ai : range) { const DefinedAtom *atom = ai; if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end()) continue; AtomToAtomT::iterator start = _followOnRoots.find(atom); if (start == _followOnRoots.end()) continue; for (const DefinedAtom *nextAtom = start->second; nextAtom; nextAtom = _followOnNexts[nextAtom]) { AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom); if (pos == _ordinalOverrideMap.end()) _ordinalOverrideMap[nextAtom] = index++; } } } std::vector LayoutPass::decorate(File::AtomRange &atomRange) const { std::vector ret; for (OwningAtomPtr &atom : atomRange.owning_ptrs()) { auto ri = _followOnRoots.find(atom.get()); auto oi = _ordinalOverrideMap.find(atom.get()); const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second; uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second; ret.push_back(SortKey(std::move(atom), root, override)); } return ret; } void LayoutPass::undecorate(File::AtomRange &atomRange, std::vector &keys) const { size_t i = 0; for (SortKey &k : keys) atomRange[i++] = std::move(k._atom); } /// Perform the actual pass llvm::Error LayoutPass::perform(SimpleFile &mergedFile) { LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n"); // sort the atoms ScopedTask task(getDefaultDomain(), "LayoutPass"); File::AtomRange atomRange = mergedFile.defined(); // Build follow on tables buildFollowOnTable(atomRange); // Check the structure of followon graph if running in debug mode. LLVM_DEBUG(checkFollowonChain(atomRange)); // Build override maps buildOrdinalOverrideMap(atomRange); LLVM_DEBUG({ llvm::dbgs() << "unsorted atoms:\n"; printDefinedAtoms(atomRange); }); std::vector vec = decorate(atomRange); llvm::parallelSort( vec, [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool { return compareAtoms(l, r, _customSorter); }); LLVM_DEBUG(checkTransitivity(vec, _customSorter)); undecorate(atomRange, vec); LLVM_DEBUG({ llvm::dbgs() << "sorted atoms:\n"; printDefinedAtoms(atomRange); }); LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n"); return llvm::Error::success(); } void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) { pm.add(std::make_unique( ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right, bool & leftBeforeRight) ->bool { return ctx.customAtomOrderer(left, right, leftBeforeRight); })); } } // namespace mach_o } // namespace lld