//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains functions to parse Mach-O object files. In this comment, // we describe the Mach-O file structure and how we parse it. // // Mach-O is not very different from ELF or COFF. The notion of symbols, // sections and relocations exists in Mach-O as it does in ELF and COFF. // // Perhaps the notion that is new to those who know ELF/COFF is "subsections". // In ELF/COFF, sections are an atomic unit of data copied from input files to // output files. When we merge or garbage-collect sections, we treat each // section as an atomic unit. In Mach-O, that's not the case. Sections can // consist of multiple subsections, and subsections are a unit of merging and // garbage-collecting. Therefore, Mach-O's subsections are more similar to // ELF/COFF's sections than Mach-O's sections are. // // A section can have multiple symbols. A symbol that does not have the // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by // definition, a symbol is always present at the beginning of each subsection. A // symbol with N_ALT_ENTRY attribute does not start a new subsection and can // point to a middle of a subsection. // // The notion of subsections also affects how relocations are represented in // Mach-O. All references within a section need to be explicitly represented as // relocations if they refer to different subsections, because we obviously need // to fix up addresses if subsections are laid out in an output file differently // than they were in object files. To represent that, Mach-O relocations can // refer to an unnamed location via its address. Scattered relocations (those // with the R_SCATTERED bit set) always refer to unnamed locations. // Non-scattered relocations refer to an unnamed location if r_extern is not set // and r_symbolnum is zero. // // Without the above differences, I think you can use your knowledge about ELF // and COFF for Mach-O. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "ExportTrie.h" #include "InputSection.h" #include "MachOStructs.h" #include "OutputSection.h" #include "SymbolTable.h" #include "Symbols.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" using namespace llvm; using namespace llvm::MachO; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::macho; std::vector macho::inputFiles; // Open a given file path and return it as a memory-mapped file. Optional macho::readFile(StringRef path) { // Open a file. auto mbOrErr = MemoryBuffer::getFile(path); if (auto ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make>(std::move(mb)); // take mb ownership // If this is a regular non-fat file, return it. const char *buf = mbref.getBufferStart(); auto *hdr = reinterpret_cast(buf); if (read32be(&hdr->magic) != MachO::FAT_MAGIC) return mbref; // Object files and archive files may be fat files, which contains // multiple real files for different CPU ISAs. Here, we search for a // file that matches with the current link target and returns it as // a MemoryBufferRef. auto *arch = reinterpret_cast(buf + sizeof(*hdr)); for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { if (reinterpret_cast(arch + i + 1) > buf + mbref.getBufferSize()) { error(path + ": fat_arch struct extends beyond end of file"); return None; } if (read32be(&arch[i].cputype) != target->cpuType || read32be(&arch[i].cpusubtype) != target->cpuSubtype) continue; uint32_t offset = read32be(&arch[i].offset); uint32_t size = read32be(&arch[i].size); if (offset + size > mbref.getBufferSize()) error(path + ": slice extends beyond end of file"); return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); } error("unable to find matching architecture in " + path); return None; } static const load_command *findCommand(const mach_header_64 *hdr, uint32_t type) { const uint8_t *p = reinterpret_cast(hdr) + sizeof(mach_header_64); for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast(p); if (cmd->cmd == type) return cmd; p += cmd->cmdsize; } return nullptr; } void InputFile::parseSections(ArrayRef sections) { subsections.reserve(sections.size()); auto *buf = reinterpret_cast(mb.getBufferStart()); for (const section_64 &sec : sections) { InputSection *isec = make(); isec->file = this; isec->name = StringRef(sec.sectname, strnlen(sec.sectname, 16)); isec->segname = StringRef(sec.segname, strnlen(sec.segname, 16)); isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, static_cast(sec.size)}; if (sec.align >= 32) error("alignment " + std::to_string(sec.align) + " of section " + isec->name + " is too large"); else isec->align = 1 << sec.align; isec->flags = sec.flags; subsections.push_back({{0, isec}}); } } // Find the subsection corresponding to the greatest section offset that is <= // that of the given offset. // // offset: an offset relative to the start of the original InputSection (before // any subsection splitting has occurred). It will be updated to represent the // same location as an offset relative to the start of the containing // subsection. static InputSection *findContainingSubsection(SubsectionMap &map, uint32_t *offset) { auto it = std::prev(map.upper_bound(*offset)); *offset -= it->first; return it->second; } void InputFile::parseRelocations(const section_64 &sec, SubsectionMap &subsecMap) { auto *buf = reinterpret_cast(mb.getBufferStart()); ArrayRef relInfos( reinterpret_cast(buf + sec.reloff), sec.nreloc); for (const any_relocation_info &anyRel : relInfos) { if (anyRel.r_word0 & R_SCATTERED) fatal("TODO: Scattered relocations not supported"); auto rel = reinterpret_cast(anyRel); Reloc r; r.type = rel.r_type; r.pcrel = rel.r_pcrel; r.length = rel.r_length; uint64_t rawAddend = target->getImplicitAddend(mb, sec, rel); if (rel.r_extern) { r.target = symbols[rel.r_symbolnum]; r.addend = rawAddend; } else { if (rel.r_symbolnum == 0 || rel.r_symbolnum > subsections.size()) fatal("invalid section index in relocation for offset " + std::to_string(r.offset) + " in section " + sec.sectname + " of " + getName()); SubsectionMap &targetSubsecMap = subsections[rel.r_symbolnum - 1]; const section_64 &targetSec = sectionHeaders[rel.r_symbolnum - 1]; uint32_t targetOffset; if (rel.r_pcrel) { // The implicit addend for pcrel section relocations is the pcrel offset // in terms of the addresses in the input file. Here we adjust it so // that it describes the offset from the start of the target section. // TODO: The offset of 4 is probably not right for ARM64, nor for // relocations with r_length != 2. targetOffset = sec.addr + rel.r_address + 4 + rawAddend - targetSec.addr; } else { // The addend for a non-pcrel relocation is its absolute address. targetOffset = rawAddend - targetSec.addr; } r.target = findContainingSubsection(targetSubsecMap, &targetOffset); r.addend = targetOffset; } r.offset = rel.r_address; InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); subsec->relocs.push_back(r); } } void InputFile::parseSymbols(ArrayRef nList, const char *strtab, bool subsectionsViaSymbols) { // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols // out-of-sequence. symbols.resize(nList.size()); std::vector altEntrySymIdxs; auto createDefined = [&](const structs::nlist_64 &sym, InputSection *isec, uint32_t value) -> Symbol * { StringRef name = strtab + sym.n_strx; if (sym.n_type & N_EXT) // Global defined symbol return symtab->addDefined(name, isec, value); else // Local defined symbol return make(name, isec, value); }; for (size_t i = 0, n = nList.size(); i < n; ++i) { const structs::nlist_64 &sym = nList[i]; // Undefined symbol if (!sym.n_sect) { StringRef name = strtab + sym.n_strx; symbols[i] = symtab->addUndefined(name); continue; } const section_64 &sec = sectionHeaders[sym.n_sect - 1]; SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; uint64_t offset = sym.n_value - sec.addr; // If the input file does not use subsections-via-symbols, all symbols can // use the same subsection. Otherwise, we must split the sections along // symbol boundaries. if (!subsectionsViaSymbols) { symbols[i] = createDefined(sym, subsecMap[0], offset); continue; } // nList entries aren't necessarily arranged in address order. Therefore, // we can't create alt-entry symbols at this point because a later symbol // may split its section, which may affect which subsection the alt-entry // symbol is assigned to. So we need to handle them in a second pass below. if (sym.n_desc & N_ALT_ENTRY) { altEntrySymIdxs.push_back(i); continue; } // Find the subsection corresponding to the greatest section offset that is // <= that of the current symbol. The subsection that we find either needs // to be used directly or split in two. uint32_t firstSize = offset; InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); if (firstSize == 0) { // Alias of an existing symbol, or the first symbol in the section. These // are handled by reusing the existing section. symbols[i] = createDefined(sym, firstIsec, 0); continue; } // We saw a symbol definition at a new offset. Split the section into two // subsections. The new symbol uses the second subsection. auto *secondIsec = make(*firstIsec); secondIsec->data = firstIsec->data.slice(firstSize); firstIsec->data = firstIsec->data.slice(0, firstSize); // TODO: ld64 appears to preserve the original alignment as well as each // subsection's offset from the last aligned address. We should consider // emulating that behavior. secondIsec->align = MinAlign(firstIsec->align, offset); subsecMap[offset] = secondIsec; // By construction, the symbol will be at offset zero in the new section. symbols[i] = createDefined(sym, secondIsec, 0); } for (size_t idx : altEntrySymIdxs) { const structs::nlist_64 &sym = nList[idx]; SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; InputSection *subsec = findContainingSubsection(subsecMap, &off); symbols[idx] = createDefined(sym, subsec, off); } } ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) { auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { auto *c = reinterpret_cast(cmd); sectionHeaders = ArrayRef{ reinterpret_cast(c + 1), c->nsects}; parseSections(sectionHeaders); } // TODO: Error on missing LC_SYMTAB? if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { auto *c = reinterpret_cast(cmd); ArrayRef nList( reinterpret_cast(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast(buf) + c->stroff; bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; parseSymbols(nList, strtab, subsectionsViaSymbols); } // The relocations may refer to the symbols, so we parse them after we have // parsed all the symbols. for (size_t i = 0, n = subsections.size(); i < n; ++i) parseRelocations(sectionHeaders[i], subsections[i]); } DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) : InputFile(DylibKind, mb) { if (umbrella == nullptr) umbrella = this; auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); // Initialize dylibName. if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { auto *c = reinterpret_cast(cmd); dylibName = reinterpret_cast(cmd) + read32le(&c->dylib.name); } else { error("dylib " + getName() + " missing LC_ID_DYLIB load command"); return; } // Initialize symbols. if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { auto *c = reinterpret_cast(cmd); parseTrie(buf + c->export_off, c->export_size, [&](const Twine &name, uint64_t flags) { symbols.push_back(symtab->addDylib(saver.save(name), umbrella)); }); } else { error("LC_DYLD_INFO_ONLY not found in " + getName()); return; } if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) return; const uint8_t *p = reinterpret_cast(hdr) + sizeof(mach_header_64); for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast(p); p += cmd->cmdsize; if (cmd->cmd != LC_REEXPORT_DYLIB) continue; auto *c = reinterpret_cast(cmd); StringRef reexportPath = reinterpret_cast(c) + read32le(&c->dylib.name); // TODO: Expand @loader_path, @executable_path etc in reexportPath Optional buffer = readFile(reexportPath); if (!buffer) { error("unable to read re-exported dylib at " + reexportPath); return; } reexported.push_back(make(*buffer, umbrella)); } } DylibFile::DylibFile(std::shared_ptr interface, DylibFile *umbrella) : InputFile(DylibKind, MemoryBufferRef()) { if (umbrella == nullptr) umbrella = this; dylibName = saver.save(interface->getInstallName()); // TODO(compnerd) filter out symbols based on the target platform for (const auto symbol : interface->symbols()) if (symbol->getArchitectures().has(config->arch)) symbols.push_back( symtab->addDylib(saver.save(symbol->getName()), umbrella)); // TODO(compnerd) properly represent the hierarchy of the documents as it is // in theory possible to have re-exported dylibs from re-exported dylibs which // should be parent'ed to the child. for (auto document : interface->documents()) reexported.push_back(make(document, umbrella)); } ArchiveFile::ArchiveFile(std::unique_ptr &&f) : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { for (const object::Archive::Symbol &sym : file->symbols()) symtab->addLazy(sym.getName(), this, sym); } void ArchiveFile::fetch(const object::Archive::Symbol &sym) { object::Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member for symbol " + sym.getName()); if (!seen.insert(c.getChildOffset()).second) return; MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + sym.getName()); auto file = make(mb); symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end()); subsections.insert(subsections.end(), file->subsections.begin(), file->subsections.end()); } // Returns "" or "baz.o". std::string lld::toString(const InputFile *file) { return file ? std::string(file->getName()) : ""; }