/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define BR_ENABLE_INTRINSICS 1 #include "inner.h" #if BR_AES_X86NI /* see bearssl_block.h */ const br_block_ctrcbc_class * br_aes_x86ni_ctrcbc_get_vtable(void) { return br_aes_x86ni_supported() ? &br_aes_x86ni_ctrcbc_vtable : NULL; } /* see bearssl_block.h */ void br_aes_x86ni_ctrcbc_init(br_aes_x86ni_ctrcbc_keys *ctx, const void *key, size_t len) { ctx->vtable = &br_aes_x86ni_ctrcbc_vtable; ctx->num_rounds = br_aes_x86ni_keysched_enc(ctx->skey.skni, key, len); } BR_TARGETS_X86_UP /* see bearssl_block.h */ BR_TARGET("sse2,sse4.1,aes") void br_aes_x86ni_ctrcbc_ctr(const br_aes_x86ni_ctrcbc_keys *ctx, void *ctr, void *data, size_t len) { unsigned char *buf; unsigned num_rounds; __m128i sk[15]; __m128i ivx0, ivx1, ivx2, ivx3; __m128i erev, zero, one, four, notthree; unsigned u; buf = data; num_rounds = ctx->num_rounds; for (u = 0; u <= num_rounds; u ++) { sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); } /* * Some SSE2 constants. */ erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); zero = _mm_setzero_si128(); one = _mm_set_epi64x(0, 1); four = _mm_set_epi64x(0, 4); notthree = _mm_sub_epi64(zero, four); /* * Decode the counter in big-endian and pre-increment the other * three counters. */ ivx0 = _mm_shuffle_epi8(_mm_loadu_si128((void *)ctr), erev); ivx1 = _mm_add_epi64(ivx0, one); ivx1 = _mm_sub_epi64(ivx1, _mm_slli_si128(_mm_cmpeq_epi64(ivx1, zero), 8)); ivx2 = _mm_add_epi64(ivx1, one); ivx2 = _mm_sub_epi64(ivx2, _mm_slli_si128(_mm_cmpeq_epi64(ivx2, zero), 8)); ivx3 = _mm_add_epi64(ivx2, one); ivx3 = _mm_sub_epi64(ivx3, _mm_slli_si128(_mm_cmpeq_epi64(ivx3, zero), 8)); while (len > 0) { __m128i x0, x1, x2, x3; /* * Load counter values; we need to byteswap them because * the specification says that they use big-endian. */ x0 = _mm_shuffle_epi8(ivx0, erev); x1 = _mm_shuffle_epi8(ivx1, erev); x2 = _mm_shuffle_epi8(ivx2, erev); x3 = _mm_shuffle_epi8(ivx3, erev); x0 = _mm_xor_si128(x0, sk[0]); x1 = _mm_xor_si128(x1, sk[0]); x2 = _mm_xor_si128(x2, sk[0]); x3 = _mm_xor_si128(x3, sk[0]); x0 = _mm_aesenc_si128(x0, sk[1]); x1 = _mm_aesenc_si128(x1, sk[1]); x2 = _mm_aesenc_si128(x2, sk[1]); x3 = _mm_aesenc_si128(x3, sk[1]); x0 = _mm_aesenc_si128(x0, sk[2]); x1 = _mm_aesenc_si128(x1, sk[2]); x2 = _mm_aesenc_si128(x2, sk[2]); x3 = _mm_aesenc_si128(x3, sk[2]); x0 = _mm_aesenc_si128(x0, sk[3]); x1 = _mm_aesenc_si128(x1, sk[3]); x2 = _mm_aesenc_si128(x2, sk[3]); x3 = _mm_aesenc_si128(x3, sk[3]); x0 = _mm_aesenc_si128(x0, sk[4]); x1 = _mm_aesenc_si128(x1, sk[4]); x2 = _mm_aesenc_si128(x2, sk[4]); x3 = _mm_aesenc_si128(x3, sk[4]); x0 = _mm_aesenc_si128(x0, sk[5]); x1 = _mm_aesenc_si128(x1, sk[5]); x2 = _mm_aesenc_si128(x2, sk[5]); x3 = _mm_aesenc_si128(x3, sk[5]); x0 = _mm_aesenc_si128(x0, sk[6]); x1 = _mm_aesenc_si128(x1, sk[6]); x2 = _mm_aesenc_si128(x2, sk[6]); x3 = _mm_aesenc_si128(x3, sk[6]); x0 = _mm_aesenc_si128(x0, sk[7]); x1 = _mm_aesenc_si128(x1, sk[7]); x2 = _mm_aesenc_si128(x2, sk[7]); x3 = _mm_aesenc_si128(x3, sk[7]); x0 = _mm_aesenc_si128(x0, sk[8]); x1 = _mm_aesenc_si128(x1, sk[8]); x2 = _mm_aesenc_si128(x2, sk[8]); x3 = _mm_aesenc_si128(x3, sk[8]); x0 = _mm_aesenc_si128(x0, sk[9]); x1 = _mm_aesenc_si128(x1, sk[9]); x2 = _mm_aesenc_si128(x2, sk[9]); x3 = _mm_aesenc_si128(x3, sk[9]); if (num_rounds == 10) { x0 = _mm_aesenclast_si128(x0, sk[10]); x1 = _mm_aesenclast_si128(x1, sk[10]); x2 = _mm_aesenclast_si128(x2, sk[10]); x3 = _mm_aesenclast_si128(x3, sk[10]); } else if (num_rounds == 12) { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x2 = _mm_aesenc_si128(x2, sk[10]); x3 = _mm_aesenc_si128(x3, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x2 = _mm_aesenc_si128(x2, sk[11]); x3 = _mm_aesenc_si128(x3, sk[11]); x0 = _mm_aesenclast_si128(x0, sk[12]); x1 = _mm_aesenclast_si128(x1, sk[12]); x2 = _mm_aesenclast_si128(x2, sk[12]); x3 = _mm_aesenclast_si128(x3, sk[12]); } else { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x2 = _mm_aesenc_si128(x2, sk[10]); x3 = _mm_aesenc_si128(x3, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x2 = _mm_aesenc_si128(x2, sk[11]); x3 = _mm_aesenc_si128(x3, sk[11]); x0 = _mm_aesenc_si128(x0, sk[12]); x1 = _mm_aesenc_si128(x1, sk[12]); x2 = _mm_aesenc_si128(x2, sk[12]); x3 = _mm_aesenc_si128(x3, sk[12]); x0 = _mm_aesenc_si128(x0, sk[13]); x1 = _mm_aesenc_si128(x1, sk[13]); x2 = _mm_aesenc_si128(x2, sk[13]); x3 = _mm_aesenc_si128(x3, sk[13]); x0 = _mm_aesenclast_si128(x0, sk[14]); x1 = _mm_aesenclast_si128(x1, sk[14]); x2 = _mm_aesenclast_si128(x2, sk[14]); x3 = _mm_aesenclast_si128(x3, sk[14]); } if (len >= 64) { x0 = _mm_xor_si128(x0, _mm_loadu_si128((void *)(buf + 0))); x1 = _mm_xor_si128(x1, _mm_loadu_si128((void *)(buf + 16))); x2 = _mm_xor_si128(x2, _mm_loadu_si128((void *)(buf + 32))); x3 = _mm_xor_si128(x3, _mm_loadu_si128((void *)(buf + 48))); _mm_storeu_si128((void *)(buf + 0), x0); _mm_storeu_si128((void *)(buf + 16), x1); _mm_storeu_si128((void *)(buf + 32), x2); _mm_storeu_si128((void *)(buf + 48), x3); buf += 64; len -= 64; } else { unsigned char tmp[64]; _mm_storeu_si128((void *)(tmp + 0), x0); _mm_storeu_si128((void *)(tmp + 16), x1); _mm_storeu_si128((void *)(tmp + 32), x2); _mm_storeu_si128((void *)(tmp + 48), x3); for (u = 0; u < len; u ++) { buf[u] ^= tmp[u]; } switch (len) { case 16: ivx0 = ivx1; break; case 32: ivx0 = ivx2; break; case 48: ivx0 = ivx3; break; } break; } /* * Add 4 to each counter value. For carry propagation * into the upper 64-bit words, we would need to compare * the results with 4, but SSE2+ has only _signed_ * comparisons. Instead, we mask out the low two bits, * and check whether the remaining bits are zero. */ ivx0 = _mm_add_epi64(ivx0, four); ivx1 = _mm_add_epi64(ivx1, four); ivx2 = _mm_add_epi64(ivx2, four); ivx3 = _mm_add_epi64(ivx3, four); ivx0 = _mm_sub_epi64(ivx0, _mm_slli_si128(_mm_cmpeq_epi64( _mm_and_si128(ivx0, notthree), zero), 8)); ivx1 = _mm_sub_epi64(ivx1, _mm_slli_si128(_mm_cmpeq_epi64( _mm_and_si128(ivx1, notthree), zero), 8)); ivx2 = _mm_sub_epi64(ivx2, _mm_slli_si128(_mm_cmpeq_epi64( _mm_and_si128(ivx2, notthree), zero), 8)); ivx3 = _mm_sub_epi64(ivx3, _mm_slli_si128(_mm_cmpeq_epi64( _mm_and_si128(ivx3, notthree), zero), 8)); } /* * Write back new counter value. The loop took care to put the * right counter value in ivx0. */ _mm_storeu_si128((void *)ctr, _mm_shuffle_epi8(ivx0, erev)); } /* see bearssl_block.h */ BR_TARGET("sse2,sse4.1,aes") void br_aes_x86ni_ctrcbc_mac(const br_aes_x86ni_ctrcbc_keys *ctx, void *cbcmac, const void *data, size_t len) { const unsigned char *buf; unsigned num_rounds; __m128i sk[15], ivx; unsigned u; buf = data; ivx = _mm_loadu_si128(cbcmac); num_rounds = ctx->num_rounds; for (u = 0; u <= num_rounds; u ++) { sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); } while (len > 0) { __m128i x; x = _mm_xor_si128(_mm_loadu_si128((void *)buf), ivx); x = _mm_xor_si128(x, sk[0]); x = _mm_aesenc_si128(x, sk[1]); x = _mm_aesenc_si128(x, sk[2]); x = _mm_aesenc_si128(x, sk[3]); x = _mm_aesenc_si128(x, sk[4]); x = _mm_aesenc_si128(x, sk[5]); x = _mm_aesenc_si128(x, sk[6]); x = _mm_aesenc_si128(x, sk[7]); x = _mm_aesenc_si128(x, sk[8]); x = _mm_aesenc_si128(x, sk[9]); if (num_rounds == 10) { x = _mm_aesenclast_si128(x, sk[10]); } else if (num_rounds == 12) { x = _mm_aesenc_si128(x, sk[10]); x = _mm_aesenc_si128(x, sk[11]); x = _mm_aesenclast_si128(x, sk[12]); } else { x = _mm_aesenc_si128(x, sk[10]); x = _mm_aesenc_si128(x, sk[11]); x = _mm_aesenc_si128(x, sk[12]); x = _mm_aesenc_si128(x, sk[13]); x = _mm_aesenclast_si128(x, sk[14]); } ivx = x; buf += 16; len -= 16; } _mm_storeu_si128(cbcmac, ivx); } /* see bearssl_block.h */ BR_TARGET("sse2,sse4.1,aes") void br_aes_x86ni_ctrcbc_encrypt(const br_aes_x86ni_ctrcbc_keys *ctx, void *ctr, void *cbcmac, void *data, size_t len) { unsigned char *buf; unsigned num_rounds; __m128i sk[15]; __m128i ivx, cmx; __m128i erev, zero, one; unsigned u; int first_iter; num_rounds = ctx->num_rounds; for (u = 0; u <= num_rounds; u ++) { sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); } /* * Some SSE2 constants. */ erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); zero = _mm_setzero_si128(); one = _mm_set_epi64x(0, 1); /* * Decode the counter in big-endian. */ ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); cmx = _mm_loadu_si128(cbcmac); buf = data; first_iter = 1; while (len > 0) { __m128i dx, x0, x1; /* * Load initial values: * dx encrypted block of data * x0 counter (for CTR encryption) * x1 input for CBC-MAC */ dx = _mm_loadu_si128((void *)buf); x0 = _mm_shuffle_epi8(ivx, erev); x1 = cmx; x0 = _mm_xor_si128(x0, sk[0]); x1 = _mm_xor_si128(x1, sk[0]); x0 = _mm_aesenc_si128(x0, sk[1]); x1 = _mm_aesenc_si128(x1, sk[1]); x0 = _mm_aesenc_si128(x0, sk[2]); x1 = _mm_aesenc_si128(x1, sk[2]); x0 = _mm_aesenc_si128(x0, sk[3]); x1 = _mm_aesenc_si128(x1, sk[3]); x0 = _mm_aesenc_si128(x0, sk[4]); x1 = _mm_aesenc_si128(x1, sk[4]); x0 = _mm_aesenc_si128(x0, sk[5]); x1 = _mm_aesenc_si128(x1, sk[5]); x0 = _mm_aesenc_si128(x0, sk[6]); x1 = _mm_aesenc_si128(x1, sk[6]); x0 = _mm_aesenc_si128(x0, sk[7]); x1 = _mm_aesenc_si128(x1, sk[7]); x0 = _mm_aesenc_si128(x0, sk[8]); x1 = _mm_aesenc_si128(x1, sk[8]); x0 = _mm_aesenc_si128(x0, sk[9]); x1 = _mm_aesenc_si128(x1, sk[9]); if (num_rounds == 10) { x0 = _mm_aesenclast_si128(x0, sk[10]); x1 = _mm_aesenclast_si128(x1, sk[10]); } else if (num_rounds == 12) { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x0 = _mm_aesenclast_si128(x0, sk[12]); x1 = _mm_aesenclast_si128(x1, sk[12]); } else { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x0 = _mm_aesenc_si128(x0, sk[12]); x1 = _mm_aesenc_si128(x1, sk[12]); x0 = _mm_aesenc_si128(x0, sk[13]); x1 = _mm_aesenc_si128(x1, sk[13]); x0 = _mm_aesenclast_si128(x0, sk[14]); x1 = _mm_aesenclast_si128(x1, sk[14]); } x0 = _mm_xor_si128(x0, dx); if (first_iter) { cmx = _mm_xor_si128(cmx, x0); first_iter = 0; } else { cmx = _mm_xor_si128(x1, x0); } _mm_storeu_si128((void *)buf, x0); buf += 16; len -= 16; /* * Increment the counter value. */ ivx = _mm_add_epi64(ivx, one); ivx = _mm_sub_epi64(ivx, _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); /* * If this was the last iteration, then compute the * extra block encryption to complete CBC-MAC. */ if (len == 0) { cmx = _mm_xor_si128(cmx, sk[0]); cmx = _mm_aesenc_si128(cmx, sk[1]); cmx = _mm_aesenc_si128(cmx, sk[2]); cmx = _mm_aesenc_si128(cmx, sk[3]); cmx = _mm_aesenc_si128(cmx, sk[4]); cmx = _mm_aesenc_si128(cmx, sk[5]); cmx = _mm_aesenc_si128(cmx, sk[6]); cmx = _mm_aesenc_si128(cmx, sk[7]); cmx = _mm_aesenc_si128(cmx, sk[8]); cmx = _mm_aesenc_si128(cmx, sk[9]); if (num_rounds == 10) { cmx = _mm_aesenclast_si128(cmx, sk[10]); } else if (num_rounds == 12) { cmx = _mm_aesenc_si128(cmx, sk[10]); cmx = _mm_aesenc_si128(cmx, sk[11]); cmx = _mm_aesenclast_si128(cmx, sk[12]); } else { cmx = _mm_aesenc_si128(cmx, sk[10]); cmx = _mm_aesenc_si128(cmx, sk[11]); cmx = _mm_aesenc_si128(cmx, sk[12]); cmx = _mm_aesenc_si128(cmx, sk[13]); cmx = _mm_aesenclast_si128(cmx, sk[14]); } break; } } /* * Write back new counter value and CBC-MAC value. */ _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); _mm_storeu_si128(cbcmac, cmx); } /* see bearssl_block.h */ BR_TARGET("sse2,sse4.1,aes") void br_aes_x86ni_ctrcbc_decrypt(const br_aes_x86ni_ctrcbc_keys *ctx, void *ctr, void *cbcmac, void *data, size_t len) { unsigned char *buf; unsigned num_rounds; __m128i sk[15]; __m128i ivx, cmx; __m128i erev, zero, one; unsigned u; num_rounds = ctx->num_rounds; for (u = 0; u <= num_rounds; u ++) { sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); } /* * Some SSE2 constants. */ erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); zero = _mm_setzero_si128(); one = _mm_set_epi64x(0, 1); /* * Decode the counter in big-endian. */ ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); cmx = _mm_loadu_si128(cbcmac); buf = data; while (len > 0) { __m128i dx, x0, x1; /* * Load initial values: * dx encrypted block of data * x0 counter (for CTR encryption) * x1 input for CBC-MAC */ dx = _mm_loadu_si128((void *)buf); x0 = _mm_shuffle_epi8(ivx, erev); x1 = _mm_xor_si128(cmx, dx); x0 = _mm_xor_si128(x0, sk[0]); x1 = _mm_xor_si128(x1, sk[0]); x0 = _mm_aesenc_si128(x0, sk[1]); x1 = _mm_aesenc_si128(x1, sk[1]); x0 = _mm_aesenc_si128(x0, sk[2]); x1 = _mm_aesenc_si128(x1, sk[2]); x0 = _mm_aesenc_si128(x0, sk[3]); x1 = _mm_aesenc_si128(x1, sk[3]); x0 = _mm_aesenc_si128(x0, sk[4]); x1 = _mm_aesenc_si128(x1, sk[4]); x0 = _mm_aesenc_si128(x0, sk[5]); x1 = _mm_aesenc_si128(x1, sk[5]); x0 = _mm_aesenc_si128(x0, sk[6]); x1 = _mm_aesenc_si128(x1, sk[6]); x0 = _mm_aesenc_si128(x0, sk[7]); x1 = _mm_aesenc_si128(x1, sk[7]); x0 = _mm_aesenc_si128(x0, sk[8]); x1 = _mm_aesenc_si128(x1, sk[8]); x0 = _mm_aesenc_si128(x0, sk[9]); x1 = _mm_aesenc_si128(x1, sk[9]); if (num_rounds == 10) { x0 = _mm_aesenclast_si128(x0, sk[10]); x1 = _mm_aesenclast_si128(x1, sk[10]); } else if (num_rounds == 12) { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x0 = _mm_aesenclast_si128(x0, sk[12]); x1 = _mm_aesenclast_si128(x1, sk[12]); } else { x0 = _mm_aesenc_si128(x0, sk[10]); x1 = _mm_aesenc_si128(x1, sk[10]); x0 = _mm_aesenc_si128(x0, sk[11]); x1 = _mm_aesenc_si128(x1, sk[11]); x0 = _mm_aesenc_si128(x0, sk[12]); x1 = _mm_aesenc_si128(x1, sk[12]); x0 = _mm_aesenc_si128(x0, sk[13]); x1 = _mm_aesenc_si128(x1, sk[13]); x0 = _mm_aesenclast_si128(x0, sk[14]); x1 = _mm_aesenclast_si128(x1, sk[14]); } x0 = _mm_xor_si128(x0, dx); cmx = x1; _mm_storeu_si128((void *)buf, x0); buf += 16; len -= 16; /* * Increment the counter value. */ ivx = _mm_add_epi64(ivx, one); ivx = _mm_sub_epi64(ivx, _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); } /* * Write back new counter value and CBC-MAC value. */ _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); _mm_storeu_si128(cbcmac, cmx); } BR_TARGETS_X86_DOWN /* see bearssl_block.h */ const br_block_ctrcbc_class br_aes_x86ni_ctrcbc_vtable = { sizeof(br_aes_x86ni_ctrcbc_keys), 16, 4, (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) &br_aes_x86ni_ctrcbc_init, (void (*)(const br_block_ctrcbc_class *const *, void *, void *, void *, size_t)) &br_aes_x86ni_ctrcbc_encrypt, (void (*)(const br_block_ctrcbc_class *const *, void *, void *, void *, size_t)) &br_aes_x86ni_ctrcbc_decrypt, (void (*)(const br_block_ctrcbc_class *const *, void *, void *, size_t)) &br_aes_x86ni_ctrcbc_ctr, (void (*)(const br_block_ctrcbc_class *const *, void *, const void *, size_t)) &br_aes_x86ni_ctrcbc_mac }; #else /* see bearssl_block.h */ const br_block_ctrcbc_class * br_aes_x86ni_ctrcbc_get_vtable(void) { return NULL; } #endif