//===--------------------- SchedulerStatistics.cpp --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file implements the SchedulerStatistics interface. /// //===----------------------------------------------------------------------===// #include "Views/SchedulerStatistics.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" namespace llvm { namespace mca { SchedulerStatistics::SchedulerStatistics(const llvm::MCSubtargetInfo &STI) : SM(STI.getSchedModel()), LQResourceID(0), SQResourceID(0), NumIssued(0), NumCycles(0), MostRecentLoadDispatched(~0U), MostRecentStoreDispatched(~0U), Usage(STI.getSchedModel().NumProcResourceKinds, {0, 0, 0}) { if (SM.hasExtraProcessorInfo()) { const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo(); LQResourceID = EPI.LoadQueueID; SQResourceID = EPI.StoreQueueID; } } // FIXME: This implementation works under the assumption that load/store queue // entries are reserved at 'instruction dispatched' stage, and released at // 'instruction executed' stage. This currently matches the behavior of LSUnit. // // The current design minimizes the number of events generated by the // Dispatch/Execute stages, at the cost of doing extra bookkeeping in method // `onEvent`. However, it introduces a subtle dependency between this view and // how the LSUnit works. // // In future we should add a new "memory queue" event type, so that we stop // making assumptions on how LSUnit internally works (See PR39828). void SchedulerStatistics::onEvent(const HWInstructionEvent &Event) { if (Event.Type == HWInstructionEvent::Issued) { const Instruction &Inst = *Event.IR.getInstruction(); NumIssued += Inst.getDesc().NumMicroOps; } else if (Event.Type == HWInstructionEvent::Dispatched) { const Instruction &Inst = *Event.IR.getInstruction(); const unsigned Index = Event.IR.getSourceIndex(); if (LQResourceID && Inst.getDesc().MayLoad && MostRecentLoadDispatched != Index) { Usage[LQResourceID].SlotsInUse++; MostRecentLoadDispatched = Index; } if (SQResourceID && Inst.getDesc().MayStore && MostRecentStoreDispatched != Index) { Usage[SQResourceID].SlotsInUse++; MostRecentStoreDispatched = Index; } } else if (Event.Type == HWInstructionEvent::Executed) { const Instruction &Inst = *Event.IR.getInstruction(); if (LQResourceID && Inst.getDesc().MayLoad) { assert(Usage[LQResourceID].SlotsInUse); Usage[LQResourceID].SlotsInUse--; } if (SQResourceID && Inst.getDesc().MayStore) { assert(Usage[SQResourceID].SlotsInUse); Usage[SQResourceID].SlotsInUse--; } } } void SchedulerStatistics::onReservedBuffers(const InstRef & /* unused */, ArrayRef Buffers) { for (const unsigned Buffer : Buffers) { if (Buffer == LQResourceID || Buffer == SQResourceID) continue; Usage[Buffer].SlotsInUse++; } } void SchedulerStatistics::onReleasedBuffers(const InstRef & /* unused */, ArrayRef Buffers) { for (const unsigned Buffer : Buffers) { if (Buffer == LQResourceID || Buffer == SQResourceID) continue; Usage[Buffer].SlotsInUse--; } } void SchedulerStatistics::updateHistograms() { for (BufferUsage &BU : Usage) { BU.CumulativeNumUsedSlots += BU.SlotsInUse; BU.MaxUsedSlots = std::max(BU.MaxUsedSlots, BU.SlotsInUse); } IssueWidthPerCycle[NumIssued]++; NumIssued = 0; } void SchedulerStatistics::printSchedulerStats(raw_ostream &OS) const { OS << "\n\nSchedulers - " << "number of cycles where we saw N micro opcodes issued:\n"; OS << "[# issued], [# cycles]\n"; bool HasColors = OS.has_colors(); const auto It = std::max_element(IssueWidthPerCycle.begin(), IssueWidthPerCycle.end()); for (const std::pair &Entry : IssueWidthPerCycle) { unsigned NumIssued = Entry.first; if (NumIssued == It->first && HasColors) OS.changeColor(raw_ostream::SAVEDCOLOR, true, false); unsigned IPC = Entry.second; OS << " " << NumIssued << ", " << IPC << " (" << format("%.1f", ((double)IPC / NumCycles) * 100) << "%)\n"; if (HasColors) OS.resetColor(); } } void SchedulerStatistics::printSchedulerUsage(raw_ostream &OS) const { assert(NumCycles && "Unexpected number of cycles!"); OS << "\nScheduler's queue usage:\n"; if (all_of(Usage, [](const BufferUsage &BU) { return !BU.MaxUsedSlots; })) { OS << "No scheduler resources used.\n"; return; } OS << "[1] Resource name.\n" << "[2] Average number of used buffer entries.\n" << "[3] Maximum number of used buffer entries.\n" << "[4] Total number of buffer entries.\n\n" << " [1] [2] [3] [4]\n"; formatted_raw_ostream FOS(OS); bool HasColors = FOS.has_colors(); for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc &ProcResource = *SM.getProcResource(I); if (ProcResource.BufferSize <= 0) continue; const BufferUsage &BU = Usage[I]; double AvgUsage = (double)BU.CumulativeNumUsedSlots / NumCycles; double AlmostFullThreshold = (double)(ProcResource.BufferSize * 4) / 5; unsigned NormalizedAvg = floor((AvgUsage * 10) + 0.5) / 10; unsigned NormalizedThreshold = floor((AlmostFullThreshold * 10) + 0.5) / 10; FOS << ProcResource.Name; FOS.PadToColumn(17); if (HasColors && NormalizedAvg >= NormalizedThreshold) FOS.changeColor(raw_ostream::YELLOW, true, false); FOS << NormalizedAvg; if (HasColors) FOS.resetColor(); FOS.PadToColumn(28); if (HasColors && BU.MaxUsedSlots == static_cast(ProcResource.BufferSize)) FOS.changeColor(raw_ostream::RED, true, false); FOS << BU.MaxUsedSlots; if (HasColors) FOS.resetColor(); FOS.PadToColumn(39); FOS << ProcResource.BufferSize << '\n'; } FOS.flush(); } void SchedulerStatistics::printView(raw_ostream &OS) const { printSchedulerStats(OS); printSchedulerUsage(OS); } } // namespace mca } // namespace llvm