//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ARMTargetTransformInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/CostTable.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/Casting.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "armtti" static cl::opt EnableMaskedLoadStores( "enable-arm-maskedldst", cl::Hidden, cl::init(true), cl::desc("Enable the generation of masked loads and stores")); static cl::opt DisableLowOverheadLoops( "disable-arm-loloops", cl::Hidden, cl::init(false), cl::desc("Disable the generation of low-overhead loops")); extern cl::opt DisableTailPredication; extern cl::opt EnableMaskedGatherScatters; bool ARMTTIImpl::areInlineCompatible(const Function *Caller, const Function *Callee) const { const TargetMachine &TM = getTLI()->getTargetMachine(); const FeatureBitset &CallerBits = TM.getSubtargetImpl(*Caller)->getFeatureBits(); const FeatureBitset &CalleeBits = TM.getSubtargetImpl(*Callee)->getFeatureBits(); // To inline a callee, all features not in the whitelist must match exactly. bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == (CalleeBits & ~InlineFeatureWhitelist); // For features in the whitelist, the callee's features must be a subset of // the callers'. bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == (CalleeBits & InlineFeatureWhitelist); return MatchExact && MatchSubset; } int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned Bits = Ty->getPrimitiveSizeInBits(); if (Bits == 0 || Imm.getActiveBits() >= 64) return 4; int64_t SImmVal = Imm.getSExtValue(); uint64_t ZImmVal = Imm.getZExtValue(); if (!ST->isThumb()) { if ((SImmVal >= 0 && SImmVal < 65536) || (ARM_AM::getSOImmVal(ZImmVal) != -1) || (ARM_AM::getSOImmVal(~ZImmVal) != -1)) return 1; return ST->hasV6T2Ops() ? 2 : 3; } if (ST->isThumb2()) { if ((SImmVal >= 0 && SImmVal < 65536) || (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) return 1; return ST->hasV6T2Ops() ? 2 : 3; } // Thumb1, any i8 imm cost 1. if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) return 1; if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) return 2; // Load from constantpool. return 3; } // Constants smaller than 256 fit in the immediate field of // Thumb1 instructions so we return a zero cost and 1 otherwise. int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) return 0; return 1; } int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { // Division by a constant can be turned into multiplication, but only if we // know it's constant. So it's not so much that the immediate is cheap (it's // not), but that the alternative is worse. // FIXME: this is probably unneeded with GlobalISel. if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || Opcode == Instruction::SRem || Opcode == Instruction::URem) && Idx == 1) return 0; if (Opcode == Instruction::And) { // UXTB/UXTH if (Imm == 255 || Imm == 65535) return 0; // Conversion to BIC is free, and means we can use ~Imm instead. return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); } if (Opcode == Instruction::Add) // Conversion to SUB is free, and means we can use -Imm instead. return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); if (Opcode == Instruction::ICmp && Imm.isNegative() && Ty->getIntegerBitWidth() == 32) { int64_t NegImm = -Imm.getSExtValue(); if (ST->isThumb2() && NegImm < 1<<12) // icmp X, #-C -> cmn X, #C return 0; if (ST->isThumb() && NegImm < 1<<8) // icmp X, #-C -> adds X, #C return 0; } // xor a, -1 can always be folded to MVN if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) return 0; return getIntImmCost(Imm, Ty); } int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Single to/from double precision conversions. static const CostTblEntry NEONFltDblTbl[] = { // Vector fptrunc/fpext conversions. { ISD::FP_ROUND, MVT::v2f64, 2 }, { ISD::FP_EXTEND, MVT::v2f32, 2 }, { ISD::FP_EXTEND, MVT::v4f32, 4 } }; if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND)) { std::pair LT = TLI->getTypeLegalizationCost(DL, Src); if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) return LT.first * Entry->Cost; } EVT SrcTy = TLI->getValueType(DL, Src); EVT DstTy = TLI->getValueType(DL, Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return BaseT::getCastInstrCost(Opcode, Dst, Src); // The extend of a load is free if (I && isa(I->getOperand(0))) { static const TypeConversionCostTblEntry LoadConversionTbl[] = { {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, }; if (const auto *Entry = ConvertCostTableLookup( LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, }; if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { if (const auto *Entry = ConvertCostTableLookup(MVELoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } } // Some arithmetic, load and store operations have specific instructions // to cast up/down their types automatically at no extra cost. // TODO: Get these tables to know at least what the related operations are. static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, // The number of vmovl instructions for the extension. { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, // Operations that we legalize using splitting. { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, // Vector float <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, // Vector double <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } }; if (SrcTy.isVector() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // Scalar float to integer conversions. static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } }; if (SrcTy.isFloatingPoint() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // Scalar integer to float conversions. static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } }; if (SrcTy.isInteger() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext // are linearised so take more. static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, }; if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost * ST->getMVEVectorCostFactor(); } // Scalar integer conversion costs. static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { // i16 -> i64 requires two dependent operations. { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, // Truncates on i64 are assumed to be free. { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } }; if (SrcTy.isInteger()) { if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() ? ST->getMVEVectorCostFactor() : 1; return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src); } int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { // Penalize inserting into an D-subregister. We end up with a three times // lower estimated throughput on swift. if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) return 3; if (ST->hasNEON() && (Opcode == Instruction::InsertElement || Opcode == Instruction::ExtractElement)) { // Cross-class copies are expensive on many microarchitectures, // so assume they are expensive by default. if (ValTy->getVectorElementType()->isIntegerTy()) return 3; // Even if it's not a cross class copy, this likely leads to mixing // of NEON and VFP code and should be therefore penalized. if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); } if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || Opcode == Instruction::ExtractElement)) { // We say MVE moves costs at least the MVEVectorCostFactor, even though // they are scalar instructions. This helps prevent mixing scalar and // vector, to prevent vectorising where we end up just scalarising the // result anyway. return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), ST->getMVEVectorCostFactor()) * ValTy->getVectorNumElements() / 2; } return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); // On NEON a vector select gets lowered to vbsl. if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { // Lowering of some vector selects is currently far from perfect. static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } }; EVT SelCondTy = TLI->getValueType(DL, CondTy); EVT SelValTy = TLI->getValueType(DL, ValTy); if (SelCondTy.isSimple() && SelValTy.isSimple()) { if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, SelCondTy.getSimpleVT(), SelValTy.getSimpleVT())) return Entry->Cost; } std::pair LT = TLI->getTypeLegalizationCost(DL, ValTy); return LT.first; } int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy() ? ST->getMVEVectorCostFactor() : 1; return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); } int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; int MaxMergeDistance = 64; if (ST->hasNEON()) { if (Ty->isVectorTy() && SE && !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) return NumVectorInstToHideOverhead; // In many cases the address computation is not merged into the instruction // addressing mode. return 1; } return BaseT::getAddressComputationCost(Ty, SE, Ptr); } bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) { if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) return false; if (auto *VecTy = dyn_cast(DataTy)) { // Don't support v2i1 yet. if (VecTy->getNumElements() == 2) return false; // We don't support extending fp types. unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) return false; } unsigned EltWidth = DataTy->getScalarSizeInBits(); return (EltWidth == 32 && (!Alignment || Alignment >= 4)) || (EltWidth == 16 && (!Alignment || Alignment >= 2)) || (EltWidth == 8); } bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, MaybeAlign Alignment) { if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) return false; // This method is called in 2 places: // - from the vectorizer with a scalar type, in which case we need to get // this as good as we can with the limited info we have (and rely on the cost // model for the rest). // - from the masked intrinsic lowering pass with the actual vector type. // For MVE, we have a custom lowering pass that will already have custom // legalised any gathers that we can to MVE intrinsics, and want to expand all // the rest. The pass runs before the masked intrinsic lowering pass, so if we // are here, we know we want to expand. if (isa(Ty)) return false; unsigned EltWidth = Ty->getScalarSizeInBits(); return ((EltWidth == 32 && (!Alignment || Alignment >= 4)) || (EltWidth == 16 && (!Alignment || Alignment >= 2)) || EltWidth == 8); } int ARMTTIImpl::getMemcpyCost(const Instruction *I) { const MemCpyInst *MI = dyn_cast(I); assert(MI && "MemcpyInst expected"); ConstantInt *C = dyn_cast(MI->getLength()); // To model the cost of a library call, we assume 1 for the call, and // 3 for the argument setup. const unsigned LibCallCost = 4; // If 'size' is not a constant, a library call will be generated. if (!C) return LibCallCost; const unsigned Size = C->getValue().getZExtValue(); const unsigned DstAlign = MI->getDestAlignment(); const unsigned SrcAlign = MI->getSourceAlignment(); const Function *F = I->getParent()->getParent(); const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); std::vector MemOps; // MemOps will be poplulated with a list of data types that needs to be // loaded and stored. That's why we multiply the number of elements by 2 to // get the cost for this memcpy. if (getTLI()->findOptimalMemOpLowering( MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/, false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/, MI->getDestAddressSpace(), MI->getSourceAddressSpace(), F->getAttributes())) return MemOps.size() * 2; // If we can't find an optimal memop lowering, return the default cost return LibCallCost; } int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) { if (ST->hasNEON()) { if (Kind == TTI::SK_Broadcast) { static const CostTblEntry NEONDupTbl[] = { // VDUP handles these cases. {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; } if (Kind == TTI::SK_Reverse) { static const CostTblEntry NEONShuffleTbl[] = { // Reverse shuffle cost one instruction if we are shuffling within a // double word (vrev) or two if we shuffle a quad word (vrev, vext). {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; } if (Kind == TTI::SK_Select) { static const CostTblEntry NEONSelShuffleTbl[] = { // Select shuffle cost table for ARM. Cost is the number of // instructions // required to create the shuffled vector. {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; } } if (ST->hasMVEIntegerOps()) { if (Kind == TTI::SK_Broadcast) { static const CostTblEntry MVEDupTbl[] = { // VDUP handles these cases. {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost * ST->getMVEVectorCostFactor(); } } int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() ? ST->getMVEVectorCostFactor() : 1; return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef Args, const Instruction *CxtI) { int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); if (ST->hasNEON()) { const unsigned FunctionCallDivCost = 20; const unsigned ReciprocalDivCost = 10; static const CostTblEntry CostTbl[] = { // Division. // These costs are somewhat random. Choose a cost of 20 to indicate that // vectorizing devision (added function call) is going to be very expensive. // Double registers types. { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, // Quad register types. { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, // Multiplication. }; if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) return LT.first * Entry->Cost; int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); // This is somewhat of a hack. The problem that we are facing is that SROA // creates a sequence of shift, and, or instructions to construct values. // These sequences are recognized by the ISel and have zero-cost. Not so for // the vectorized code. Because we have support for v2i64 but not i64 those // sequences look particularly beneficial to vectorize. // To work around this we increase the cost of v2i64 operations to make them // seem less beneficial. if (LT.second == MVT::v2i64 && Op2Info == TargetTransformInfo::OK_UniformConstantValue) Cost += 4; return Cost; } // If this operation is a shift on arm/thumb2, it might well be folded into // the following instruction, hence having a cost of 0. auto LooksLikeAFreeShift = [&]() { if (ST->isThumb1Only() || Ty->isVectorTy()) return false; if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) return false; if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) return false; // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB switch (cast(CxtI->user_back())->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Xor: case Instruction::Or: case Instruction::ICmp: return true; default: return false; } }; if (LooksLikeAFreeShift()) return 0; int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy() ? ST->getMVEVectorCostFactor() : 1; // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, // without treating floats as more expensive that scalars or increasing the // costs for custom operations. The results is also multiplied by the // MVEVectorCostFactor where appropriate. if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) return LT.first * BaseCost; // Else this is expand, assume that we need to scalarize this op. if (Ty->isVectorTy()) { unsigned Num = Ty->getVectorNumElements(); unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost; } return BaseCost; } int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, const Instruction *I) { std::pair LT = TLI->getTypeLegalizationCost(DL, Src); if (ST->hasNEON() && Src->isVectorTy() && (Alignment && *Alignment != Align(16)) && Src->getVectorElementType()->isDoubleTy()) { // Unaligned loads/stores are extremely inefficient. // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. return LT.first * 4; } int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() ? ST->getMVEVectorCostFactor() : 1; return BaseCost * LT.first; } int ARMTTIImpl::getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, bool UseMaskForGaps) { assert(Factor >= 2 && "Invalid interleave factor"); assert(isa(VecTy) && "Expect a vector type"); // vldN/vstN doesn't support vector types of i64/f64 element. bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && !UseMaskForCond && !UseMaskForGaps) { unsigned NumElts = VecTy->getVectorNumElements(); auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); // vldN/vstN only support legal vector types of size 64 or 128 in bits. // Accesses having vector types that are a multiple of 128 bits can be // matched to more than one vldN/vstN instruction. int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1; if (NumElts % Factor == 0 && TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL)) return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); // Some smaller than legal interleaved patterns are cheap as we can make // use of the vmovn or vrev patterns to interleave a standard load. This is // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is // promoted differently). The cost of 2 here is then a load and vrev or // vmovn. if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64) return 2 * BaseCost; } return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, UseMaskForCond, UseMaskForGaps); } bool ARMTTIImpl::isLoweredToCall(const Function *F) { if (!F->isIntrinsic()) BaseT::isLoweredToCall(F); // Assume all Arm-specific intrinsics map to an instruction. if (F->getName().startswith("llvm.arm")) return false; switch (F->getIntrinsicID()) { default: break; case Intrinsic::powi: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::pow: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::exp: case Intrinsic::exp2: return true; case Intrinsic::sqrt: case Intrinsic::fabs: case Intrinsic::copysign: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::canonicalize: case Intrinsic::lround: case Intrinsic::llround: case Intrinsic::lrint: case Intrinsic::llrint: if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) return true; if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) return true; // Some operations can be handled by vector instructions and assume // unsupported vectors will be expanded into supported scalar ones. // TODO Handle scalar operations properly. return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); case Intrinsic::masked_store: case Intrinsic::masked_load: case Intrinsic::masked_gather: case Intrinsic::masked_scatter: return !ST->hasMVEIntegerOps(); case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::sadd_sat: case Intrinsic::uadd_sat: case Intrinsic::ssub_sat: case Intrinsic::usub_sat: return false; } return BaseT::isLoweredToCall(F); } bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) { // Low-overhead branches are only supported in the 'low-overhead branch' // extension of v8.1-m. if (!ST->hasLOB() || DisableLowOverheadLoops) return false; if (!SE.hasLoopInvariantBackedgeTakenCount(L)) return false; const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); if (isa(BackedgeTakenCount)) return false; const SCEV *TripCountSCEV = SE.getAddExpr(BackedgeTakenCount, SE.getOne(BackedgeTakenCount->getType())); // We need to store the trip count in LR, a 32-bit register. if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) return false; // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little // point in generating a hardware loop if that's going to happen. auto MaybeCall = [this](Instruction &I) { const ARMTargetLowering *TLI = getTLI(); unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); EVT VT = TLI->getValueType(DL, I.getType(), true); if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) return true; // Check if an intrinsic will be lowered to a call and assume that any // other CallInst will generate a bl. if (auto *Call = dyn_cast(&I)) { if (isa(Call)) { if (const Function *F = Call->getCalledFunction()) return isLoweredToCall(F); } return true; } // FPv5 provides conversions between integer, double-precision, // single-precision, and half-precision formats. switch (I.getOpcode()) { default: break; case Instruction::FPToSI: case Instruction::FPToUI: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::FPTrunc: case Instruction::FPExt: return !ST->hasFPARMv8Base(); } // FIXME: Unfortunately the approach of checking the Operation Action does // not catch all cases of Legalization that use library calls. Our // Legalization step categorizes some transformations into library calls as // Custom, Expand or even Legal when doing type legalization. So for now // we have to special case for instance the SDIV of 64bit integers and the // use of floating point emulation. if (VT.isInteger() && VT.getSizeInBits() >= 64) { switch (ISD) { default: break; case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::SDIVREM: case ISD::UDIVREM: return true; } } // Assume all other non-float operations are supported. if (!VT.isFloatingPoint()) return false; // We'll need a library call to handle most floats when using soft. if (TLI->useSoftFloat()) { switch (I.getOpcode()) { default: return true; case Instruction::Alloca: case Instruction::Load: case Instruction::Store: case Instruction::Select: case Instruction::PHI: return false; } } // We'll need a libcall to perform double precision operations on a single // precision only FPU. if (I.getType()->isDoubleTy() && !ST->hasFP64()) return true; // Likewise for half precision arithmetic. if (I.getType()->isHalfTy() && !ST->hasFullFP16()) return true; return false; }; auto IsHardwareLoopIntrinsic = [](Instruction &I) { if (auto *Call = dyn_cast(&I)) { switch (Call->getIntrinsicID()) { default: break; case Intrinsic::set_loop_iterations: case Intrinsic::test_set_loop_iterations: case Intrinsic::loop_decrement: case Intrinsic::loop_decrement_reg: return true; } } return false; }; // Scan the instructions to see if there's any that we know will turn into a // call or if this loop is already a low-overhead loop. auto ScanLoop = [&](Loop *L) { for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) return false; } } return true; }; // Visit inner loops. for (auto Inner : *L) if (!ScanLoop(Inner)) return false; if (!ScanLoop(L)) return false; // TODO: Check whether the trip count calculation is expensive. If L is the // inner loop but we know it has a low trip count, calculating that trip // count (in the parent loop) may be detrimental. LLVMContext &C = L->getHeader()->getContext(); HWLoopInfo.CounterInReg = true; HWLoopInfo.IsNestingLegal = false; HWLoopInfo.PerformEntryTest = true; HWLoopInfo.CountType = Type::getInt32Ty(C); HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); return true; } static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { // We don't allow icmp's, and because we only look at single block loops, // we simply count the icmps, i.e. there should only be 1 for the backedge. if (isa(&I) && ++ICmpCount > 1) return false; if (isa(&I)) return false; // We could allow extending/narrowing FP loads/stores, but codegen is // too inefficient so reject this for now. if (isa(&I) || isa(&I)) return false; // Extends have to be extending-loads if (isa(&I) || isa(&I) ) if (!I.getOperand(0)->hasOneUse() || !isa(I.getOperand(0))) return false; // Truncs have to be narrowing-stores if (isa(&I) ) if (!I.hasOneUse() || !isa(*I.user_begin())) return false; return true; } // To set up a tail-predicated loop, we need to know the total number of // elements processed by that loop. Thus, we need to determine the element // size and: // 1) it should be uniform for all operations in the vector loop, so we // e.g. don't want any widening/narrowing operations. // 2) it should be smaller than i64s because we don't have vector operations // that work on i64s. // 3) we don't want elements to be reversed or shuffled, to make sure the // tail-predication masks/predicates the right lanes. // static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, const DataLayout &DL, const LoopAccessInfo *LAI) { PredicatedScalarEvolution PSE = LAI->getPSE(); int ICmpCount = 0; int Stride = 0; LLVM_DEBUG(dbgs() << "tail-predication: checking allowed instructions\n"); SmallVector LoadStores; for (BasicBlock *BB : L->blocks()) { for (Instruction &I : BB->instructionsWithoutDebug()) { if (isa(&I)) continue; if (!canTailPredicateInstruction(I, ICmpCount)) { LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); return false; } Type *T = I.getType(); if (T->isPointerTy()) T = T->getPointerElementType(); if (T->getScalarSizeInBits() > 32) { LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); return false; } if (isa(I) || isa(I)) { Value *Ptr = isa(I) ? I.getOperand(0) : I.getOperand(1); int64_t NextStride = getPtrStride(PSE, Ptr, L); // TODO: for now only allow consecutive strides of 1. We could support // other strides as long as it is uniform, but let's keep it simple for // now. if (Stride == 0 && NextStride == 1) { Stride = NextStride; continue; } if (Stride != NextStride) { LLVM_DEBUG(dbgs() << "Different strides found, can't " "tail-predicate\n."); return false; } } } } LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); return true; } bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI) { if (DisableTailPredication) return false; // Creating a predicated vector loop is the first step for generating a // tail-predicated hardware loop, for which we need the MVE masked // load/stores instructions: if (!ST->hasMVEIntegerOps()) return false; // For now, restrict this to single block loops. if (L->getNumBlocks() > 1) { LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " "loop.\n"); return false; } assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected"); HardwareLoopInfo HWLoopInfo(L); if (!HWLoopInfo.canAnalyze(*LI)) { LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " "analyzable.\n"); return false; } // This checks if we have the low-overhead branch architecture // extension, and if we will create a hardware-loop: if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " "profitable.\n"); return false; } if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " "a candidate.\n"); return false; } return canTailPredicateLoop(L, LI, SE, DL, LAI); } void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { // Only currently enable these preferences for M-Class cores. if (!ST->isMClass()) return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); // Disable loop unrolling for Oz and Os. UP.OptSizeThreshold = 0; UP.PartialOptSizeThreshold = 0; if (L->getHeader()->getParent()->hasOptSize()) return; // Only enable on Thumb-2 targets. if (!ST->isThumb2()) return; SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); LLVM_DEBUG(dbgs() << "Loop has:\n" << "Blocks: " << L->getNumBlocks() << "\n" << "Exit blocks: " << ExitingBlocks.size() << "\n"); // Only allow another exit other than the latch. This acts as an early exit // as it mirrors the profitability calculation of the runtime unroller. if (ExitingBlocks.size() > 2) return; // Limit the CFG of the loop body for targets with a branch predictor. // Allowing 4 blocks permits if-then-else diamonds in the body. if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) return; // Scan the loop: don't unroll loops with calls as this could prevent // inlining. unsigned Cost = 0; for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { // Don't unroll vectorised loop. MVE does not benefit from it as much as // scalar code. if (I.getType()->isVectorTy()) return; if (isa(I) || isa(I)) { ImmutableCallSite CS(&I); if (const Function *F = CS.getCalledFunction()) { if (!isLoweredToCall(F)) continue; } return; } SmallVector Operands(I.value_op_begin(), I.value_op_end()); Cost += getUserCost(&I, Operands); } } LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); UP.Partial = true; UP.Runtime = true; UP.UpperBound = true; UP.UnrollRemainder = true; UP.DefaultUnrollRuntimeCount = 4; UP.UnrollAndJam = true; UP.UnrollAndJamInnerLoopThreshold = 60; // Force unrolling small loops can be very useful because of the branch // taken cost of the backedge. if (Cost < 12) UP.Force = true; } bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { assert(isa(Ty) && "Expected Ty to be a vector type"); unsigned ScalarBits = Ty->getScalarSizeInBits(); if (!ST->hasMVEIntegerOps()) return false; switch (Opcode) { case Instruction::FAdd: case Instruction::FMul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Mul: case Instruction::FCmp: return false; case Instruction::ICmp: case Instruction::Add: return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128; default: llvm_unreachable("Unhandled reduction opcode"); } return false; }