/*- * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD: head/sbin/ifconfig/sfp.c 270069 2014-08-16 22:55:58Z melifaro $"; #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ifconfig.h" struct i2c_info; typedef int (read_i2c)(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, caddr_t buf); struct i2c_info { int s; int error; struct ifreq *ifr; read_i2c *f; uint8_t diag_type; char *textbuf; size_t bufsize; }; struct _nv { int v; const char *n; }; const char *find_value(struct _nv *x, int value); const char *find_zero_bit(struct _nv *x, int value, int sz); /* SFF-8472 Rev. 11.4 table 3.4: Connector values */ static struct _nv conn[] = { { 0x00, "Unknown" }, { 0x01, "SC" }, { 0x02, "Fibre Channel Style 1 copper" }, { 0x03, "Fibre Channel Style 2 copper" }, { 0x04, "BNC/TNC" }, { 0x05, "Fibre Channel coaxial" }, { 0x06, "FiberJack" }, { 0x07, "LC" }, { 0x08, "MT-RJ" }, { 0x09, "MU" }, { 0x0A, "SG" }, { 0x0B, "Optical pigtail" }, { 0x0C, "MPO Parallel Optic" }, { 0x20, "HSSDC II" }, { 0x21, "Copper pigtail" }, { 0x22, "RJ45" }, { 0, NULL } }; /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */ /* 10G Ethernet compliance codes, byte 3 */ static struct _nv eth_10g[] = { { 0x80, "10G Base-ER" }, { 0x40, "10G Base-LRM" }, { 0x20, "10G Base-LR" }, { 0x10, "10G Base-SR" }, { 0x08, "1X SX" }, { 0x04, "1X LX" }, { 0x02, "1X Copper Active" }, { 0x01, "1X Copper Passive" }, { 0, NULL } }; /* Ethernet compliance codes, byte 6 */ static struct _nv eth_compat[] = { { 0x80, "BASE-PX" }, { 0x40, "BASE-BX10" }, { 0x20, "100BASE-FX" }, { 0x10, "100BASE-LX/LX10" }, { 0x08, "1000BASE-T" }, { 0x04, "1000BASE-CX" }, { 0x02, "1000BASE-LX" }, { 0x01, "1000BASE-SX" }, { 0, NULL } }; /* FC link length, byte 7 */ static struct _nv fc_len[] = { { 0x80, "very long distance" }, { 0x40, "short distance" }, { 0x20, "intermediate distance" }, { 0x10, "long distance" }, { 0x08, "medium distance" }, { 0, NULL } }; /* Channel/Cable technology, byte 7-8 */ static struct _nv cab_tech[] = { { 0x0400, "Shortwave laser (SA)" }, { 0x0200, "Longwave laser (LC)" }, { 0x0100, "Electrical inter-enclosure (EL)" }, { 0x80, "Electrical intra-enclosure (EL)" }, { 0x40, "Shortwave laser (SN)" }, { 0x20, "Shortwave laser (SL)" }, { 0x10, "Longwave laser (LL)" }, { 0x08, "Active Cable" }, { 0x04, "Passive Cable" }, { 0, NULL } }; /* FC Transmission media, byte 9 */ static struct _nv fc_media[] = { { 0x80, "Twin Axial Pair" }, { 0x40, "Twisted Pair" }, { 0x20, "Miniature Coax" }, { 0x10, "Viao Coax" }, { 0x08, "Miltimode, 62.5um" }, { 0x04, "Multimode, 50um" }, { 0x02, "" }, { 0x01, "Single Mode" }, { 0, NULL } }; /* FC Speed, byte 10 */ static struct _nv fc_speed[] = { { 0x80, "1200 MBytes/sec" }, { 0x40, "800 MBytes/sec" }, { 0x20, "1600 MBytes/sec" }, { 0x10, "400 MBytes/sec" }, { 0x08, "3200 MBytes/sec" }, { 0x04, "200 MBytes/sec" }, { 0x01, "100 MBytes/sec" }, { 0, NULL } }; const char * find_value(struct _nv *x, int value) { for (; x->n != NULL; x++) if (x->v == value) return (x->n); return (NULL); } const char * find_zero_bit(struct _nv *x, int value, int sz) { int v, m; const char *s; v = 1; for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) { if ((value & v) == 0) continue; if ((s = find_value(x, value & v)) != NULL) { value &= ~v; return (s); } } return (NULL); } static void get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size) { const char *x; uint8_t data; ii->f(ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&data); x = NULL; if (data <= SFF_8472_ID_LAST) x = sff_8472_id[data]; else { if (data > 0x80) x = "Vendor specific"; else x = "Reserved"; } snprintf(buf, size, "%s", x); } static void get_sfp_connector(struct i2c_info *ii, char *buf, size_t size) { const char *x; uint8_t data; ii->f(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, (caddr_t)&data); if ((x = find_value(conn, data)) == NULL) { if (data >= 0x0D && data <= 0x1F) x = "Unallocated"; else if (data >= 0x23 && data <= 0x7F) x = "Unallocated"; else x = "Vendor specific"; } snprintf(buf, size, "%s", x); } static void printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size) { char xbuf[12]; const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed; tech_class = NULL; tech_len = NULL; tech_tech = NULL; tech_media = NULL; tech_speed = NULL; /* Read bytes 3-10 at once */ ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]); /* Check 10G ethernet first */ tech_class = find_zero_bit(eth_10g, xbuf[3], 1); if (tech_class == NULL) { /* No match. Try 1G */ tech_class = find_zero_bit(eth_compat, xbuf[6], 1); } tech_len = find_zero_bit(fc_len, xbuf[7], 1); tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2); tech_media = find_zero_bit(fc_media, xbuf[9], 1); tech_speed = find_zero_bit(fc_speed, xbuf[10], 1); printf("Class: %s\n", tech_class); printf("Length: %s\n", tech_len); printf("Tech: %s\n", tech_tech); printf("Media: %s\n", tech_media); printf("Speed: %s\n", tech_speed); } static void get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) { const char *tech_class; uint8_t code; /* Check 10G Ethernet/IB first */ ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, (caddr_t)&code); tech_class = find_zero_bit(eth_10g, code, 1); if (tech_class == NULL) { /* No match. Try Ethernet 1G */ ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 1, (caddr_t)&code); tech_class = find_zero_bit(eth_compat, code, 1); } if (tech_class == NULL) tech_class = "Unknown"; snprintf(buf, size, "%s", tech_class); } static void get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17], *p; memset(xbuf, 0, sizeof(xbuf)); /* ASCII String, right-padded with 0x20 */ ii->f(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, xbuf); for (p = &xbuf[16]; *(p - 1) == 0x20; p--) ; *p = '\0'; snprintf(buf, size, "%s", xbuf); } static void get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17], *p; memset(xbuf, 0, sizeof(xbuf)); /* ASCII String, right-padded with 0x20 */ ii->f(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, xbuf); for (p = &xbuf[16]; *(p - 1) == 0x20; p--) ; *p = '\0'; snprintf(buf, size, "%s", xbuf); } static void get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17], *p; memset(xbuf, 0, sizeof(xbuf)); /* ASCII String, right-padded with 0x20 */ ii->f(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, xbuf); for (p = &xbuf[16]; *(p - 1) == 0x20; p--) ; *p = '\0'; snprintf(buf, size, "%s", xbuf); } static void get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) { char xbuf[6]; memset(xbuf, 0, sizeof(xbuf)); /* Date code, see Table 3.8 for description */ ii->f(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, xbuf); snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1], xbuf[2], xbuf[3], xbuf[4], xbuf[5]); } static void print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size) { char xbuf[80]; memset(xbuf, 0, sizeof(xbuf)); get_sfp_vendor_name(ii, xbuf, 20); get_sfp_vendor_pn(ii, &xbuf[20], 20); get_sfp_vendor_sn(ii, &xbuf[40], 20); get_sfp_vendor_date(ii, &xbuf[60], 20); snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s", xbuf, &xbuf[20], &xbuf[40], &xbuf[60]); } static void get_sfp_temp(struct i2c_info *ii, char *buf, size_t size) { char xbuf[2]; int8_t major; uint8_t minor; int k; memset(xbuf, 0, sizeof(xbuf)); ii->f(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf); /* Convert temperature to string according to table 3.13 */ major = (int8_t)xbuf[0]; minor = (uint8_t)buf[1]; k = minor * 1000 / 256; snprintf(buf, size, "%d.%d C", major, k / 100); } /* * Converts value in @xbuf to both milliwats and dBm * human representation. */ static void convert_power(struct i2c_info *ii, char *xbuf, char *buf, size_t size) { uint16_t mW; double dbm; mW = ((uint8_t)xbuf[0] << 8) + (uint8_t)xbuf[1]; /* Convert mw to dbm */ dbm = 10.0 * log10(1.0 * mW / 10000); /* Table 3.9, bit 5 is set, internally calibrated */ if ((ii->diag_type & 0x20) != 0) { snprintf(buf, size, "%d.%02d mW (%.2f dBm)", mW / 10000, (mW % 10000) / 100, dbm); } } static void get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size) { char xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); ii->f(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf); convert_power(ii, xbuf, buf, size); } static void get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size) { char xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); ii->f(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf); convert_power(ii, xbuf, buf, size); } /* Intel ixgbe-specific structures and handlers */ struct ixgbe_i2c_req { uint8_t dev_addr; uint8_t offset; uint8_t len; uint8_t data[8]; }; #define SIOCGI2C SIOCGIFGENERIC static int read_i2c_ixgbe(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, caddr_t buf) { struct ixgbe_i2c_req ixreq; int i; if (ii->error != 0) return (ii->error); ii->ifr->ifr_data = (caddr_t)&ixreq; memset(&ixreq, 0, sizeof(ixreq)); ixreq.dev_addr = addr; for (i = 0; i < len; i += 1) { ixreq.offset = off + i; ixreq.len = 1; if (ioctl(ii->s, SIOCGI2C, ii->ifr) != 0) { ii->error = errno; return (errno); } memcpy(&buf[i], ixreq.data, 1); } return (0); } void sfp_status(int s, struct ifreq *ifr, int verbose) { struct i2c_info ii; char buf[80], buf2[40], buf3[40]; /* * Check if we have i2c support for particular driver. * TODO: Determine driver by original name. */ memset(&ii, 0, sizeof(ii)); if (strncmp(ifr->ifr_name, "ix", 2) == 0) { ii.f = read_i2c_ixgbe; } else return; /* Prepare necessary into to pass to NIC handler */ ii.s = s; ii.ifr = ifr; /* Read diagnostic monitoring type */ ii.f(&ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&ii.diag_type); /* Transceiver type */ get_sfp_identifier(&ii, buf, sizeof(buf)); get_sfp_transceiver_class(&ii, buf2, sizeof(buf2)); get_sfp_connector(&ii, buf3, sizeof(buf3)); if (ii.error == 0) printf("\ti2c: %s %s (%s)\n", buf, buf2, buf3); if (verbose > 2) printf_sfp_transceiver_descr(&ii, buf, sizeof(buf)); print_sfp_vendor(&ii, buf, sizeof(buf)); if (ii.error == 0) printf("\t%s\n", buf); /* * Request current measurements iff they are provided: * Bit 6 must be set. */ if ((ii.diag_type & 0x40) != 0) { get_sfp_temp(&ii, buf, sizeof(buf)); get_sfp_rx_power(&ii, buf2, sizeof(buf2)); get_sfp_tx_power(&ii, buf3, sizeof(buf3)); printf("\tTemp: %s RX: %s TX: %s\n", buf, buf2, buf3); } }