/* $FreeBSD: head/sys/dev/usb/wlan/if_run.c 203138 2010-01-28 22:54:01Z thompsa $ */ /*- * Copyright (c) 2008,2009 Damien Bergamini * ported to FreeBSD by Akinori Furukoshi * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* release date Jan. 09, 2010 */ #include __FBSDID("$FreeBSD: head/sys/dev/usb/wlan/if_run.c 203138 2010-01-28 22:54:01Z thompsa $"); /*- * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver. * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR run_debug #include #include "if_runreg.h" /* shared with ral(4) */ #include "if_runvar.h" #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) #if USB_DEBUG #define RUN_DEBUG #endif #ifdef RUN_DEBUG int run_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run"); SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0, "run debug level"); #endif #define IEEE80211_HAS_ADDR4(wh) \ (((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) static const struct usb_device_id run_devs[] = { { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2770) }, { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2870) }, { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT3070) }, { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT3071) }, { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT3072) }, { USB_VP(USB_VENDOR_ABOCOM2, USB_PRODUCT_ABOCOM2_RT2870_1) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2770) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2870_1) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2870_2) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2870_3) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2870_4) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT2870_5) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT3070_1) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT3070_2) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT3070_3) }, { USB_VP(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RT3070_4) }, { USB_VP(USB_VENDOR_AIRTIES, USB_PRODUCT_AIRTIES_RT3070) }, { USB_VP(USB_VENDOR_AMIGO, USB_PRODUCT_AMIGO_RT2870_1) }, { USB_VP(USB_VENDOR_AMIGO, USB_PRODUCT_AMIGO_RT2870_2) }, { USB_VP(USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GNR) }, { USB_VP(USB_VENDOR_AMIT, USB_PRODUCT_AMIT_RT2870_1) }, { USB_VP(USB_VENDOR_AMIT2, USB_PRODUCT_AMIT2_RT2870) }, { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2870_1) }, { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2870_2) }, { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2870_3) }, { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2870_4) }, { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2870_5) }, { USB_VP(USB_VENDOR_ASUS2, USB_PRODUCT_ASUS2_USBN11) }, { USB_VP(USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RT2870_1) }, { USB_VP(USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RT2870_2) }, { USB_VP(USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RT3070_1) }, { USB_VP(USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RT3070_2) }, { USB_VP(USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RT3070_3) }, { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D8053V3) }, { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D8055) }, { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F6D4050V1) }, { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RT2870_1) }, { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RT2870_2) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_1) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_2) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_3) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_4) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_5) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_6) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_7) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2870_8) }, { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_VIGORN61) }, { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB300GNM) }, { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RT2870_1) }, { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RT2870_2) }, { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RT2870_3) }, { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RT3070) }, { USB_VP(USB_VENDOR_CYBERTAN, USB_PRODUCT_CYBERTAN_RT2870) }, { USB_VP(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RT2870) }, { USB_VP(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RT3072) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT2870_1) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT2870_2) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT3070_1) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT3070_2) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT3070_3) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT3070_4) }, { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RT3072) }, { USB_VP(USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7717) }, { USB_VP(USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7718) }, { USB_VP(USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RT2870_1) }, { USB_VP(USB_VENDOR_ENCORE, USB_PRODUCT_ENCORE_RT3070_1) }, { USB_VP(USB_VENDOR_ENCORE, USB_PRODUCT_ENCORE_RT3070_2) }, { USB_VP(USB_VENDOR_ENCORE, USB_PRODUCT_ENCORE_RT3070_3) }, { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB31N) }, { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB32L) }, { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_RT2870_1) }, { USB_VP(USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT3070_1) }, { USB_VP(USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT3070_2) }, { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNU300) }, { USB_VP(USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_HWUN2) }, { USB_VP(USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RT2870_1) }, { USB_VP(USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RT2870_2) }, { USB_VP(USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RT3070) }, { USB_VP(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_RT3072_1) }, { USB_VP(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_RT3072_2) }, { USB_VP(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_RT3072_3) }, { USB_VP(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_RT3072_4) }, { USB_VP(USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB100) }, { USB_VP(USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54GCV3) }, { USB_VP(USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB600N) }, { USB_VP(USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB600NV2) }, { USB_VP(USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_RT2870_1) }, { USB_VP(USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_RT2870_2) }, { USB_VP(USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_RT2870_3) }, { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCAG300N) }, { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG300N) }, { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCGN) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_1) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_2) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_3) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_4) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_5) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_6) }, { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT3070_7) }, { USB_VP(USB_VENDOR_PARA, USB_PRODUCT_PARA_RT3070) }, { USB_VP(USB_VENDOR_PEGATRON, USB_PRODUCT_PEGATRON_RT2870) }, { USB_VP(USB_VENDOR_PEGATRON, USB_PRODUCT_PEGATRON_RT3070) }, { USB_VP(USB_VENDOR_PEGATRON, USB_PRODUCT_PEGATRON_RT3070_2) }, { USB_VP(USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_RT2870) }, { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS300MINIS) }, { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMICRON) }, { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RT2870) }, { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RT3070) }, { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2870) }, { USB_VP(USB_VENDOR_QUANTA, USB_PRODUCT_QUANTA_RT3070) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2070) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2770) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2870) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT3070) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT3071) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT3072) }, { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT3572) }, { USB_VP(USB_VENDOR_SAMSUNG2, USB_PRODUCT_SAMSUNG2_RT2870_1) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT2870_1) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT2870_2) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT2870_3) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT2870_4) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3070) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3071) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3072_1) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3072_2) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3072_3) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3072_4) }, { USB_VP(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RT3072_5) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT2770) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT2870_1) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT2870_2) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT2870_3) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT2870_4) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3070) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3070_2) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3070_3) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3070_4) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_1) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_2) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_3) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_4) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_5) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RT3072_6) }, { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL608) }, { USB_VP(USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2870_1) }, { USB_VP(USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT3070) }, { USB_VP(USB_VENDOR_SWEEX2, USB_PRODUCT_SWEEX2_LW303) }, { USB_VP(USB_VENDOR_SWEEX2, USB_PRODUCT_SWEEX2_LW313) }, { USB_VP(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_RT2870_1) }, { USB_VP(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_RT2870_1) }, { USB_VP(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_RT2870_2) }, { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2870_1) }, { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2870_2) }, { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT3070) }, { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT3072_1) }, { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT3072_2) }, { USB_VP(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2870_1) }, }; MODULE_DEPEND(run, wlan, 1, 1, 1); MODULE_DEPEND(run, wlan_amrr, 1, 1, 1); MODULE_DEPEND(run, usb, 1, 1, 1); MODULE_DEPEND(run, firmware, 1, 1, 1); static device_probe_t run_match; static device_attach_t run_attach; static device_detach_t run_detach; static usb_callback_t run_bulk_rx_callback; static usb_callback_t run_bulk_tx_callback0; static usb_callback_t run_bulk_tx_callback1; static usb_callback_t run_bulk_tx_callback2; static usb_callback_t run_bulk_tx_callback3; static usb_callback_t run_bulk_tx_callback4; static usb_callback_t run_bulk_tx_callback5; static void run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index); static struct ieee80211vap *run_vap_create(struct ieee80211com *, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]); static void run_vap_delete(struct ieee80211vap *); static void run_setup_tx_list(struct run_softc *, struct run_endpoint_queue *); static void run_unsetup_tx_list(struct run_softc *, struct run_endpoint_queue *); static int run_load_microcode(struct run_softc *); static int run_reset(struct run_softc *); static usb_error_t run_do_request(struct run_softc *, struct usb_device_request *, void *); static int run_read(struct run_softc *, uint16_t, uint32_t *); static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int); static int run_write_2(struct run_softc *, uint16_t, uint16_t); static int run_write(struct run_softc *, uint16_t, uint32_t); static int run_write_region_1(struct run_softc *, uint16_t, const uint8_t *, int); static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int); static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *); static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *); static int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t); static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *); static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t); static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *); static int run_bbp_write(struct run_softc *, uint8_t, uint8_t); static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t); static const char *run_get_rf(int); static int run_read_eeprom(struct run_softc *); static struct ieee80211_node *run_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static int run_media_change(struct ifnet *); static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int run_wme_update(struct ieee80211com *); static void run_wme_update_cb(void *, int); static void run_key_update_begin(struct ieee80211vap *); static void run_key_update_end(struct ieee80211vap *); static int run_key_set(struct ieee80211vap *, const struct ieee80211_key *, const uint8_t mac[IEEE80211_ADDR_LEN]); static int run_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static void run_amrr_start(struct run_softc *, struct ieee80211_node *); static void run_amrr_to(void *); static void run_amrr_cb(void *, int); static void run_iter_func(void *, struct ieee80211_node *); static void run_newassoc(struct ieee80211_node *, int); static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t); static void run_tx_free(struct run_endpoint_queue *pq, struct run_tx_data *, int); static void run_set_tx_desc(struct run_softc *, struct run_tx_data *, uint8_t, uint8_t, uint8_t, uint8_t, uint8_t, uint8_t); static int run_tx(struct run_softc *, struct mbuf *, struct ieee80211_node *); static int run_tx_mgt(struct run_softc *, struct mbuf *, struct ieee80211_node *); static int run_sendprot(struct run_softc *, const struct mbuf *, struct ieee80211_node *, int, int); static int run_tx_param(struct run_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int run_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void run_start(struct ifnet *); static int run_ioctl(struct ifnet *, u_long, caddr_t); static void run_select_chan_group(struct run_softc *, int); static void run_set_rx_antenna(struct run_softc *, int); static void run_rt2870_set_chan(struct run_softc *, u_int); static void run_rt3070_set_chan(struct run_softc *, u_int); static int run_set_chan(struct run_softc *, struct ieee80211_channel *); static void run_set_channel(struct ieee80211com *); static void run_scan_start(struct ieee80211com *); static void run_scan_end(struct ieee80211com *); static uint8_t run_rate2mcs(uint8_t); static void run_update_beacon(struct ieee80211vap *, int); static void run_update_beacon_locked(struct ieee80211vap *, int); static void run_updateprot(struct ieee80211com *); static void run_usb_timeout_cb(void *, int); static void run_reset_livelock(struct run_softc *); static void run_enable_tsf_sync(struct run_softc *); static void run_enable_mrr(struct run_softc *); static void run_set_txpreamble(struct run_softc *); static void run_set_basicrates(struct run_softc *); static void run_set_leds(struct run_softc *, uint16_t); static void run_set_bssid(struct run_softc *, const uint8_t *); static void run_set_macaddr(struct run_softc *, const uint8_t *); static void run_updateslot(struct ifnet *); static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t); static void run_update_promisc_locked(struct ifnet *); static void run_update_promisc(struct ifnet *); static int run_bbp_init(struct run_softc *); static int run_rt3070_rf_init(struct run_softc *); static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t, uint8_t *); static int run_txrx_enable(struct run_softc *); static void run_init(void *); static void run_init_locked(struct run_softc *); static void run_stop(void *); static void run_delay(struct run_softc *, unsigned int); static const struct { uint32_t reg; uint32_t val; } rt2870_def_mac[] = { RT2870_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2860_def_bbp[] = { RT2860_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2860_rf2850[] = { RT2860_RF2850 }; struct { uint8_t n, r, k; } run_rf3020_freqs[] = { RT3070_RF3020 }; static const struct { uint8_t reg; uint8_t val; } rt3070_def_rf[] = { RT3070_DEF_RF }; static const struct usb_config run_config[RUN_N_XFER] = { [RUN_BULK_TX_BE] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .ep_index = 0, .direction = UE_DIR_OUT, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback0, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_BK] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 1, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback1, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_VI] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 2, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback2, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_VO] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 3, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback3, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_HCCA] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 4, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, .callback = run_bulk_tx_callback4, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_PRIO] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 5, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, .callback = run_bulk_tx_callback5, .timeout = 5000, /* ms */ }, [RUN_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = RUN_MAX_RXSZ, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = run_bulk_rx_callback, } }; int run_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa)); } static int run_attach(device_t self) { struct run_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); struct ieee80211com *ic; struct ifnet *ifp; int i, ntries, error; uint8_t iface_index, bands; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); iface_index = RT2860_IFACE_INDEX; /* Rx transfer has own lock */ error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB Tx transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RUN_LOCK(sc); /* wait for the chip to settle */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_ASIC_VER_ID, &sc->mac_rev) != 0){ RUN_UNLOCK(sc); goto detach; } if (sc->mac_rev != 0 && sc->mac_rev != 0xffffffff) break; run_delay(sc, 10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for NIC to initialize\n"); RUN_UNLOCK(sc); goto detach; } /* retrieve RF rev. no and various other things from EEPROM */ run_read_eeprom(sc); device_printf(sc->sc_dev, "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n", sc->mac_rev >> 16, sc->mac_rev & 0xffff, run_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid)); if ((error = run_load_microcode(sc)) != 0) { device_printf(sc->sc_dev, "could not load 8051 microcode\n"); RUN_UNLOCK(sc); goto detach; } RUN_UNLOCK(sc); ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if(ifp == NULL){ device_printf(sc->sc_dev, "can not if_alloc()\n"); goto detach; } ic = ifp->if_l2com; ifp->if_softc = sc; if_initname(ifp, "run", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = run_init; ifp->if_ioctl = run_ioctl; ifp->if_start = run_start; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ #if 0 ic->ic_state = IEEE80211_S_INIT; #endif /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA | /* station mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WME | /* WME */ IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */ ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_AES_CCM | IEEE80211_CRYPTO_TKIPMIC | IEEE80211_CRYPTO_TKIP; ic->ic_flags |= IEEE80211_F_DATAPAD; ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, &bands); /* * Do this by own because h/w supports * more channels than ieee80211_init_channels() */ if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) { /* set supported .11a rates */ for (i = 14; i < nitems(rt2860_rf2850); i++) { uint8_t chan = rt2860_rf2850[i].chan; ic->ic_channels[ic->ic_nchans].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); ic->ic_channels[ic->ic_nchans].ic_ieee = chan; ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A; ic->ic_channels[ic->ic_nchans].ic_extieee = 0; ic->ic_nchans++; } } ieee80211_ifattach(ic, sc->sc_bssid); ic->ic_scan_start = run_scan_start; ic->ic_scan_end = run_scan_end; ic->ic_set_channel = run_set_channel; ic->ic_node_alloc = run_node_alloc; ic->ic_newassoc = run_newassoc; //ic->ic_updateslot = run_updateslot; ic->ic_wme.wme_update = run_wme_update; ic->ic_raw_xmit = run_raw_xmit; ic->ic_update_promisc = run_update_promisc; ic->ic_vap_create = run_vap_create; ic->ic_vap_delete = run_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RUN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RUN_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return 0; detach: run_detach(self); return(ENXIO); } static int run_detach(device_t self) { struct run_softc *sc = device_get_softc(self); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic; int i; /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER); RUN_LOCK(sc); /* free TX list, if any */ for (i = 0; i != RUN_EP_QUEUES; i++) run_unsetup_tx_list(sc, &sc->sc_epq[i]); RUN_UNLOCK(sc); if (ifp) { ic = ifp->if_l2com; ieee80211_ifdetach(ic); if_free(ifp); } mtx_destroy(&sc->sc_mtx); return (0); } static struct ieee80211vap * run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct run_softc *sc = ic->ic_ifp->if_softc; struct run_vap *rvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; sc->sc_rvp = rvp = (struct run_vap *) malloc(sizeof(struct run_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (rvp == NULL) return NULL; vap = &rvp->vap; /* enable s/w bmiss handling for sta mode */ ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); vap->iv_key_update_begin = run_key_update_begin; vap->iv_key_update_end = run_key_update_end; vap->iv_key_delete = run_key_delete; vap->iv_key_set = run_key_set; vap->iv_update_beacon = run_update_beacon; /* override state transition machine */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = run_newstate; TASK_INIT(&rvp->amrr_task, 0, run_amrr_cb, rvp); TASK_INIT(&sc->wme_task, 0, run_wme_update_cb, ic); TASK_INIT(&sc->usb_timeout_task, 0, run_usb_timeout_cb, sc); callout_init((struct callout *)&rvp->amrr_ch, 1); ieee80211_amrr_init(&rvp->amrr, vap, IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static void run_vap_delete(struct ieee80211vap *vap) { struct run_vap *rvp = RUN_VAP(vap); struct ifnet *ifp; struct ieee80211com *ic; struct run_softc *sc; if(vap == NULL) return; ic = vap->iv_ic; ifp = ic->ic_ifp; sc = ifp->if_softc; if (ifp && ifp->if_flags & IFF_UP){ RUN_LOCK(sc); run_stop(sc); RUN_UNLOCK(sc); } ieee80211_amrr_cleanup(&rvp->amrr); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); sc->sc_rvp = NULL; } static void run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) { struct run_tx_data *data; memset(pq, 0, sizeof(*pq)); STAILQ_INIT(&pq->tx_qh); STAILQ_INIT(&pq->tx_fh); for (data = &pq->tx_data[0]; data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { data->sc = sc; STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); } pq->tx_nfree = RUN_TX_RING_COUNT; } static void run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) { struct run_tx_data *data; /* make sure any subsequent use of the queues will fail */ pq->tx_nfree = 0; STAILQ_INIT(&pq->tx_fh); STAILQ_INIT(&pq->tx_qh); /* free up all node references and mbufs */ for (data = &pq->tx_data[0]; data < &pq->tx_data[RUN_TX_RING_COUNT]; data++){ if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } int run_load_microcode(struct run_softc *sc) { usb_device_request_t req; const struct firmware *fw; const u_char *base; uint32_t tmp; int ntries, error; const uint64_t *temp; uint64_t bytes; fw = firmware_get("runfw"); if(fw == NULL){ device_printf(sc->sc_dev, "failed loadfirmware of file %s\n", "runfw"); return ENOENT; } if (fw->datasize != 8192) { device_printf(sc->sc_dev, "invalid firmware size (should be 8KB)\n"); error = EINVAL; goto fail; } /* * RT3071/RT3072 use a different firmware * run-rt2870 (8KB) contains both, * first half (4KB) is for rt2870, * last half is for rt3071. */ base = fw->data; if ((sc->mac_rev >> 16) != 0x2860 && (sc->mac_rev >> 16) != 0x2872 && (sc->mac_rev >> 16) != 0x3070 && (sc->mac_rev >> 16) != 0x3572){ base += 4096; device_printf(sc->sc_dev, "loading RT3071 firmware\n"); } else device_printf(sc->sc_dev, "loading RT2870 firmware\n"); /* cheap sanity check */ temp = fw->data; bytes = *temp; if(bytes != be64toh(0xffffff0210280210)) { device_printf(sc->sc_dev, "firmware checksum failed\n"); error = EINVAL; goto fail; } run_read(sc, RT2860_ASIC_VER_ID, &tmp); /* write microcode image */ run_write_region_1(sc, RT2870_FW_BASE, base, 4096); run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 8); USETW(req.wIndex, 0); USETW(req.wLength, 0); if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)) != 0) { device_printf(sc->sc_dev, "firmware reset failed\n"); goto fail; } run_delay(sc, 10); run_write(sc, RT2860_H2M_MAILBOX, 0); if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_BOOT, 0)) != 0) goto fail; /* wait until microcontroller is ready */ for (ntries = 0; ntries < 1000; ntries++) { if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) { goto fail; } if (tmp & RT2860_MCU_READY) break; run_delay(sc, 10); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MCU to initialize\n"); error = ETIMEDOUT; goto fail; } DPRINTF("microcode successfully loaded after %d tries\n", ntries); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } int run_reset(struct run_softc *sc) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 1); USETW(req.wIndex, 0); USETW(req.wLength, 0); return usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL); } static usb_error_t run_do_request(struct run_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; RUN_LOCK_ASSERT(sc, MA_OWNED); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); run_delay(sc, 10); } return (err); } static int run_read(struct run_softc *sc, uint16_t reg, uint32_t *val) { uint32_t tmp; int error; error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); if (error == 0) *val = le32toh(tmp); else *val = 0xffffffff; return error; } static int run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_READ_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return run_do_request(sc, &req, buf); } static int run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_2; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); return run_do_request(sc, &req, NULL); } static int run_write(struct run_softc *sc, uint16_t reg, uint32_t val) { int error; if ((error = run_write_2(sc, reg, val & 0xffff)) == 0) error = run_write_2(sc, reg + 2, val >> 16); return error; } static int run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf, int len) { #if 1 int i, error = 0; /* * NB: the WRITE_REGION_1 command is not stable on RT2860. * We thus issue multiple WRITE_2 commands instead. */ KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n")); for (i = 0; i < len && error == 0; i += 2) error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8); return error; #else usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return run_do_request(sc, &req, buf); #endif } static int run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len) { int i, error = 0; KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n")); for (i = 0; i < len && error == 0; i += 4) error = run_write(sc, reg + i, val); return error; } /* Read 16-bit from eFUSE ROM (RT3070 only.) */ static int run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { uint32_t tmp; uint16_t reg; int error, ntries; if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return error; addr *= 2; /*- * Read one 16-byte block into registers EFUSE_DATA[0-3]: * DATA0: F E D C * DATA1: B A 9 8 * DATA2: 7 6 5 4 * DATA3: 3 2 1 0 */ tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK); tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; run_write(sc, RT3070_EFUSE_CTRL, tmp); for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return error; if (!(tmp & RT3070_EFSROM_KICK)) break; run_delay(sc, 2); } if (ntries == 100) return ETIMEDOUT; if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) { *val = 0xffff; /* address not found */ return 0; } /* determine to which 32-bit register our 16-bit word belongs */ reg = RT3070_EFUSE_DATA3 - (addr & 0xc); if ((error = run_read(sc, reg, &tmp)) != 0) return error; *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff; return 0; } static int run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { usb_device_request_t req; uint16_t tmp; int error; addr *= 2; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_EEPROM_READ; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, sizeof tmp); error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp); if (error == 0) *val = le16toh(tmp); else *val = 0xffff; return error; } static __inline int run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val) { /* either eFUSE ROM or EEPROM */ return sc->sc_srom_read(sc, addr, val); } static int run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0) return error; if (!(tmp & RT2860_RF_REG_CTRL)) break; } if (ntries == 10) return ETIMEDOUT; /* RF registers are 24-bit on the RT2860 */ tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | (val & 0x3fffff) << 2 | (reg & 3); return run_write(sc, RT2860_RF_CSR_CFG0, tmp); } static int run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return ETIMEDOUT; tmp = RT3070_RF_KICK | reg << 8; if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0) return error; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return ETIMEDOUT; *val = tmp & 0xff; return 0; } static int run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; return run_write(sc, RT3070_RF_CSR_CFG, tmp); } static int run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8; if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0) return error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; *val = tmp & 0xff; return 0; } static int run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT2860_BBP_CSR_KICK | reg << 8 | val; return run_write(sc, RT2860_BBP_CSR_CFG, tmp); } /* * Send a command to the 8051 microcontroller unit. */ static int run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0) return error; if (!(tmp & RT2860_H2M_BUSY)) break; } if (ntries == 100) return ETIMEDOUT; tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg; if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0) error = run_write(sc, RT2860_HOST_CMD, cmd); return error; } /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return b32; } static const char * run_get_rf(int rev) { switch (rev) { case RT2860_RF_2820: return "RT2820"; case RT2860_RF_2850: return "RT2850"; case RT2860_RF_2720: return "RT2720"; case RT2860_RF_2750: return "RT2750"; case RT3070_RF_3020: return "RT3020"; case RT3070_RF_2020: return "RT2020"; case RT3070_RF_3021: return "RT3021"; case RT3070_RF_3022: return "RT3022"; case RT3070_RF_3052: return "RT3052"; } return "unknown"; } int run_read_eeprom(struct run_softc *sc) { int8_t delta_2ghz, delta_5ghz; uint32_t tmp; uint16_t val; int ridx, ant, i; /* check whether the ROM is eFUSE ROM or EEPROM */ sc->sc_srom_read = run_eeprom_read_2; if ((sc->mac_rev & 0xfff00000) >= 0x30700000) { run_read(sc, RT3070_EFUSE_CTRL, &tmp); DPRINTF("EFUSE_CTRL=0x%08x\n", tmp); if (tmp & RT3070_SEL_EFUSE) sc->sc_srom_read = run_efuse_read_2; } /* read ROM version */ run_srom_read(sc, RT2860_EEPROM_VERSION, &val); DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8); /* read MAC address */ run_srom_read(sc, RT2860_EEPROM_MAC01, &val); sc->sc_bssid[0] = val & 0xff; sc->sc_bssid[1] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC23, &val); sc->sc_bssid[2] = val & 0xff; sc->sc_bssid[3] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC45, &val); sc->sc_bssid[4] = val & 0xff; sc->sc_bssid[5] = val >> 8; /* read default BBP settings */ for (i = 0; i < 8; i++) { run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val); sc->bbp[i].val = val & 0xff; sc->bbp[i].reg = val >> 8; DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val); } /* read RF frequency offset from EEPROM */ run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val); sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff); if ((sc->leds = val >> 8) != 0xff) { /* read LEDs operating mode */ run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]); run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]); run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]); } else { /* broken EEPROM, use default settings */ sc->leds = 0x01; sc->led[0] = 0x5555; sc->led[1] = 0x2221; sc->led[2] = 0x5627; /* differs from RT2860 */ } DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", sc->leds, sc->led[0], sc->led[1], sc->led[2]); /* read RF information */ run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); if (val == 0xffff) { DPRINTF("invalid EEPROM antenna info, using default\n"); if ((sc->mac_rev >> 16) >= 0x3070) { /* default to RF3020 1T1R */ sc->rf_rev = RT3070_RF_3020; sc->ntxchains = 1; sc->nrxchains = 1; } else { /* default to RF2820 1T2R */ sc->rf_rev = RT2860_RF_2820; sc->ntxchains = 1; sc->nrxchains = 2; } } else { sc->rf_rev = (val >> 8) & 0xf; sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; } DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains); /* check if RF supports automatic Tx access gain control */ run_srom_read(sc, RT2860_EEPROM_CONFIG, &val); DPRINTF("EEPROM CFG 0x%04x\n", val); if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; } /* read power settings for 2GHz channels */ for (i = 0; i < 14; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) sc->txpow1[i] = 5; if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) sc->txpow2[i] = 5; DPRINTF("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]); } /* read power settings for 5GHz channels */ for (i = 0; i < 36; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 36; i++) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; DPRINTF("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i]); } /* read Tx power compensation for each Tx rate */ run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx, &val); reg = (uint32_t)val << 16; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx + 1, &val); reg |= val; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]); } /* read RSSI offsets and LNA gains from EEPROM */ run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val); sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ sc->lna[2] = val >> 8; /* channel group 2 */ run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val); sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ sc->lna[3] = val >> 8; /* channel group 3 */ run_srom_read(sc, RT2860_EEPROM_LNA, &val); sc->lna[0] = val & 0xff; /* channel group 0 */ sc->lna[1] = val >> 8; /* channel group 1 */ /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF("invalid LNA for channel group %d\n", 2); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF("invalid LNA for channel group %d\n", 3); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant]); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant]); sc->rssi_5ghz[ant] = 0; } } return 0; } struct ieee80211_node * run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO); } static int run_media_change(struct ifnet *ifp) { const struct ieee80211_txparam *tp; struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = sc->sc_ifp->if_l2com; struct ieee80211vap *vap = &sc->sc_rvp->vap; uint8_t rate, ridx; int error; RUN_LOCK(sc); error = ieee80211_media_change(ifp); if (error != ENETRESET) RUN_UNLOCK(sc); return error; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)){ run_init_locked(sc); } RUN_UNLOCK(sc); return 0; } static int run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { const struct ieee80211_txparam *tp; struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_ifp->if_softc; struct run_vap *rvp = RUN_VAP(vap); enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp; uint8_t wcid; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RUN_LOCK(sc); sc->sc_rvp->amrr_run = RUN_AMRR_OFF; usb_callout_stop(&rvp->amrr_ch); if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ run_set_leds(sc, RT2860_LED_RADIO); } switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); run_write(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); } break; case IEEE80211_S_RUN: ni = vap->iv_bss; if (vap->iv_opmode != IEEE80211_M_MONITOR) { run_updateslot(ic->ic_ifp); run_enable_mrr(sc); run_set_txpreamble(sc); run_set_basicrates(sc); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); run_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_STA) { /* add BSS entry to the WCID table */ wcid = RUN_AID2WCID(ni->ni_associd); run_write_region_1(sc, RT2860_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) run_update_beacon_locked(vap, 0); if (vap->iv_opmode != IEEE80211_M_MONITOR) { run_enable_tsf_sync(sc); } /* else tsf */ /* enable automatic rate adaptation */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) run_amrr_start(sc, ni); /* turn link LED on */ run_set_leds(sc, RT2860_LED_RADIO | (IEEE80211_IS_CHAN_2GHZ(vap->iv_bss->ni_chan) ? RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); break; default: DPRINTFN(6, "undefined case\n"); break; } RUN_UNLOCK(sc); IEEE80211_LOCK(ic); return(rvp->newstate(vap, nstate, arg)); } /* another taskqueue, so usbd_do_request() can go sleep */ static int run_wme_update(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_ifp->if_softc; ieee80211_runtask(ic, &sc->wme_task); /* return whatever, upper layer desn't care anyway */ return 0; } /* ARGSUSED */ static void run_wme_update_cb(void *arg, int pending) { struct ieee80211com *ic = arg; struct run_softc *sc = ic->ic_ifp->if_softc; struct ieee80211_wme_state *wmesp = &ic->ic_wme; int aci, error = 0; RUN_LOCK(sc); /* update MAC TX configuration registers */ for (aci = 0; aci < WME_NUM_AC; aci++) { error = run_write(sc, RT2860_EDCA_AC_CFG(aci), wmesp->wme_params[aci].wmep_logcwmax << 16 | wmesp->wme_params[aci].wmep_logcwmin << 12 | wmesp->wme_params[aci].wmep_aifsn << 8 | wmesp->wme_params[aci].wmep_txopLimit); if(error) goto err; } /* update SCH/DMA registers too */ error = run_write(sc, RT2860_WMM_AIFSN_CFG, wmesp->wme_params[WME_AC_VO].wmep_aifsn << 12 | wmesp->wme_params[WME_AC_VI].wmep_aifsn << 8 | wmesp->wme_params[WME_AC_BK].wmep_aifsn << 4 | wmesp->wme_params[WME_AC_BE].wmep_aifsn); if(error) goto err; error = run_write(sc, RT2860_WMM_CWMIN_CFG, wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 | wmesp->wme_params[WME_AC_VI].wmep_logcwmin << 8 | wmesp->wme_params[WME_AC_BK].wmep_logcwmin << 4 | wmesp->wme_params[WME_AC_BE].wmep_logcwmin); if(error) goto err; error = run_write(sc, RT2860_WMM_CWMAX_CFG, wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 | wmesp->wme_params[WME_AC_VI].wmep_logcwmax << 8 | wmesp->wme_params[WME_AC_BK].wmep_logcwmax << 4 | wmesp->wme_params[WME_AC_BE].wmep_logcwmax); if(error) goto err; error = run_write(sc, RT2860_WMM_TXOP0_CFG, wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 | wmesp->wme_params[WME_AC_BE].wmep_txopLimit); if(error) goto err; error = run_write(sc, RT2860_WMM_TXOP1_CFG, wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 | wmesp->wme_params[WME_AC_VI].wmep_txopLimit); err: if(error) DPRINTF("WME update failed\n"); RUN_UNLOCK(sc); return; } static void run_key_update_begin(struct ieee80211vap *vap) { /* * Because run_key_delete() needs special attention * on lock related operation, lock handling is being done * differently in run_key_set and _delete. * * So, we don't use key_update_begin and _end. */ } static void run_key_update_end(struct ieee80211vap *vap) { /* null */ } /* * return 0 on error */ static int run_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = ic->ic_ifp; struct run_softc *sc = ifp->if_softc; struct ieee80211_node *ni; uint32_t attr; uint16_t base, associd; uint8_t mode, wcid, txmic, rxmic, iv[8]; int error = 0; RUN_LOCK(sc); if(vap->iv_opmode == IEEE80211_M_HOSTAP){ ni = ieee80211_find_vap_node(&ic->ic_sta, vap, mac); associd = (ni != NULL) ? ni->ni_associd : 0; if(ni != NULL) ieee80211_free_node(ni); txmic = 24; rxmic = 16; } else { ni = vap->iv_bss; associd = (ni != NULL) ? ni->ni_associd : 0; txmic = 16; rxmic = 24; } /* map net80211 cipher to RT2860 security mode */ switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: if(k->wk_keylen < 8) mode = RT2860_MODE_WEP40; else mode = RT2860_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = RT2860_MODE_TKIP; break; case IEEE80211_CIPHER_AES_CCM: mode = RT2860_MODE_AES_CCMP; break; default: DPRINTF("undefined case\n"); goto fail; } DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s\n", associd, k->wk_keyix, mode, (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise"); if (k->wk_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = RT2860_SKEY(0, k->wk_keyix); } else { wcid = RUN_AID2WCID(associd); base = RT2860_PKEY(wcid); } if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { if(run_write_region_1(sc, base, k->wk_key, 16)) goto fail; if(run_write_region_1(sc, base + 16, &k->wk_key[txmic], 8)) /* wk_txmic */ goto fail; if(run_write_region_1(sc, base + 24, &k->wk_key[rxmic], 8)) /* wk_rxmic */ goto fail; } else { /* roundup len to 16-bit: XXX fix write_region_1() instead */ if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1)) goto fail; } if (!(k->wk_flags & IEEE80211_KEY_GROUP) || (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) { /* set initial packet number in IV+EIV */ if (k->wk_cipher == IEEE80211_CIPHER_WEP){ memset(iv, 0, sizeof iv); iv[3] = sc->sc_rvp->vap.iv_def_txkey << 6; } else { if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->wk_keytsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->wk_keytsc; } else /* CCMP */ { iv[0] = k->wk_keytsc; iv[1] = k->wk_keytsc >> 8; iv[2] = 0; } iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->wk_keytsc >> 16; iv[5] = k->wk_keytsc >> 24; iv[6] = k->wk_keytsc >> 32; iv[7] = k->wk_keytsc >> 40; } if(run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8)) goto fail; } if (k->wk_flags & IEEE80211_KEY_GROUP) { /* install group key */ if(run_read(sc, RT2860_SKEY_MODE_0_7, &attr)) goto fail; attr &= ~(0xf << (k->wk_keyix * 4)); attr |= mode << (k->wk_keyix * 4); if(run_write(sc, RT2860_SKEY_MODE_0_7, attr)) goto fail; } else { /* install pairwise key */ if(run_read(sc, RT2860_WCID_ATTR(wcid), &attr)) goto fail; attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; if(run_write(sc, RT2860_WCID_ATTR(wcid), attr)) goto fail; } /* TODO create a pass-thru key entry? */ fail: RUN_UNLOCK(sc); return (error? 0 : 1); } /* * return 0 on error */ static int run_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_ifp->if_softc; struct ieee80211_node *ni = vap->iv_bss; struct ieee80211_node_table *nt = &ic->ic_sta; uint32_t attr; uint8_t wcid; int error = 0; uint8_t nislocked, cislocked; if((nislocked = IEEE80211_NODE_IS_LOCKED(nt))) IEEE80211_NODE_UNLOCK(nt); if((cislocked = mtx_owned(&ic->ic_comlock.mtx))) IEEE80211_UNLOCK(ic); RUN_LOCK(sc); if (k->wk_flags & IEEE80211_KEY_GROUP) { /* remove group key */ if(run_read(sc, RT2860_SKEY_MODE_0_7, &attr)) goto fail; attr &= ~(0xf << (k->wk_keyix * 4)); if(run_write(sc, RT2860_SKEY_MODE_0_7, attr)) goto fail; } else { /* remove pairwise key */ wcid = RUN_AID2WCID((ni != NULL) ? ni->ni_associd : 0); if(run_read(sc, RT2860_WCID_ATTR(wcid), &attr)) goto fail; attr &= ~0xf; if(run_write(sc, RT2860_WCID_ATTR(wcid), attr)) goto fail; } fail: RUN_UNLOCK(sc); if(cislocked) IEEE80211_LOCK(ic); if(nislocked) IEEE80211_NODE_LOCK(nt); return (error? 0 : 1); } static void run_amrr_start(struct run_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct run_vap *rvp = RUN_VAP(vap); uint32_t sta[3]; uint8_t wcid; RUN_LOCK_ASSERT(sc, MA_OWNED); /* read statistic counters (clear on read) and update AMRR state */ run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); wcid = RUN_AID2WCID(ni == NULL ? 0 : ni->ni_associd); ieee80211_amrr_node_init(&rvp->amrr, &rvp->amn[wcid], ni); /* start at lowest available bit-rate, AMRR will raise */ ni->ni_txrate = 2; /* start calibration timer */ rvp->amrr_run = RUN_AMRR_ON; usb_callout_reset(&rvp->amrr_ch, hz, run_amrr_to, rvp); } static void run_amrr_to(void *arg) { struct run_vap *rvp = arg; /* do it in a process context, so it can go sleep */ ieee80211_runtask(rvp->vap.iv_ic, &rvp->amrr_task); /* next timeout will be rescheduled in the callback task */ } /* ARGSUSED */ static void run_amrr_cb(void *arg, int pending) { struct run_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_ifp->if_softc; if (ic->ic_opmode == IEEE80211_M_STA) run_iter_func(rvp, vap->iv_bss); else { /* * run_reset_livelock() doesn't do anything with AMRR, * but Ralink wants us to call it every 1 sec. So, we * piggyback here rather than creating another callout. * Livelock may occur only in HOSTAP or IBSS mode * (when h/w is sending beacons). */ RUN_LOCK(sc); run_reset_livelock(sc); RUN_UNLOCK(sc); ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, rvp); } if(rvp->amrr_run == RUN_AMRR_ON) usb_callout_reset(&rvp->amrr_ch, hz, run_amrr_to, rvp); } static void run_iter_func(void *arg, struct ieee80211_node *ni) { struct run_vap *rvp = arg; struct ieee80211com *ic = rvp->vap.iv_ic; struct ifnet *ifp = ic->ic_ifp; struct run_softc *sc = ifp->if_softc; struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211_amrr_node *amn = &rvp->amn[0]; /* make compiler happy */ uint32_t sta[3], stat; int error; uint8_t wcid, mcs, pid; if(ic->ic_opmode != IEEE80211_M_STA) IEEE80211_NODE_ITERATE_UNLOCK(nt); RUN_LOCK(sc); if(ic->ic_opmode != IEEE80211_M_STA){ /* drain Tx status FIFO (maxsize = 16) */ run_read(sc, RT2860_TX_STAT_FIFO, &stat); while (stat & RT2860_TXQ_VLD) { DPRINTFN(4, "tx stat 0x%08x\n", stat); wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; /* if no ACK was requested, no feedback is available */ if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff) continue; /* update per-STA AMRR stats */ amn = &rvp->amn[wcid]; amn->amn_txcnt++; if (stat & RT2860_TXQ_OK) { amn->amn_success++; /* * Check if there were retries, ie if the Tx * success rate is different from the requested * rate. Note that it works only because we do * not allow rate fallback from OFDM to CCK. */ mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; if (mcs + 1 != pid) amn->amn_retrycnt++; } else { amn->amn_retrycnt++; ifp->if_oerrors++; } run_read_region_1(sc, RT2860_TX_STAT_FIFO, (uint8_t *)&stat, sizeof stat); } DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n", amn->amn_retrycnt, amn->amn_txcnt, amn->amn_success); } else { /* read statistic counters (clear on read) and update AMRR state */ error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); if (error != 0) goto skip; DPRINTFN(3, "retrycnt=%d txcnt=%d failcnt=%d\n", le32toh(sta[1]) >> 16, le32toh(sta[1]) & 0xffff, le32toh(sta[0]) & 0xffff); wcid = RUN_AID2WCID(ni == NULL ? 0 : ni->ni_associd); amn = &rvp->amn[wcid]; /* count failed TX as errors */ ifp->if_oerrors += le32toh(sta[0]) & 0xffff; amn->amn_retrycnt = (le32toh(sta[0]) & 0xffff) + /* failed TX count */ (le32toh(sta[1]) >> 16); /* TX retransmission count */ amn->amn_txcnt = amn->amn_retrycnt + (le32toh(sta[1]) & 0xffff); /* successful TX count */ amn->amn_success = (le32toh(sta[1]) >> 16) + (le32toh(sta[1]) & 0xffff); } ieee80211_amrr_choose(ni, amn); skip:; RUN_UNLOCK(sc); if(ic->ic_opmode != IEEE80211_M_STA) IEEE80211_NODE_ITERATE_LOCK(nt); } static void run_newassoc(struct ieee80211_node *ni, int isnew) { struct run_node *rn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate; int ridx, i, j; DPRINTF("new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr)); for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* convert 802.11 rate to hardware rate index */ for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; rn->ridx[i] = ridx; /* determine rate of control response frames */ for (j = i; j >= 0; j--) { if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && rt2860_rates[rn->ridx[i]].phy == rt2860_rates[rn->ridx[j]].phy) break; } if (j >= 0) { rn->ctl_ridx[i] = rn->ridx[j]; } else { /* no basic rate found, use mandatory one */ rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; } DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n", rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]); } } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; if (sc->nrxchains > 2) if (rxwi->rssi[2] > rxwi->rssi[rxchain]) rxchain = 2; } return rxchain; } static void run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211vap *vap = &sc->sc_rvp->vap; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct rt2870_rxd *rxd; struct rt2860_rxwi *rxwi; uint32_t flags; uint16_t len, phy; uint8_t ant, rssi; int8_t nf; rxwi = mtod(m, struct rt2860_rxwi *); len = le16toh(rxwi->len) & 0xfff; if (__predict_false(len > dmalen)) { m_freem(m); ifp->if_ierrors++; DPRINTF("bad RXWI length %u > %u\n", len, dmalen); return; } /* Rx descriptor is located at the end */ rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen); flags = le32toh(rxd->flags); if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { m_freem(m); ifp->if_ierrors++; DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV"); return; } m->m_data += sizeof(struct rt2860_rxwi); m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi); wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP){ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; m->m_flags |= M_WEP; } if (flags & RT2860_RX_L2PAD){ DPRINTFN(8, "received RT2860_RX_L2PAD frame\n"); len += 2; } if (__predict_false(flags & RT2860_RX_MICERR)) { /* report MIC failures to net80211 for TKIP */ ieee80211_notify_michael_failure(vap, wh, rxwi->keyidx); m_freem(m); ifp->if_ierrors++; DPRINTF("MIC error. Someone is lying.\n"); return; } ant = run_maxrssi_chain(sc, rxwi); rssi = rxwi->rssi[ant]; nf = run_rssi2dbm(sc, rssi, ant); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void)ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else { (void)ieee80211_input_all(ic, m, rssi, nf); } if(__predict_false(ieee80211_radiotap_active(ic))){ struct run_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags); tap->wr_antsignal = rssi; tap->wr_antenna = ant; tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant); tap->wr_rate = 2; /* in case it can't be found below */ phy = le16toh(rxwi->phy); switch (phy & RT2860_PHY_MODE) { case RT2860_PHY_CCK: switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & RT2860_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case RT2860_PHY_OFDM: switch (phy & RT2860_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } } } static void run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct run_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct mbuf *m = NULL; struct mbuf *m0; uint32_t dmalen; int xferlen; usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", xferlen); if (xferlen < sizeof (uint32_t) + sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) { DPRINTF("xfer too short %d\n", xferlen); goto tr_setup; } m = sc->rx_m; sc->rx_m = NULL; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if (sc->rx_m == NULL) { sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */); } if (sc->rx_m == NULL) { DPRINTF("could not allocate mbuf - idle with stall\n"); ifp->if_ierrors++; usbd_xfer_set_stall(xfer); usbd_xfer_set_frames(xfer, 0); } else { /* * Directly loading a mbuf cluster into DMA to * save some data copying. This works because * there is only one cluster. */ usbd_xfer_set_frame_data(xfer, 0, mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ); usbd_xfer_set_frames(xfer, 1); } usbd_transfer_submit(xfer); break; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); ifp->if_ierrors++; goto tr_setup; } if(sc->rx_m != NULL){ m_freem(sc->rx_m); sc->rx_m = NULL; } break; } if (m == NULL) return; /* inputting all the frames must be last */ RUN_UNLOCK(sc); m->m_pkthdr.len = m->m_len = xferlen; /* HW can aggregate multiple 802.11 frames in a single USB xfer */ for(;;) { dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff; if ((dmalen == 0) || ((dmalen & 3) != 0)) { DPRINTF("bad DMA length %u\n", dmalen); break; } if ((dmalen + 8) > xferlen) { DPRINTF("bad DMA length %u > %d\n", dmalen + 8, xferlen); break; } /* If it is the last one or a single frame, we won't copy. */ if((xferlen -= dmalen + 8) <= 8){ /* trim 32-bit DMA-len header */ m->m_data += 4; m->m_pkthdr.len = m->m_len -= 4; run_rx_frame(sc, m, dmalen); break; } /* copy aggregated frames to another mbuf */ m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m0 == NULL)) { DPRINTF("could not allocate mbuf\n"); ifp->if_ierrors++; break; } m_copydata(m, 4 /* skip 32-bit DMA-len header */, dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t)); m0->m_pkthdr.len = m0->m_len = dmalen + sizeof(struct rt2870_rxd); run_rx_frame(sc, m0, dmalen); /* update data ptr */ m->m_data += dmalen + 8; m->m_pkthdr.len = m->m_len -= dmalen + 8; } RUN_LOCK(sc); } static void run_tx_free(struct run_endpoint_queue *pq, struct run_tx_data *data, int txerr) { if (data->m != NULL) { if (data->m->m_flags & M_TXCB) ieee80211_process_callback(data->ni, data->m, txerr ? ETIMEDOUT : 0); m_freem(data->m); data->m = NULL; if(data->ni == NULL) { DPRINTF("no node\n"); } else { ieee80211_free_node(data->ni); data->ni = NULL; } } STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); pq->tx_nfree++; } static void run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index) { struct run_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct run_tx_data *data; struct ieee80211vap *vap = NULL; struct usb_page_cache *pc; struct run_endpoint_queue *pq = &sc->sc_epq[index]; struct mbuf *m; usb_frlength_t size; unsigned int len; int actlen; int sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); switch (USB_GET_STATE(xfer)){ case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete: %d " "bytes @ index %d\n", actlen, index); data = usbd_xfer_get_priv(xfer); run_tx_free(pq, data, 0); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; usbd_xfer_set_priv(xfer, NULL); ifp->if_opackets++; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&pq->tx_qh); if(data == NULL) break; STAILQ_REMOVE_HEAD(&pq->tx_qh, next); m = data->m; if (m->m_pkthdr.len > RUN_MAX_TXSZ) { DPRINTF("data overflow, %u bytes\n", m->m_pkthdr.len); ifp->if_oerrors++; run_tx_free(pq, data, 1); goto tr_setup; } pc = usbd_xfer_get_frame(xfer, 0); size = sizeof(data->desc); usbd_copy_in(pc, 0, &data->desc, size); usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct run_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rt2860_rates[data->ridx].rate; tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags); tap->wt_hwqueue = index; if (data->mcs & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; ieee80211_radiotap_tx(vap, m); } /* align end on a 4-bytes boundary */ len = (size + m->m_pkthdr.len + 3) & ~3; DPRINTFN(11, "sending frame len=%u xferlen=%u @ index %d\n", m->m_pkthdr.len, len, index); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); RUN_UNLOCK(sc); run_start(ifp); RUN_LOCK(sc); break; default: DPRINTF("USB transfer error, %s\n", usbd_errstr(error)); data = usbd_xfer_get_priv(xfer); ifp->if_oerrors++; if (data != NULL) { run_tx_free(pq, data, error); usbd_xfer_set_priv(xfer, NULL); } if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) { device_printf(sc->sc_dev, "device timeout\n"); ieee80211_runtask(ifp->if_l2com, &sc->usb_timeout_task); } /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 0); } static void run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 1); } static void run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 2); } static void run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 3); } static void run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 4); } static void run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 5); } static void run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data, uint8_t wflags, uint8_t xflags, uint8_t opflags, uint8_t dflags, uint8_t type, uint8_t pad) { struct mbuf *m = data->m; struct ieee80211com *ic = sc->sc_ifp->if_l2com; struct ieee80211vap *vap = &sc->sc_rvp->vap; struct ieee80211_frame *wh; struct rt2870_txd *txd; struct rt2860_txwi *txwi; int xferlen; uint8_t mcs; uint8_t ridx = data->ridx; /* get MCS code from rate index */ data->mcs = mcs = rt2860_rates[ridx].mcs; xferlen = sizeof(*txwi) + m->m_pkthdr.len; /* roundup to 32-bit alignment */ xferlen = (xferlen + 3) & ~3; txd = (struct rt2870_txd *)&data->desc; txd->flags = dflags; txd->len = htole16(xferlen); /* setup TX Wireless Information */ txwi = (struct rt2860_txwi *)(txd + 1); txwi->flags = wflags; txwi->xflags = xflags; txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ? RUN_AID2WCID(data->ni->ni_associd) : 0xff; txwi->len = htole16(m->m_pkthdr.len - pad); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(RT2860_PHY_CCK); if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else txwi->phy = htole16(RT2860_PHY_OFDM); txwi->phy |= htole16(mcs); wh = mtod(m, struct ieee80211_frame *); /* check if RTS/CTS or CTS-to-self protection is required */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold || ((ic->ic_flags & IEEE80211_F_USEPROT) && rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) txwi->txop = RT2860_TX_TXOP_HT | opflags; else txwi->txop = RT2860_TX_TXOP_BACKOFF | opflags; } /* This function must be called locked */ static int run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; struct ieee80211vap *vap = &sc->sc_rvp->vap; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct run_tx_data *data; uint16_t qos; uint16_t dur; uint8_t type; uint8_t tid; uint8_t qid; uint8_t qflags; uint8_t pad; uint8_t xflags = 0; int hasqos; int ridx; int ctl_ridx; RUN_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* * There are 7 bulk endpoints: 1 for RX * and 6 for TX (4 EDCAs + HCCA + Prio). * Update 03-14-2009: some devices like the Planex GW-US300MiniS * seem to have only 4 TX bulk endpoints (Fukaumi Naoki). */ if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) { uint8_t *frm; if(IEEE80211_HAS_ADDR4(wh)) frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos; else frm =((struct ieee80211_qosframe *)wh)->i_qos; qos = le16toh(*(const uint16_t *)frm); tid = qos & IEEE80211_QOS_TID; qid = TID_TO_WME_AC(tid); pad = 2; } else { qos = 0; tid = 0; qid = WME_AC_BE; pad = 0; } qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA; DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n", qos, qid, tid, qflags); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; /* pickup a rate index */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { ridx = sc->fixed_ridx; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else { for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++){ if (rt2860_rates[ridx].rate == ni->ni_txrate) break; } ctl_ridx = rt2860_rates[ridx].ctl_ridx; } if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK)) { xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ridx].sp_ack_dur; else dur = rt2860_rates[ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur + sc->sifs); } /* reserve slots for mgmt packets, just in case */ if (sc->sc_epq[qid].tx_nfree < 3) { DPRINTFN(10, "tx ring %d is full\n", qid); return (-1); } data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next); sc->sc_epq[qid].tx_nfree--; data->m = m; data->ni = ni; data->ridx = ridx; run_set_tx_desc(sc, data, 0, xflags, 0, qflags, type, pad); STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[qid]); DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len + (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), rt2860_rates[ridx].rate, qid); return (0); } static int run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { const struct ieee80211_txparam *tp; struct ifnet *ifp = sc->sc_ifp; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ifp->if_l2com; struct run_tx_data *data; struct ieee80211_frame *wh; int ridx; uint16_t dur; uint8_t type; uint8_t xflags = 0; RUN_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { xflags |= RT2860_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) xflags |= RT2860_TX_TS; } if (sc->sc_epq[0].tx_nfree == 0) { /* let caller free mbuf */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; return (EIO); } data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; data->m = m; data->ni = ni; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == tp->mgmtrate) break; data->ridx = ridx; run_set_tx_desc(sc, data, 0, xflags, 0, RT2860_TX_QSEL_MGMT, wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, 0); DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len + (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_sendprot(struct run_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct run_tx_data *data; struct mbuf *mprot; int ridx; int protrate; int ackrate; int pktlen; int isshort; uint16_t dur; uint8_t type; uint8_t wflags; uint8_t txflags = 0; RUN_LOCK_ASSERT(sc, MA_OWNED); KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort); + ieee80211_ack_duration(ic->ic_rt, rate, isshort); wflags = RT2860_TX_FRAG; /* check that there are free slots before allocating the mbuf */ if (sc->sc_epq[0].tx_nfree == 0) { /* let caller free mbuf */ sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; return (ENOBUFS); } if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); txflags |= RT2860_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { sc->sc_ifp->if_oerrors++; DPRINTF("could not allocate mbuf\n"); return (ENOBUFS); } data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == protrate) break; data->ridx = ridx; run_set_tx_desc(sc, data, wflags, txflags, 0, RT2860_TX_QSEL_EDCA, type, 0); DPRINTFN(1, "sending prot len=%u rate=%u\n", m->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct run_tx_data *data; uint8_t type; uint8_t opflags; uint8_t txflags; int ridx; int rate; int error; RUN_LOCK_ASSERT(sc, MA_OWNED); KASSERT(params != NULL, ("no raw xmit params")); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* let caller free mbuf */ return (EINVAL); } opflags = 0; txflags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) txflags |= RT2860_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = run_sendprot(sc, m, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error) { /* let caller free mbuf */ return (error); } opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS; } if (sc->sc_epq[0].tx_nfree == 0) { /* let caller free mbuf */ sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; DPRINTF("sending raw frame, but tx ring is full\n"); return (EIO); } data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; data->m = m; data->ni = ni; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; data->ridx = ridx; run_set_tx_desc(sc, data, 0, txflags, opflags, RT2860_TX_QSEL_EDCA, type, 0); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ifnet *ifp = ni->ni_ic->ic_ifp; struct run_softc *sc = ifp->if_softc; int error; RUN_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { error = ENETDOWN; goto bad; } if (params == NULL) { /* tx mgt packet */ if ((error = run_tx_mgt(sc, m, ni)) != 0){ ifp->if_oerrors++; DPRINTF("mgt tx failed\n"); goto bad; } } else { /* tx raw packet with param */ if ((error = run_tx_param(sc, m, ni, params)) != 0){ ifp->if_oerrors++; DPRINTF("tx with param failed\n"); goto bad; } } ifp->if_opackets++; RUN_UNLOCK(sc); return (0); bad: RUN_UNLOCK(sc); if(m != NULL) m_freem(m); ieee80211_free_node(ni); return (error); } static void run_start(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct mbuf *m; RUN_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { RUN_UNLOCK(sc); return; } for (;;) { /* send data frames */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (run_tx(sc, m, ni) != 0) { IFQ_DRV_PREPEND(&ifp->if_snd, m); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } } RUN_UNLOCK(sc); } static int run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = sc->sc_ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0; switch (cmd) { case SIOCSIFFLAGS: RUN_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){ run_init_locked(sc); startall = 1; } else run_update_promisc_locked(ifp); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) run_stop(sc); } RUN_UNLOCK(sc); if(startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return (error); } static void run_select_chan_group(struct run_softc *sc, int group) { uint32_t tmp; run_bbp_write(sc, 62, 0x37 - sc->lna[group]); run_bbp_write(sc, 63, 0x37 - sc->lna[group]); run_bbp_write(sc, 64, 0x37 - sc->lna[group]); run_bbp_write(sc, 86, 0x00); if (group == 0) { if (sc->ext_2ghz_lna) { run_bbp_write(sc, 82, 0x62); run_bbp_write(sc, 75, 0x46); } else { run_bbp_write(sc, 82, 0x84); run_bbp_write(sc, 75, 0x50); } } else { if (sc->ext_5ghz_lna) { run_bbp_write(sc, 82, 0xf2); run_bbp_write(sc, 75, 0x46); } else { run_bbp_write(sc, 82, 0xf2); run_bbp_write(sc, 75, 0x50); } } run_read(sc, RT2860_TX_BAND_CFG, &tmp); tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; run_write(sc, RT2860_TX_BAND_CFG, tmp); /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ tmp = RT2860_RFTR_EN | RT2860_TRSW_EN; if (group == 0) { /* 2GHz */ tmp |= RT2860_PA_PE_G0_EN | RT2860_LNA_PE_G0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_G1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_G1_EN; } else { /* 5GHz */ tmp |= RT2860_PA_PE_A0_EN | RT2860_LNA_PE_A0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_A1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_A1_EN; } run_write(sc, RT2860_TX_PIN_CFG, tmp); /* set initial AGC value */ if (group == 0) run_bbp_write(sc, 66, 0x2e + sc->lna[0]); else run_bbp_write(sc, 66, 0x32 + (sc->lna[group] * 5) / 3); } static void run_rt2870_set_chan(struct run_softc *sc, uint32_t chan) { const struct rfprog *rfprog = rt2860_rf2850; uint32_t r2, r3, r4; int8_t txpow1, txpow2; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); r2 = rfprog[i].r2; if (sc->ntxchains == 1) r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ if (sc->nrxchains == 1) r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; if (chan > 14) { if (txpow1 >= 0) txpow1 = txpow1 << 1; else txpow1 = (7 + txpow1) << 1 | 1; if (txpow2 >= 0) txpow2 = txpow2 << 1; else txpow2 = (7 + txpow2) << 1 | 1; } r3 = rfprog[i].r3 | txpow1 << 7; r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3); run_rt2870_rf_write(sc, RT2860_RF4, r4); run_delay(sc, 10); run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1); run_rt2870_rf_write(sc, RT2860_RF4, r4); run_delay(sc, 10); run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3); run_rt2870_rf_write(sc, RT2860_RF4, r4); } static void run_rt3070_set_chan(struct run_softc *sc, uint32_t chan) { int8_t txpow1, txpow2; uint8_t rf; /* RT3070 is 2GHz only */ KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n")); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[chan - 1]; txpow2 = sc->txpow2[chan - 1]; run_rt3070_rf_write(sc, 2, run_rf3020_freqs[chan - 1].n); run_rt3070_rf_write(sc, 3, run_rf3020_freqs[chan - 1].k); run_rt3070_rf_read(sc, 6, &rf); rf = (rf & ~0x03) | run_rf3020_freqs[chan - 1].r; run_rt3070_rf_write(sc, 6, rf); /* set Tx0 power */ run_rt3070_rf_read(sc, 12, &rf); rf = (rf & ~0x1f) | txpow1; run_rt3070_rf_write(sc, 12, rf); /* set Tx1 power */ run_rt3070_rf_read(sc, 13, &rf); rf = (rf & ~0x1f) | txpow2; run_rt3070_rf_write(sc, 13, rf); run_rt3070_rf_read(sc, 1, &rf); rf &= ~0xfc; if (sc->ntxchains == 1) rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ else if (sc->ntxchains == 2) rf |= 1 << 7; /* 2T: disable Tx chain 3 */ if (sc->nrxchains == 1) rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) rf |= 1 << 6; /* 2R: disable Rx chain 3 */ run_rt3070_rf_write(sc, 1, rf); /* set RF offset */ run_rt3070_rf_read(sc, 23, &rf); rf = (rf & ~0x7f) | sc->freq; run_rt3070_rf_write(sc, 23, rf); /* program RF filter */ run_rt3070_rf_write(sc, 24, sc->rf24_20mhz); run_rt3070_rf_write(sc, 31, sc->rf24_20mhz); /* enable RF tuning */ run_rt3070_rf_read(sc, 7, &rf); run_rt3070_rf_write(sc, 7, rf | 0x01); } static void run_set_rx_antenna(struct run_softc *sc, int aux) { uint32_t tmp; if (aux) { run_read(sc, RT2860_PCI_EECTRL, &tmp); run_write(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); } else { run_read(sc, RT2860_PCI_EECTRL, &tmp); run_write(sc, RT2860_PCI_EECTRL, tmp | RT2860_C); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); } } static int run_set_chan(struct run_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; uint32_t chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return EINVAL; if ((sc->mac_rev >> 16) >= 0x3070) run_rt3070_set_chan(sc, chan); else run_rt2870_set_chan(sc, chan); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; /* XXX necessary only when group has changed! */ run_select_chan_group(sc, group); run_delay(sc, 10); return 0; } static void run_set_channel(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_ifp->if_softc; RUN_LOCK(sc); run_set_chan(sc, ic->ic_curchan); RUN_UNLOCK(sc); return; } static void run_scan_start(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_ifp->if_softc; uint32_t tmp; RUN_LOCK(sc); /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); run_write(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr); RUN_UNLOCK(sc); return; } static void run_scan_end(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_ifp->if_softc; RUN_LOCK(sc); run_enable_tsf_sync(sc); /* XXX keep local copy */ run_set_bssid(sc, sc->sc_bssid); RUN_UNLOCK(sc); return; } static uint8_t run_rate2mcs(uint8_t rate) { switch (rate) { /* CCK rates */ case 2: return 0; case 4: return 1; case 11: return 2; case 22: return 3; /* OFDM rates */ case 12: return 0; case 18: return 1; case 24: return 2; case 36: return 3; case 48: return 4; case 72: return 5; case 96: return 6; case 108: return 7; } return 0; /* shouldn't get here */ } static void run_update_beacon_locked(struct ieee80211vap *vap, int item) { struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_ifp->if_softc; struct rt2860_txwi txwi; struct mbuf *m; int rate; if ((m = ieee80211_beacon_alloc(vap->iv_bss, &RUN_VAP(vap)->bo)) == NULL) return; memset(&txwi, 0, sizeof txwi); txwi.wcid = 0xff; txwi.len = htole16(m->m_pkthdr.len); /* send beacons at the lowest available rate */ rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 12 : 2; txwi.phy = htole16(run_rate2mcs(rate)); if (rate == 12) txwi.phy |= htole16(RT2860_PHY_OFDM); txwi.txop = RT2860_TX_TXOP_HT; txwi.flags = RT2860_TX_TS; run_write_region_1(sc, RT2860_BCN_BASE(0), (u_int8_t *)&txwi, sizeof txwi); run_write_region_1(sc, RT2860_BCN_BASE(0) + sizeof txwi, mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1); /* roundup len */ m_freem(m); return; } static void run_update_beacon(struct ieee80211vap *vap, int item) { struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_ifp->if_softc; IEEE80211_UNLOCK(ic); RUN_LOCK(sc); run_update_beacon_locked(vap, item); RUN_UNLOCK(sc); IEEE80211_LOCK(ic); return; } static void run_updateprot(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_ifp->if_softc; uint32_t tmp; tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; /* setup protection frame rate (MCS code) */ tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ? rt2860_rates[RT2860_RIDX_OFDM6].mcs : rt2860_rates[RT2860_RIDX_CCK11].mcs; /* CCK frames don't require protection */ run_write(sc, RT2860_CCK_PROT_CFG, tmp); if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) tmp |= RT2860_PROT_CTRL_RTS_CTS; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) tmp |= RT2860_PROT_CTRL_CTS; } run_write(sc, RT2860_OFDM_PROT_CFG, tmp); } static void run_usb_timeout_cb(void *arg, int pending) { struct run_softc *sc = arg; struct ieee80211vap *vap = &sc->sc_rvp->vap; RUN_LOCK_ASSERT(sc, MA_OWNED); if(vap->iv_state == IEEE80211_S_RUN && vap->iv_opmode != IEEE80211_M_STA) run_reset_livelock(sc); else if(vap->iv_state == IEEE80211_S_SCAN){ DPRINTF("timeout caused by scan\n"); /* cancel bgscan */ ieee80211_cancel_scan(vap); } else DPRINTF("timeout by unknown cause\n"); } static void run_reset_livelock(struct run_softc *sc) { uint32_t tmp; /* * In IBSS or HostAP modes (when the hardware sends beacons), the MAC * can run into a livelock and start sending CTS-to-self frames like * crazy if protection is enabled. Reset MAC/BBP for a while */ run_read(sc, RT2860_DEBUG, &tmp); if((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))){ DPRINTF("CTS-to-self livelock detected\n"); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); run_delay(sc, 1); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); } } static void run_update_promisc_locked(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; uint32_t tmp; run_read(sc, RT2860_RX_FILTR_CFG, &tmp); tmp |= RT2860_DROP_UC_NOME; if (ifp->if_flags & IFF_PROMISC) tmp &= ~RT2860_DROP_UC_NOME; run_write(sc, RT2860_RX_FILTR_CFG, tmp); DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving"); } static void run_update_promisc(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; RUN_LOCK(sc); run_update_promisc_locked(ifp); RUN_UNLOCK(sc); } static void run_enable_tsf_sync(struct run_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~0x1fffff; tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; if (vap->iv_opmode == IEEE80211_M_STA) { /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (vap->iv_opmode == IEEE80211_M_IBSS) { tmp |= RT2860_BCN_TX_EN; /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) { tmp |= RT2860_BCN_TX_EN; /* SYNC with nobody */ tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; } else DPRINTF("Enabling TSF failed. undefined opmode\n"); run_write(sc, RT2860_BCN_TIME_CFG, tmp); } static void run_enable_mrr(struct run_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) run_write(sc, RT2860_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ run_write(sc, RT2860_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } static void run_set_txpreamble(struct run_softc *sc) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; uint32_t tmp; run_read(sc, RT2860_AUTO_RSP_CFG, &tmp); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2860_CCK_SHORT_EN; else tmp &= ~RT2860_CCK_SHORT_EN; run_write(sc, RT2860_AUTO_RSP_CFG, tmp); } static void run_set_basicrates(struct run_softc *sc) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; /* set basic rates mask */ if (ic->ic_curmode == IEEE80211_MODE_11B) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003); else if (ic->ic_curmode == IEEE80211_MODE_11A) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150); else /* 11g */ run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); } static void run_set_leds(struct run_softc *sc, uint16_t which) { (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, which | (sc->leds & 0x7f)); } static void run_set_bssid(struct run_softc *sc, const uint8_t *bssid) { run_write(sc, RT2860_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); run_write(sc, RT2860_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } static void run_set_macaddr(struct run_softc *sc, const uint8_t *addr) { run_write(sc, RT2860_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); run_write(sc, RT2860_MAC_ADDR_DW1, addr[4] | addr[5] << 8 | 0xff << 16); } /* ARGSUSED */ static void run_updateslot(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp); tmp &= ~0xff; tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp); } static int8_t run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; struct ieee80211_channel *c = ic->ic_curchan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { uint32_t chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return -12 - delta - rssi; } static int run_bbp_init(struct run_softc *sc) { int i, error, ntries; uint8_t bbp0; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { if ((error = run_bbp_read(sc, 0, &bbp0)) != 0) return error; if (bbp0 != 0 && bbp0 != 0xff) break; } if (ntries == 20) return ETIMEDOUT; /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2860_def_bbp); i++) { run_bbp_write(sc, rt2860_def_bbp[i].reg, rt2860_def_bbp[i].val); } /* fix BBP84 for RT2860E */ if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101) run_bbp_write(sc, 84, 0x19); if ((sc->mac_rev >> 16) >= 0x3070) { run_bbp_write(sc, 79, 0x13); run_bbp_write(sc, 80, 0x05); run_bbp_write(sc, 81, 0x33); /* XXX RT3090 needs more */ } else if (sc->mac_rev == 0x28600100) { run_bbp_write(sc, 69, 0x16); run_bbp_write(sc, 73, 0x12); } return 0; } static int run_rt3070_rf_init(struct run_softc *sc) { uint32_t tmp; uint8_t rf, bbp4; int i; run_rt3070_rf_read(sc, 30, &rf); /* toggle RF R30 bit 7 */ run_rt3070_rf_write(sc, 30, rf | 0x80); run_delay(sc, 10); run_rt3070_rf_write(sc, 30, rf & ~0x80); /* initialize RF registers to default value */ for (i = 0; i < nitems(rt3070_def_rf); i++) { run_rt3070_rf_write(sc, rt3070_def_rf[i].reg, rt3070_def_rf[i].val); } if ((sc->mac_rev >> 16) == 0x3070) { /* change voltage from 1.2V to 1.35V for RT3070 */ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x0f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); } else if ((sc->mac_rev >> 16) == 0x3071) { run_rt3070_rf_read(sc, 6, &rf); run_rt3070_rf_write(sc, 6, rf | 0x40); run_rt3070_rf_write(sc, 31, 0x14); run_read(sc, RT3070_LDO_CFG0, &tmp); tmp &= ~0x1f000000; if ((sc->mac_rev & 0xffff) < 0x0211) tmp |= 0x0d000000; else tmp |= 0x01000000; run_write(sc, RT3070_LDO_CFG0, tmp); /* patch LNA_PE_G1 */ run_read(sc, RT3070_GPIO_SWITCH, &tmp); run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); } else if((sc->mac_rev >> 16) == 0x3572){ if ((sc->mac_rev & 0xffff) < 0x0211){ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x0f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); } else { run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x1f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); run_delay(sc, 1); /* wait for 1msec */ tmp = (tmp & ~0x1f000000) | 0x01000000; run_write(sc, RT3070_LDO_CFG0, tmp); } } /* select 20MHz bandwidth */ run_rt3070_rf_read(sc, 31, &rf); run_rt3070_rf_write(sc, 31, rf & ~0x20); /* calibrate filter for 20MHz bandwidth */ sc->rf24_20mhz = 0x1f; /* default value */ run_rt3070_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz); /* select 40MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10); /* calibrate filter for 40MHz bandwidth */ sc->rf24_40mhz = 0x2f; /* default value */ run_rt3070_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz); /* go back to 20MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, bbp4 & ~0x18); if ((sc->mac_rev & 0xffff) < 0x0211) run_rt3070_rf_write(sc, 27, 0x03); run_read(sc, RT3070_OPT_14, &tmp); run_write(sc, RT3070_OPT_14, tmp | 1); if ((sc->mac_rev >> 16) == 0x3071) { run_rt3070_rf_read(sc, 1, &rf); rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; run_rt3070_rf_write(sc, 1, rf); run_rt3070_rf_read(sc, 15, &rf); run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2); run_rt3070_rf_read(sc, 17, &rf); rf &= ~RT3070_TX_LO1; if ((sc->mac_rev & 0xffff) >= 0x0211 && !sc->ext_2ghz_lna) rf |= 0x20; /* fix for long range Rx issue */ run_rt3070_rf_write(sc, 17, rf); run_rt3070_rf_read(sc, 20, &rf); run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1); run_rt3070_rf_read(sc, 21, &rf); run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2); run_rt3070_rf_read(sc, 27, &rf); rf &= ~0x77; if ((sc->mac_rev & 0xffff) < 0x0211) rf |= 0x03; run_rt3070_rf_write(sc, 27, rf); } return 0; } static int run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target, uint8_t *val) { uint8_t rf22, rf24; uint8_t bbp55_pb, bbp55_sb, delta; int ntries; /* program filter */ rf24 = init; /* initial filter value */ run_rt3070_rf_write(sc, 24, rf24); /* enable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 | 0x01); /* set power and frequency of passband test tone */ run_bbp_write(sc, 24, 0x00); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); run_delay(sc, 10); /* read received power */ run_bbp_read(sc, 55, &bbp55_pb); if (bbp55_pb != 0) break; } if (ntries == 100) return ETIMEDOUT; /* set power and frequency of stopband test tone */ run_bbp_write(sc, 24, 0x06); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); run_delay(sc, 10); /* read received power */ run_bbp_read(sc, 55, &bbp55_sb); delta = bbp55_pb - bbp55_sb; if (delta > target) break; /* reprogram filter */ rf24++; run_rt3070_rf_write(sc, 24, rf24); } if (ntries < 100) { if (rf24 != init) rf24--; /* backtrack */ *val = rf24; run_rt3070_rf_write(sc, 24, rf24); } /* restore initial state */ run_bbp_write(sc, 24, 0x00); /* disable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 & ~0x01); return 0; } static int run_txrx_enable(struct run_softc *sc) { struct ieee80211com *ic = sc->sc_ifp->if_l2com; uint32_t tmp; int error, ntries; run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); for (ntries = 0; ntries < 200; ntries++) { if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) return error; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; run_delay(sc, 50); } if (ntries == 200) return ETIMEDOUT; run_delay(sc, 50); tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); /* enable Rx bulk aggregation (set timeout and limit) */ tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN | RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2); run_write(sc, RT2860_USB_DMA_CFG, tmp); /* set Rx filter */ tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | RT2860_DROP_CFACK | RT2860_DROP_CFEND; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; } run_write(sc, RT2860_RX_FILTR_CFG, tmp); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); return 0; } static void run_init_locked(struct run_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = &sc->sc_rvp->vap; uint32_t tmp; uint8_t bbp1, bbp3; int i; int ridx; int ntries; run_stop(sc); for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0) goto fail; if (tmp != 0 && tmp != 0xffffffff) break; run_delay(sc, 10); } if (ntries == 100) goto fail; for (i = 0; i != RUN_EP_QUEUES; i++) run_setup_tx_list(sc, &sc->sc_epq[i]); run_set_macaddr(sc, IF_LLADDR(ifp)); for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) goto fail; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; run_delay(sc, 10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); goto fail; } tmp &= 0xff0; tmp |= RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); /* turn off PME_OEN to solve high-current issue */ run_read(sc, RT2860_SYS_CTRL, &tmp); run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_USB_DMA_CFG, 0); if (run_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset chipset\n"); goto fail; } run_write(sc, RT2860_MAC_SYS_CTRL, 0); /* init Tx power for all Tx rates (from EEPROM) */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } for (i = 0; i < nitems(rt2870_def_mac); i++) run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val); run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273); run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344); run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa); if ((sc->mac_rev >> 16) >= 0x3070) { /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ run_write(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT); run_write(sc, RT2860_TX_SW_CFG1, 0); run_write(sc, RT2860_TX_SW_CFG2, 0x1f); } /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0) goto fail; if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) break; run_delay(sc, 10); } if (ntries == 100) goto fail; /* clear Host to MCU mailbox */ run_write(sc, RT2860_H2M_BBPAGENT, 0); run_write(sc, RT2860_H2M_MAILBOX, 0); run_delay(sc, 10); if (run_bbp_init(sc) != 0) { device_printf(sc->sc_dev, "could not initialize BBP\n"); goto fail; } /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN); run_write(sc, RT2860_BCN_TIME_CFG, tmp); /* clear RX WCID search table */ run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512); /* clear WCID attribute table */ run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32); /* clear shared key table */ run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); /* clear shared key mode */ run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); run_read(sc, RT2860_US_CYC_CNT, &tmp); tmp = (tmp & ~0xff) | 0x1e; run_write(sc, RT2860_US_CYC_CNT, tmp); if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101) run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f); run_write(sc, RT2860_WMM_TXOP0_CFG, 0); run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 8; i++) { if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) continue; run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); } /* select Main antenna for 1T1R devices */ if (sc->rf_rev == RT3070_RF_3020) run_set_rx_antenna(sc, 0); /* send LEDs operating mode to microcontroller */ (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); /* disable non-existing Rx chains */ run_bbp_read(sc, 3, &bbp3); bbp3 &= ~(1 << 3 | 1 << 4); if (sc->nrxchains == 2) bbp3 |= 1 << 3; else if (sc->nrxchains == 3) bbp3 |= 1 << 4; run_bbp_write(sc, 3, bbp3); /* disable non-existing Tx chains */ run_bbp_read(sc, 1, &bbp1); if (sc->ntxchains == 1) bbp1 &= ~(1 << 3 | 1 << 4); run_bbp_write(sc, 1, bbp1); if ((sc->mac_rev >> 16) >= 0x3070) run_rt3070_rf_init(sc); /* select default channel */ vap->iv_bss->ni_chan = ic->ic_curchan; /* ic_bsschan?? */ run_set_chan(sc, ic->ic_curchan); /* setup initial protection mode */ run_updateprot(ic); /* turn radio LED on */ run_set_leds(sc, RT2860_LED_RADIO); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; for(i = 0; i != RUN_N_XFER; i++) usbd_xfer_set_stall(sc->sc_xfer[i]); usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]); if (run_txrx_enable(sc) != 0) goto fail; return; fail: run_stop(sc); } static void run_init(void *arg) { struct run_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; RUN_LOCK(sc); run_init_locked(sc); RUN_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); } static void run_stop(void *arg) { struct run_softc *sc = (struct run_softc *)arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; int i; int ntries; RUN_LOCK_ASSERT(sc, MA_OWNED); if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_scan(&sc->sc_rvp->vap); if (ifp->if_drv_flags & IFF_DRV_RUNNING) run_set_leds(sc, 0); /* turn all LEDs off */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_rvp->amrr_run = RUN_AMRR_OFF; RUN_UNLOCK(sc); /* drain them all */ usb_callout_drain(&sc->sc_rvp->amrr_ch); ieee80211_draintask(ic, &sc->sc_rvp->amrr_task); ieee80211_draintask(ic, &sc->wme_task); for(i = 0; i < RUN_N_XFER; i++) usbd_transfer_drain(sc->sc_xfer[i]); ieee80211_draintask(ic, &sc->usb_timeout_task); RUN_LOCK(sc); if(sc->rx_m != NULL){ m_free(sc->rx_m); sc->rx_m = NULL; } /* disable Tx/Rx */ run_read(sc, RT2860_MAC_SYS_CTRL, &tmp); tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); run_write(sc, RT2860_MAC_SYS_CTRL, tmp); /* wait for pending Tx to complete */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0){ DPRINTF("Cannot read Tx queue count\n"); break; } if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0){ DPRINTF("All Tx cleared\n"); break; } run_delay(sc, 10); } if(ntries >= 100) DPRINTF("There are still pending Tx\n"); run_delay(sc, 10); run_write(sc, RT2860_USB_DMA_CFG, 0); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_MAC_SYS_CTRL, 0); for (i = 0; i != RUN_EP_QUEUES; i++) run_unsetup_tx_list(sc, &sc->sc_epq[i]); return; } static void run_delay(struct run_softc *sc, unsigned int ms) { usb_pause_mtx(mtx_owned(&sc->sc_mtx) ? &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms)); } static device_method_t run_methods[] = { /* Device interface */ DEVMETHOD(device_probe, run_match), DEVMETHOD(device_attach, run_attach), DEVMETHOD(device_detach, run_detach), { 0, 0 } }; static driver_t run_driver = { "run", run_methods, sizeof(struct run_softc) }; static devclass_t run_devclass; DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);