/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: head/sys/dev/usb2/ethernet/if_kue2.c 187259 2009-01-15 02:35:40Z thompsa $"); /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ /* * NOTE: all function names beginning like "kue_cfg_" can only * be called from within the config thread function ! */ #include #include #include #include #define usb2_config_td_cc usb2_ether_cc #define usb2_config_td_softc kue_softc #define USB_DEBUG_VAR kue_debug #include #include #include #include #include #include #include #include #include #include #include /* * Various supported device vendors/products. */ static const struct usb2_device_id kue_devs[] = { {USB_VPI(USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250, 0)}, {USB_VPI(USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460, 0)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450, 0)}, {USB_VPI(USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT, 0)}, {USB_VPI(USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX, 0)}, {USB_VPI(USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101, 0)}, {USB_VPI(USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA, 0)}, {USB_VPI(USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C, 0)}, {USB_VPI(USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T, 0)}, {USB_VPI(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T, 0)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2, 0)}, {USB_VPI(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT, 0)}, {USB_VPI(USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA, 0)}, {USB_VPI(USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_AOX_USB101, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN, 0)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T, 0)}, {USB_VPI(USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA, 0)}, {USB_VPI(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101, 0)}, {USB_VPI(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3, 0)}, {USB_VPI(USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8, 0)}, {USB_VPI(USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9, 0)}, {USB_VPI(USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA, 0)}, {USB_VPI(USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA, 0)}, {USB_VPI(USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_GPE, 0)}, {USB_VPI(USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E, 0)}, {USB_VPI(USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB, 0)}, }; /* prototypes */ static device_probe_t kue_probe; static device_attach_t kue_attach; static device_detach_t kue_detach; static device_shutdown_t kue_shutdown; static usb2_callback_t kue_bulk_read_clear_stall_callback; static usb2_callback_t kue_bulk_read_callback; static usb2_callback_t kue_bulk_write_clear_stall_callback; static usb2_callback_t kue_bulk_write_callback; static usb2_config_td_command_t kue_cfg_promisc_upd; static usb2_config_td_command_t kue_config_copy; static usb2_config_td_command_t kue_cfg_first_time_setup; static usb2_config_td_command_t kue_cfg_pre_init; static usb2_config_td_command_t kue_cfg_init; static usb2_config_td_command_t kue_cfg_tick; static usb2_config_td_command_t kue_cfg_pre_stop; static usb2_config_td_command_t kue_cfg_stop; static void kue_cfg_do_request(struct kue_softc *, struct usb2_device_request *, void *); static void kue_cfg_setword(struct kue_softc *, uint8_t, uint16_t); static void kue_cfg_ctl(struct kue_softc *, uint8_t, uint8_t, uint16_t, void *, uint16_t); static void kue_cfg_load_fw(struct kue_softc *); static void kue_cfg_reset(struct kue_softc *); static void kue_start_cb(struct ifnet *); static void kue_start_transfers(struct kue_softc *); static void kue_init_cb(void *); static int kue_ioctl_cb(struct ifnet *, u_long, caddr_t); static void kue_watchdog(void *); #if USB_DEBUG static int kue_debug = 0; SYSCTL_NODE(_hw_usb2, OID_AUTO, kue, CTLFLAG_RW, 0, "USB kue"); SYSCTL_INT(_hw_usb2_kue, OID_AUTO, debug, CTLFLAG_RW, &kue_debug, 0, "Debug level"); #endif static const struct usb2_config kue_config[KUE_N_TRANSFER] = { [KUE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .mh.bufsize = (MCLBYTES + 2 + 64), .mh.flags = {.pipe_bof = 1,}, .mh.callback = &kue_bulk_write_callback, .mh.timeout = 10000, /* 10 seconds */ }, [KUE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .mh.callback = &kue_bulk_read_callback, .mh.timeout = 0, /* no timeout */ }, [KUE_BULK_CS_WR] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &kue_bulk_write_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, [KUE_BULK_CS_RD] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &kue_bulk_read_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, }; static device_method_t kue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, kue_probe), DEVMETHOD(device_attach, kue_attach), DEVMETHOD(device_detach, kue_detach), DEVMETHOD(device_shutdown, kue_shutdown), {0, 0} }; static driver_t kue_driver = { .name = "kue", .methods = kue_methods, .size = sizeof(struct kue_softc), }; static devclass_t kue_devclass; DRIVER_MODULE(kue, ushub, kue_driver, kue_devclass, NULL, 0); MODULE_DEPEND(kue, usb2_ethernet, 1, 1, 1); MODULE_DEPEND(kue, usb2_core, 1, 1, 1); MODULE_DEPEND(kue, ether, 1, 1, 1); /* * We have a custom do_request function which is almost like the * regular do_request function, except it has a much longer timeout. * Why? Because we need to make requests over the control endpoint * to download the firmware to the device, which can take longer * than the default timeout. */ static void kue_cfg_do_request(struct kue_softc *sc, struct usb2_device_request *req, void *data) { uint16_t length; usb2_error_t err; if (usb2_config_td_is_gone(&sc->sc_config_td)) { goto error; } err = usb2_do_request_flags (sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 60000); if (err) { DPRINTF("device request failed, err=%s " "(ignored)\n", usb2_errstr(err)); error: length = UGETW(req->wLength); if ((req->bmRequestType & UT_READ) && length) { bzero(data, length); } } } static void kue_cfg_setword(struct kue_softc *sc, uint8_t breq, uint16_t word) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); kue_cfg_do_request(sc, &req, NULL); } static void kue_cfg_ctl(struct kue_softc *sc, uint8_t rw, uint8_t breq, uint16_t val, void *data, uint16_t len) { struct usb2_device_request req; if (rw == KUE_CTL_WRITE) { req.bmRequestType = UT_WRITE_VENDOR_DEVICE; } else { req.bmRequestType = UT_READ_VENDOR_DEVICE; } req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); kue_cfg_do_request(sc, &req, data); } static void kue_cfg_load_fw(struct kue_softc *sc) { struct usb2_device_descriptor *dd; uint16_t hwrev; dd = usb2_get_device_descriptor(sc->sc_udev); hwrev = UGETW(dd->bcdDevice); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (hwrev == 0x0202) { return; } /* load code segment */ kue_cfg_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_code_seg, sizeof(kue_code_seg)); /* load fixup segment */ kue_cfg_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_fix_seg, sizeof(kue_fix_seg)); /* send trigger command */ kue_cfg_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_trig_seg, sizeof(kue_trig_seg)); } static void kue_cfg_promisc_upd(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { kue_cfg_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, cc->if_nhash, cc->if_hash, cc->if_nhash * ETHER_ADDR_LEN); kue_cfg_setword(sc, KUE_CMD_SET_PKT_FILTER, cc->if_rxfilt); } static void kue_mchash(struct usb2_config_td_cc *cc, const uint8_t *ptr) { uint8_t i; i = cc->if_nhash; /* * If there are too many addresses for the internal filter, * switch over to allmulti mode. */ if (i == cc->if_mhash) { cc->if_rxfilt |= KUE_RXFILT_ALLMULTI; } else { bcopy(ptr, cc->if_hash + (i * ETHER_ADDR_LEN), ETHER_ADDR_LEN); cc->if_nhash++; } } static void kue_config_copy(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { bzero(cc, sizeof(*cc)); cc->if_mhash = sc->sc_mcfilt_max; cc->if_rxfilt = (KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST); usb2_ether_cc(sc->sc_ifp, &kue_mchash, cc); /* * If we want promiscuous mode, set the all-frames bit: */ if (cc->if_flags & IFF_PROMISC) { cc->if_rxfilt |= KUE_RXFILT_PROMISC; } if ((cc->if_flags & IFF_ALLMULTI) || (cc->if_flags & IFF_PROMISC)) { cc->if_rxfilt |= KUE_RXFILT_ALLMULTI; } else if (cc->if_nhash) { cc->if_rxfilt |= KUE_RXFILT_MULTICAST; } } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ static void kue_cfg_reset(struct kue_softc *sc) { struct usb2_config_descriptor *cd; usb2_error_t err; cd = usb2_get_config_descriptor(sc->sc_udev); err = usb2_req_set_config(sc->sc_udev, &sc->sc_mtx, cd->bConfigurationValue); if (err) { DPRINTF("reset failed (ignored)\n"); } /* * wait a little while for the chip to get its brains in order: */ err = usb2_config_td_sleep(&sc->sc_config_td, hz / 100); } /* * Probe for a KLSI chip. */ static int kue_probe(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb2_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bConfigIndex != KUE_CONFIG_IDX) { return (ENXIO); } if (uaa->info.bIfaceIndex != KUE_IFACE_IDX) { return (ENXIO); } return (usb2_lookup_id_by_uaa(kue_devs, sizeof(kue_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ static int kue_attach(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); struct kue_softc *sc = device_get_softc(dev); int32_t error; uint8_t iface_index; if (sc == NULL) { return (ENOMEM); } sc->sc_udev = uaa->device; sc->sc_dev = dev; sc->sc_unit = device_get_unit(dev); device_set_usb2_desc(dev); mtx_init(&sc->sc_mtx, "kue lock", NULL, MTX_DEF | MTX_RECURSE); usb2_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0); iface_index = KUE_IFACE_IDX; error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, kue_config, KUE_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB " "transfers failed!\n"); goto detach; } error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx, NULL, sizeof(struct usb2_config_td_cc), 16); if (error) { device_printf(dev, "could not setup config " "thread!\n"); goto detach; } mtx_lock(&sc->sc_mtx); /* start setup */ usb2_config_td_queue_command (&sc->sc_config_td, NULL, &kue_cfg_first_time_setup, 0, 0); kue_watchdog(sc); mtx_unlock(&sc->sc_mtx); return (0); /* success */ detach: kue_detach(dev); return (ENXIO); /* failure */ } static void kue_cfg_first_time_setup(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp; /* load the firmware into the NIC */ kue_cfg_load_fw(sc); /* reset the adapter */ kue_cfg_reset(sc); /* read ethernet descriptor */ kue_cfg_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, &sc->sc_desc, sizeof(sc->sc_desc)); sc->sc_mcfilt_max = KUE_MCFILTCNT(sc); if (sc->sc_mcfilt_max > KUE_MCFILT_MAX) { sc->sc_mcfilt_max = KUE_MCFILT_MAX; } mtx_unlock(&sc->sc_mtx); ifp = if_alloc(IFT_ETHER); mtx_lock(&sc->sc_mtx); if (ifp == NULL) { printf("kue%d: could not if_alloc()\n", sc->sc_unit); goto done; } sc->sc_evilhack = ifp; ifp->if_softc = sc; if_initname(ifp, "kue", sc->sc_unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = kue_ioctl_cb; ifp->if_start = kue_start_cb; ifp->if_watchdog = NULL; ifp->if_init = kue_init_cb; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); sc->sc_ifp = ifp; mtx_unlock(&sc->sc_mtx); ether_ifattach(ifp, sc->sc_desc.kue_macaddr); mtx_lock(&sc->sc_mtx); done: return; } static int kue_detach(device_t dev) { struct kue_softc *sc = device_get_softc(dev); struct ifnet *ifp; usb2_config_td_drain(&sc->sc_config_td); mtx_lock(&sc->sc_mtx); usb2_callout_stop(&sc->sc_watchdog); kue_cfg_pre_stop(sc, NULL, 0); ifp = sc->sc_ifp; mtx_unlock(&sc->sc_mtx); /* stop all USB transfers first */ usb2_transfer_unsetup(sc->sc_xfer, KUE_N_TRANSFER); /* get rid of any late children */ bus_generic_detach(dev); if (ifp) { ether_ifdetach(ifp); if_free(ifp); } usb2_config_td_unsetup(&sc->sc_config_td); usb2_callout_drain(&sc->sc_watchdog); mtx_destroy(&sc->sc_mtx); return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void kue_bulk_read_clear_stall_callback(struct usb2_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[KUE_BULK_DT_RD]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~KUE_FLAG_READ_STALL; usb2_transfer_start(xfer_other); } } static void kue_bulk_read_callback(struct usb2_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m = NULL; uint8_t buf[2]; uint16_t len; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (xfer->actlen <= (2 + sizeof(struct ether_header))) { ifp->if_ierrors++; goto tr_setup; } usb2_copy_out(xfer->frbuffers, 0, buf, 2); len = buf[0] | (buf[1] << 8); xfer->actlen -= 2; m = usb2_ether_get_mbuf(); if (m == NULL) { ifp->if_ierrors++; goto tr_setup; } xfer->actlen = min(xfer->actlen, m->m_len); xfer->actlen = min(xfer->actlen, len); usb2_copy_out(xfer->frbuffers, 2, m->m_data, xfer->actlen); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = xfer->actlen; case USB_ST_SETUP: tr_setup: if (sc->sc_flags & KUE_FLAG_READ_STALL) { usb2_transfer_start(sc->sc_xfer[KUE_BULK_CS_RD]); } else { xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); } /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "if_input" here, and not some lines up! */ if (m) { mtx_unlock(&sc->sc_mtx); (ifp->if_input) (ifp, m); mtx_lock(&sc->sc_mtx); } return; default: /* Error */ if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= KUE_FLAG_READ_STALL; usb2_transfer_start(sc->sc_xfer[KUE_BULK_CS_RD]); } DPRINTF("bulk read error, %s\n", usb2_errstr(xfer->error)); return; } } static void kue_bulk_write_clear_stall_callback(struct usb2_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[KUE_BULK_DT_WR]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~KUE_FLAG_WRITE_STALL; usb2_transfer_start(xfer_other); } } static void kue_bulk_write_callback(struct usb2_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; uint32_t total_len; uint32_t temp_len; uint8_t buf[2]; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_opackets++; case USB_ST_SETUP: if (sc->sc_flags & KUE_FLAG_WRITE_STALL) { usb2_transfer_start(sc->sc_xfer[KUE_BULK_CS_WR]); goto done; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { goto done; } if (m->m_pkthdr.len > MCLBYTES) { m->m_pkthdr.len = MCLBYTES; } temp_len = (m->m_pkthdr.len + 2); total_len = (temp_len + (64 - (temp_len % 64))); /* the first two bytes are the frame length */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usb2_copy_in(xfer->frbuffers, 0, buf, 2); usb2_m_copy_in(xfer->frbuffers, 2, m, 0, m->m_pkthdr.len); usb2_bzero(xfer->frbuffers, temp_len, total_len - temp_len); xfer->frlengths[0] = total_len; /* * if there's a BPF listener, bounce a copy * of this frame to him: */ BPF_MTAP(ifp, m); m_freem(m); usb2_start_hardware(xfer); done: return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usb2_errstr(xfer->error)); if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= KUE_FLAG_WRITE_STALL; usb2_transfer_start(sc->sc_xfer[KUE_BULK_CS_WR]); } ifp->if_oerrors++; return; } } static void kue_start_cb(struct ifnet *ifp) { struct kue_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); kue_start_transfers(sc); mtx_unlock(&sc->sc_mtx); } static void kue_start_transfers(struct kue_softc *sc) { if ((sc->sc_flags & KUE_FLAG_LL_READY) && (sc->sc_flags & KUE_FLAG_HL_READY)) { /* * start the USB transfers, if not already started: */ usb2_transfer_start(sc->sc_xfer[KUE_BULK_DT_RD]); usb2_transfer_start(sc->sc_xfer[KUE_BULK_DT_WR]); } } static void kue_init_cb(void *arg) { struct kue_softc *sc = arg; mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &kue_cfg_pre_init, &kue_cfg_init, 0, 0); mtx_unlock(&sc->sc_mtx); } static void kue_cfg_pre_init(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; /* immediate configuration */ kue_cfg_pre_stop(sc, cc, 0); ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_flags |= KUE_FLAG_HL_READY; } static void kue_cfg_init(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { /* set MAC address */ kue_cfg_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, cc->if_lladdr, ETHER_ADDR_LEN); /* I'm not sure how to tune these. */ #if 0 /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_cfg_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_cfg_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* load the multicast filter */ kue_cfg_promisc_upd(sc, cc, 0); sc->sc_flags |= (KUE_FLAG_READ_STALL | KUE_FLAG_WRITE_STALL | KUE_FLAG_LL_READY); kue_start_transfers(sc); } static int kue_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data) { struct kue_softc *sc = ifp->if_softc; int error = 0; switch (command) { case SIOCSIFFLAGS: mtx_lock(&sc->sc_mtx); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &kue_config_copy, &kue_cfg_promisc_upd, 0, 0); } else { usb2_config_td_queue_command (&sc->sc_config_td, &kue_cfg_pre_init, &kue_cfg_init, 0, 0); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &kue_cfg_pre_stop, &kue_cfg_stop, 0, 0); } } mtx_unlock(&sc->sc_mtx); break; case SIOCADDMULTI: case SIOCDELMULTI: mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &kue_config_copy, &kue_cfg_promisc_upd, 0, 0); mtx_unlock(&sc->sc_mtx); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void kue_cfg_tick(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; if ((ifp == NULL)) { /* not ready */ return; } /* start stopped transfers, if any */ kue_start_transfers(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void kue_watchdog(void *arg) { struct kue_softc *sc = arg; usb2_config_td_queue_command (&sc->sc_config_td, NULL, &kue_cfg_tick, 0, 0); usb2_callout_reset(&sc->sc_watchdog, hz, &kue_watchdog, sc); } static void kue_cfg_pre_stop(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; if (cc) { /* copy the needed configuration */ kue_config_copy(sc, cc, refcount); } /* immediate configuration */ if (ifp) { /* clear flags */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } sc->sc_flags &= ~(KUE_FLAG_HL_READY | KUE_FLAG_LL_READY); /* * stop all the transfers, if not already stopped: */ usb2_transfer_stop(sc->sc_xfer[KUE_BULK_DT_WR]); usb2_transfer_stop(sc->sc_xfer[KUE_BULK_DT_RD]); usb2_transfer_stop(sc->sc_xfer[KUE_BULK_CS_WR]); usb2_transfer_stop(sc->sc_xfer[KUE_BULK_CS_RD]); } static void kue_cfg_stop(struct kue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int kue_shutdown(device_t dev) { struct kue_softc *sc = device_get_softc(dev); mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &kue_cfg_pre_stop, &kue_cfg_stop, 0, 0); mtx_unlock(&sc->sc_mtx); return (0); }