/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: head/sys/dev/usb2/ethernet/if_cue2.c 185948 2008-12-11 23:13:02Z thompsa $"); /* * CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate * adapters and others. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The * RX filter uses a 512-bit multicast hash table, single perfect entry * for the station address, and promiscuous mode. Unlike the ADMtek * and KLSI chips, the CATC ASIC supports read and write combining * mode where multiple packets can be transfered using a single bulk * transaction, which helps performance a great deal. */ /* * NOTE: all function names beginning like "cue_cfg_" can only * be called from within the config thread function ! */ #include #include #include #include #define usb2_config_td_cc usb2_ether_cc #define usb2_config_td_softc cue_softc #define USB_DEBUG_VAR cue_debug #include #include #include #include #include #include #include #include #include #include /* * Various supported device vendors/products. */ /* Belkin F5U111 adapter covered by NETMATE entry */ static const struct usb2_device_id cue_devs[] = { {USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE, 0)}, {USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2, 0)}, {USB_VPI(USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK, 0)}, }; /* prototypes */ static device_probe_t cue_probe; static device_attach_t cue_attach; static device_detach_t cue_detach; static device_shutdown_t cue_shutdown; static usb2_callback_t cue_bulk_read_clear_stall_callback; static usb2_callback_t cue_bulk_read_callback; static usb2_callback_t cue_bulk_write_clear_stall_callback; static usb2_callback_t cue_bulk_write_callback; static usb2_config_td_command_t cue_cfg_promisc_upd; static usb2_config_td_command_t cue_config_copy; static usb2_config_td_command_t cue_cfg_first_time_setup; static usb2_config_td_command_t cue_cfg_tick; static usb2_config_td_command_t cue_cfg_pre_init; static usb2_config_td_command_t cue_cfg_init; static usb2_config_td_command_t cue_cfg_pre_stop; static usb2_config_td_command_t cue_cfg_stop; static void cue_cfg_do_request(struct cue_softc *, struct usb2_device_request *, void *); static uint8_t cue_cfg_csr_read_1(struct cue_softc *, uint16_t); static uint16_t cue_cfg_csr_read_2(struct cue_softc *, uint8_t); static void cue_cfg_csr_write_1(struct cue_softc *, uint16_t, uint16_t); static void cue_cfg_mem(struct cue_softc *, uint8_t, uint16_t, void *, uint16_t); static void cue_cfg_getmac(struct cue_softc *, void *); static void cue_mchash(struct usb2_config_td_cc *, const uint8_t *); static void cue_cfg_reset(struct cue_softc *); static void cue_start_cb(struct ifnet *); static void cue_start_transfers(struct cue_softc *); static void cue_init_cb(void *); static int cue_ioctl_cb(struct ifnet *, u_long, caddr_t); static void cue_watchdog(void *); #if USB_DEBUG static int cue_debug = 0; SYSCTL_NODE(_hw_usb2, OID_AUTO, cue, CTLFLAG_RW, 0, "USB cue"); SYSCTL_INT(_hw_usb2_cue, OID_AUTO, debug, CTLFLAG_RW, &cue_debug, 0, "Debug level"); #endif static const struct usb2_config cue_config[CUE_ENDPT_MAX] = { [0] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,}, .mh.callback = &cue_bulk_write_callback, .mh.timeout = 10000, /* 10 seconds */ }, [1] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .mh.callback = &cue_bulk_read_callback, }, [2] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &cue_bulk_write_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, [3] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &cue_bulk_read_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, }; static device_method_t cue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cue_probe), DEVMETHOD(device_attach, cue_attach), DEVMETHOD(device_detach, cue_detach), DEVMETHOD(device_shutdown, cue_shutdown), {0, 0} }; static driver_t cue_driver = { .name = "cue", .methods = cue_methods, .size = sizeof(struct cue_softc), }; static devclass_t cue_devclass; DRIVER_MODULE(cue, ushub, cue_driver, cue_devclass, NULL, 0); MODULE_DEPEND(cue, usb2_ethernet, 1, 1, 1); MODULE_DEPEND(cue, usb2_core, 1, 1, 1); MODULE_DEPEND(cue, ether, 1, 1, 1); static void cue_cfg_do_request(struct cue_softc *sc, struct usb2_device_request *req, void *data) { uint16_t length; usb2_error_t err; if (usb2_config_td_is_gone(&sc->sc_config_td)) { goto error; } err = usb2_do_request_flags (sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000); if (err) { DPRINTF("device request failed, err=%s " "(ignored)\n", usb2_errstr(err)); error: length = UGETW(req->wLength); if ((req->bmRequestType & UT_READ) && length) { bzero(data, length); } } return; } #define CUE_CFG_SETBIT(sc, reg, x) \ cue_cfg_csr_write_1(sc, reg, cue_cfg_csr_read_1(sc, reg) | (x)) #define CUE_CFG_CLRBIT(sc, reg, x) \ cue_cfg_csr_write_1(sc, reg, cue_cfg_csr_read_1(sc, reg) & ~(x)) static uint8_t cue_cfg_csr_read_1(struct cue_softc *sc, uint16_t reg) { struct usb2_device_request req; uint8_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); cue_cfg_do_request(sc, &req, &val); return (val); } static uint16_t cue_cfg_csr_read_2(struct cue_softc *sc, uint8_t reg) { struct usb2_device_request req; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); cue_cfg_do_request(sc, &req, &val); return (le16toh(val)); } static void cue_cfg_csr_write_1(struct cue_softc *sc, uint16_t reg, uint16_t val) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); cue_cfg_do_request(sc, &req, NULL); return; } static void cue_cfg_mem(struct cue_softc *sc, uint8_t cmd, uint16_t addr, void *buf, uint16_t len) { struct usb2_device_request req; if (cmd == CUE_CMD_READSRAM) { req.bmRequestType = UT_READ_VENDOR_DEVICE; } else { req.bmRequestType = UT_WRITE_VENDOR_DEVICE; } req.bRequest = cmd; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); cue_cfg_do_request(sc, &req, buf); return; } static void cue_cfg_getmac(struct cue_softc *sc, void *buf) { struct usb2_device_request req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_GET_MACADDR; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, ETHER_ADDR_LEN); cue_cfg_do_request(sc, &req, buf); return; } #define CUE_BITS 9 static void cue_mchash(struct usb2_config_td_cc *cc, const uint8_t *addr) { uint16_t h; h = ether_crc32_le(addr, ETHER_ADDR_LEN) & ((1 << CUE_BITS) - 1); cc->if_hash[h >> 3] |= 1 << (h & 0x7); return; } static void cue_cfg_promisc_upd(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { /* if we want promiscuous mode, set the allframes bit */ if (cc->if_flags & IFF_PROMISC) { CUE_CFG_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); } else { CUE_CFG_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); } /* write multicast hash-bits */ cue_cfg_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, cc->if_hash, CUE_MCAST_TABLE_LEN); return; } static void cue_config_copy(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { bzero(cc, sizeof(*cc)); usb2_ether_cc(sc->sc_ifp, &cue_mchash, cc); return; } static void cue_cfg_reset(struct cue_softc *sc) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_RESET; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); cue_cfg_do_request(sc, &req, NULL); /* * wait a little while for the chip to get its brains in order: */ (void)usb2_config_td_sleep(&sc->sc_config_td, hz / 100); return; } static int cue_probe(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb2_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bConfigIndex != CUE_CONFIG_IDX) { return (ENXIO); } if (uaa->info.bIfaceIndex != CUE_IFACE_IDX) { return (ENXIO); } return (usb2_lookup_id_by_uaa(cue_devs, sizeof(cue_devs), uaa)); } static int cue_attach(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); struct cue_softc *sc = device_get_softc(dev); uint8_t iface_index; int32_t error; if (sc == NULL) { return (ENOMEM); } sc->sc_udev = uaa->device; sc->sc_dev = dev; sc->sc_unit = device_get_unit(dev); device_set_usb2_desc(dev); mtx_init(&sc->sc_mtx, "cue lock", NULL, MTX_DEF | MTX_RECURSE); usb2_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); iface_index = CUE_IFACE_IDX; error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, cue_config, CUE_ENDPT_MAX, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB " "transfers failed!\n"); goto detach; } error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx, NULL, sizeof(struct usb2_config_td_cc), 16); if (error) { device_printf(dev, "could not setup config " "thread!\n"); goto detach; } mtx_lock(&sc->sc_mtx); /* start setup */ usb2_config_td_queue_command (&sc->sc_config_td, NULL, &cue_cfg_first_time_setup, 0, 0); /* start watchdog (will exit mutex) */ cue_watchdog(sc); return (0); /* success */ detach: cue_detach(dev); return (ENXIO); /* failure */ } static void cue_cfg_first_time_setup(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; #if 0 /* Reset the adapter. */ cue_cfg_reset(sc); #endif /* * Get station address. */ cue_cfg_getmac(sc, eaddr); mtx_unlock(&sc->sc_mtx); ifp = if_alloc(IFT_ETHER); mtx_lock(&sc->sc_mtx); if (ifp == NULL) { printf("cue%d: could not if_alloc()\n", sc->sc_unit); goto done; } sc->sc_evilhack = ifp; ifp->if_softc = sc; if_initname(ifp, "cue", sc->sc_unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = cue_ioctl_cb; ifp->if_start = cue_start_cb; ifp->if_watchdog = NULL; ifp->if_init = cue_init_cb; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); sc->sc_ifp = ifp; mtx_unlock(&sc->sc_mtx); ether_ifattach(ifp, eaddr); mtx_lock(&sc->sc_mtx); done: return; } static int cue_detach(device_t dev) { struct cue_softc *sc = device_get_softc(dev); struct ifnet *ifp; usb2_config_td_drain(&sc->sc_config_td); mtx_lock(&sc->sc_mtx); usb2_callout_stop(&sc->sc_watchdog); cue_cfg_pre_stop(sc, NULL, 0); ifp = sc->sc_ifp; mtx_unlock(&sc->sc_mtx); /* stop all USB transfers first */ usb2_transfer_unsetup(sc->sc_xfer, CUE_ENDPT_MAX); /* get rid of any late children */ bus_generic_detach(dev); if (ifp) { ether_ifdetach(ifp); if_free(ifp); } usb2_config_td_unsetup(&sc->sc_config_td); usb2_callout_drain(&sc->sc_watchdog); mtx_destroy(&sc->sc_mtx); return (0); } static void cue_bulk_read_clear_stall_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[1]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~CUE_FLAG_READ_STALL; usb2_transfer_start(xfer_other); } return; } static void cue_bulk_read_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m = NULL; uint8_t buf[2]; uint16_t len; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (xfer->actlen <= (2 + sizeof(struct ether_header))) { ifp->if_ierrors++; goto tr_setup; } usb2_copy_out(xfer->frbuffers, 0, buf, 2); len = buf[0] | (buf[1] << 8); xfer->actlen -= 2; m = usb2_ether_get_mbuf(); if (m == NULL) { ifp->if_ierrors++; goto tr_setup; } xfer->actlen = min(xfer->actlen, m->m_len); xfer->actlen = min(xfer->actlen, len); usb2_copy_out(xfer->frbuffers, 2, m->m_data, xfer->actlen); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = xfer->actlen; case USB_ST_SETUP: tr_setup: if (sc->sc_flags & CUE_FLAG_READ_STALL) { usb2_transfer_start(sc->sc_xfer[3]); } else { xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); } /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "if_input" here, and not some lines up! */ if (m) { mtx_unlock(&sc->sc_mtx); (ifp->if_input) (ifp, m); mtx_lock(&sc->sc_mtx); } return; default: /* Error */ if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= CUE_FLAG_READ_STALL; usb2_transfer_start(sc->sc_xfer[3]); } DPRINTF("bulk read error, %s\n", usb2_errstr(xfer->error)); return; } } static void cue_cfg_tick(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; if ((ifp == NULL)) { /* not ready */ return; } ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_SINGLECOLL); ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_MULTICOLL); ifp->if_collisions += cue_cfg_csr_read_2(sc, CUE_TX_EXCESSCOLL); if (cue_cfg_csr_read_2(sc, CUE_RX_FRAMEERR)) { ifp->if_ierrors++; } /* start stopped transfers, if any */ cue_start_transfers(sc); return; } static void cue_start_cb(struct ifnet *ifp) { struct cue_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); cue_start_transfers(sc); mtx_unlock(&sc->sc_mtx); return; } static void cue_start_transfers(struct cue_softc *sc) { if ((sc->sc_flags & CUE_FLAG_LL_READY) && (sc->sc_flags & CUE_FLAG_HL_READY)) { /* * start the USB transfers, if not already started: */ usb2_transfer_start(sc->sc_xfer[1]); usb2_transfer_start(sc->sc_xfer[0]); } return; } static void cue_bulk_write_clear_stall_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[0]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~CUE_FLAG_WRITE_STALL; usb2_transfer_start(xfer_other); } return; } static void cue_bulk_write_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; uint8_t buf[2]; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_opackets++; case USB_ST_SETUP: if (sc->sc_flags & CUE_FLAG_WRITE_STALL) { usb2_transfer_start(sc->sc_xfer[2]); goto done; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { goto done; } if (m->m_pkthdr.len > MCLBYTES) { m->m_pkthdr.len = MCLBYTES; } xfer->frlengths[0] = (m->m_pkthdr.len + 2); /* the first two bytes are the frame length */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usb2_copy_in(xfer->frbuffers, 0, buf, 2); usb2_m_copy_in(xfer->frbuffers, 2, m, 0, m->m_pkthdr.len); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m); m_freem(m); usb2_start_hardware(xfer); done: return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usb2_errstr(xfer->error)); if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= CUE_FLAG_WRITE_STALL; usb2_transfer_start(sc->sc_xfer[2]); } ifp->if_oerrors++; return; } } static void cue_init_cb(void *arg) { struct cue_softc *sc = arg; mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &cue_cfg_pre_init, &cue_cfg_init, 0, 0); mtx_unlock(&sc->sc_mtx); return; } static void cue_cfg_pre_init(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; /* immediate configuration */ cue_cfg_pre_stop(sc, cc, 0); ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_flags |= CUE_FLAG_HL_READY; return; } static void cue_cfg_init(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { uint8_t i; /* * Cancel pending I/O and free all RX/TX buffers. */ cue_cfg_stop(sc, cc, 0); #if 0 cue_cfg_reset(sc); #endif /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) { cue_cfg_csr_write_1(sc, CUE_PAR0 - i, cc->if_lladdr[i]); } /* Enable RX logic. */ cue_cfg_csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON); /* Load the multicast filter */ cue_cfg_promisc_upd(sc, cc, 0); /* * Set the number of RX and TX buffers that we want * to reserve inside the ASIC. */ cue_cfg_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES); cue_cfg_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES); /* Set advanced operation modes. */ cue_cfg_csr_write_1(sc, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x01);/* 1 wait state */ /* Program the LED operation. */ cue_cfg_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK); sc->sc_flags |= (CUE_FLAG_READ_STALL | CUE_FLAG_WRITE_STALL | CUE_FLAG_LL_READY); cue_start_transfers(sc); return; } static int cue_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data) { struct cue_softc *sc = ifp->if_softc; int error = 0; switch (command) { case SIOCSIFFLAGS: mtx_lock(&sc->sc_mtx); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &cue_config_copy, &cue_cfg_promisc_upd, 0, 0); } else { usb2_config_td_queue_command (&sc->sc_config_td, &cue_cfg_pre_init, &cue_cfg_init, 0, 0); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &cue_cfg_pre_stop, &cue_cfg_stop, 0, 0); } } mtx_unlock(&sc->sc_mtx); break; case SIOCADDMULTI: case SIOCDELMULTI: mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &cue_config_copy, &cue_cfg_promisc_upd, 0, 0); mtx_unlock(&sc->sc_mtx); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void cue_watchdog(void *arg) { struct cue_softc *sc = arg; mtx_assert(&sc->sc_mtx, MA_OWNED); usb2_config_td_queue_command (&sc->sc_config_td, NULL, &cue_cfg_tick, 0, 0); usb2_callout_reset(&sc->sc_watchdog, hz, &cue_watchdog, sc); mtx_unlock(&sc->sc_mtx); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void cue_cfg_pre_stop(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; if (cc) { /* copy the needed configuration */ cue_config_copy(sc, cc, refcount); } /* immediate configuration */ if (ifp) { /* clear flags */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } sc->sc_flags &= ~(CUE_FLAG_HL_READY | CUE_FLAG_LL_READY); /* * stop all the transfers, if not already stopped: */ usb2_transfer_stop(sc->sc_xfer[0]); usb2_transfer_stop(sc->sc_xfer[1]); usb2_transfer_stop(sc->sc_xfer[2]); usb2_transfer_stop(sc->sc_xfer[3]); return; } static void cue_cfg_stop(struct cue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { cue_cfg_csr_write_1(sc, CUE_ETHCTL, 0); cue_cfg_reset(sc); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int cue_shutdown(device_t dev) { struct cue_softc *sc = device_get_softc(dev); mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &cue_cfg_pre_stop, &cue_cfg_stop, 0, 0); mtx_unlock(&sc->sc_mtx); return (0); }