/* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */ /*- * Copyright (c) 2006 Shigeaki Tagashira * Copyright (c) 2006 Damien Bergamini * Copyright (c) 2005, 2006 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ #include __FBSDID("$FreeBSD: head/sys/dev/nfe/if_nfe.c 166901 2007-02-23 12:19:07Z piso $"); /* Uncomment the following line to enable polling. */ /* #define DEVICE_POLLING */ #define NFE_JUMBO #define NFE_CSUM #define NVLAN 0 #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(nfe, pci, 1, 1, 1); MODULE_DEPEND(nfe, ether, 1, 1, 1); MODULE_DEPEND(nfe, miibus, 1, 1, 1); #include "miibus_if.h" static int nfe_probe(device_t); static int nfe_attach(device_t); static int nfe_detach(device_t); static void nfe_shutdown(device_t); static int nfe_miibus_readreg(device_t, int, int); static int nfe_miibus_writereg(device_t, int, int, int); static void nfe_miibus_statchg(device_t); static int nfe_ioctl(struct ifnet *, u_long, caddr_t); static void nfe_intr(void *); static void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); static void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); static void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); static void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); static void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); static void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); static void nfe_rxeof(struct nfe_softc *); static void nfe_txeof(struct nfe_softc *); static int nfe_encap(struct nfe_softc *, struct mbuf *); static void nfe_setmulti(struct nfe_softc *); static void nfe_start(struct ifnet *); static void nfe_start_locked(struct ifnet *); static void nfe_watchdog(struct ifnet *); static void nfe_init(void *); static void nfe_init_locked(void *); static void nfe_stop(struct ifnet *, int); static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); static void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); static void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); static int nfe_ifmedia_upd(struct ifnet *); static int nfe_ifmedia_upd_locked(struct ifnet *); static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void nfe_tick(void *); static void nfe_tick_locked(struct nfe_softc *); static void nfe_get_macaddr(struct nfe_softc *, u_char *); static void nfe_set_macaddr(struct nfe_softc *, u_char *); static void nfe_dma_map_segs (void *, bus_dma_segment_t *, int, int); #ifdef DEVICE_POLLING static void nfe_poll_locked(struct ifnet *, enum poll_cmd, int); #endif #ifdef NFE_DEBUG int nfedebug = 0; #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx) #define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx) #define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED) #define letoh16(x) le16toh(x) #define NV_RID 0x10 static device_method_t nfe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nfe_probe), DEVMETHOD(device_attach, nfe_attach), DEVMETHOD(device_detach, nfe_detach), DEVMETHOD(device_shutdown, nfe_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, nfe_miibus_readreg), DEVMETHOD(miibus_writereg, nfe_miibus_writereg), DEVMETHOD(miibus_statchg, nfe_miibus_statchg), { 0, 0 } }; static driver_t nfe_driver = { "nfe", nfe_methods, sizeof(struct nfe_softc) }; static devclass_t nfe_devclass; DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0); DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0); static struct nfe_type nfe_devs[] = { {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN, "NVIDIA nForce MCP Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN, "NVIDIA nForce2 MCP2 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1, "NVIDIA nForce2 400 MCP4 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2, "NVIDIA nForce2 400 MCP5 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1, "NVIDIA nForce3 MCP3 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN, "NVIDIA nForce3 250 MCP6 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4, "NVIDIA nForce3 MCP7 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1, "NVIDIA nForce4 CK804 MCP8 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2, "NVIDIA nForce4 CK804 MCP9 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1, "NVIDIA nForce MCP04 Networking Adapter"}, // MCP10 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2, "NVIDIA nForce MCP04 Networking Adapter"}, // MCP11 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1, "NVIDIA nForce 430 MCP12 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2, "NVIDIA nForce 430 MCP13 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1, "NVIDIA nForce MCP55 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2, "NVIDIA nForce MCP55 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1, "NVIDIA nForce MCP61 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2, "NVIDIA nForce MCP61 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3, "NVIDIA nForce MCP61 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2, "NVIDIA nForce MCP61 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1, "NVIDIA nForce MCP65 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2, "NVIDIA nForce MCP65 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3, "NVIDIA nForce MCP65 Networking Adapter"}, {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2, "NVIDIA nForce MCP65 Networking Adapter"}, {0, 0, NULL} }; /* Probe for supported hardware ID's */ static int nfe_probe(device_t dev) { struct nfe_type *t; t = nfe_devs; /* Check for matching PCI DEVICE ID's */ while (t->name != NULL) { if ((pci_get_vendor(dev) == t->vid_id) && (pci_get_device(dev) == t->dev_id)) { device_set_desc(dev, t->name); return (0); } t++; } return (ENXIO); } static int nfe_attach(device_t dev) { struct nfe_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; sc = device_get_softc(dev); unit = device_get_unit(dev); sc->nfe_dev = dev; sc->nfe_unit = unit; mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0); pci_enable_busmaster(dev); rid = NV_RID; sc->nfe_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->nfe_res == NULL) { printf ("nfe%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->nfe_memt = rman_get_bustag(sc->nfe_res); sc->nfe_memh = rman_get_bushandle(sc->nfe_res); /* Allocate interrupt */ rid = 0; sc->nfe_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->nfe_irq == NULL) { printf("nfe%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } nfe_get_macaddr(sc, sc->eaddr); sc->nfe_flags = 0; switch (pci_get_device(dev)) { case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP51_LAN1: case PCI_PRODUCT_NVIDIA_MCP51_LAN2: sc->nfe_flags |= NFE_40BIT_ADDR; break; case PCI_PRODUCT_NVIDIA_CK804_LAN1: case PCI_PRODUCT_NVIDIA_CK804_LAN2: case PCI_PRODUCT_NVIDIA_MCP04_LAN1: case PCI_PRODUCT_NVIDIA_MCP04_LAN2: sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP55_LAN1: case PCI_PRODUCT_NVIDIA_MCP55_LAN2: sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_HW_VLAN; break; case PCI_PRODUCT_NVIDIA_MCP61_LAN1: case PCI_PRODUCT_NVIDIA_MCP61_LAN2: case PCI_PRODUCT_NVIDIA_MCP61_LAN3: case PCI_PRODUCT_NVIDIA_MCP61_LAN4: sc->nfe_flags |= NFE_40BIT_ADDR; break; case PCI_PRODUCT_NVIDIA_MCP65_LAN1: case PCI_PRODUCT_NVIDIA_MCP65_LAN2: case PCI_PRODUCT_NVIDIA_MCP65_LAN3: case PCI_PRODUCT_NVIDIA_MCP65_LAN4: sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; break; } /* * Allocate the parent bus DMA tag appropriate for PCI. */ #define NFE_NSEG_NEW 32 error = bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, NFE_NSEG_NEW, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nfe_parent_tag); if (error) goto fail; ifp = sc->nfe_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { printf("nfe%d: can not if_alloc()\n", unit); error = ENOSPC; goto fail; } sc->nfe_mtu = ifp->if_mtu = ETHERMTU; /* * Allocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { printf("nfe%d: could not allocate Tx ring\n", unit); error = ENXIO; goto fail; } if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { printf("nfe%d: could not allocate Rx ring\n", unit); nfe_free_tx_ring(sc, &sc->txq); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nfe_ioctl; ifp->if_start = nfe_start; /* ifp->if_hwassist = NFE_CSUM_FEATURES; */ ifp->if_watchdog = nfe_watchdog; ifp->if_init = nfe_init; ifp->if_baudrate = IF_Gbps(1); ifp->if_snd.ifq_maxlen = NFE_IFQ_MAXLEN; ifp->if_capabilities = IFCAP_VLAN_MTU; #ifdef NFE_JUMBO ifp->if_capabilities |= IFCAP_JUMBO_MTU; #else ifp->if_capabilities &= ~IFCAP_JUMBO_MTU; sc->nfe_flags &= ~NFE_JUMBO_SUP; #endif #if NVLAN > 0 if (sc->nfe_flags & NFE_HW_VLAN) ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif #ifdef NFE_CSUM if (sc->nfe_flags & NFE_HW_CSUM) { ifp->if_capabilities |= IFCAP_HWCSUM; ifp->if_capenable |= IFCAP_HWCSUM; ifp->if_hwassist = NFE_CSUM_FEATURES; } #else sc->nfe_flags &= ~NFE_HW_CSUM; #endif ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* Do MII setup */ if (mii_phy_probe(dev, &sc->nfe_miibus, nfe_ifmedia_upd, nfe_ifmedia_sts)) { printf("nfe%d: MII without any phy!\n", unit); error = ENXIO; goto fail; } ether_ifattach(ifp, sc->eaddr); error = bus_setup_intr(dev, sc->nfe_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, nfe_intr, sc, &sc->nfe_intrhand); if (error) { printf("nfe%d: couldn't set up irq\n", unit); ether_ifdetach(ifp); goto fail; } fail: if (error) nfe_detach(dev); return (error); } static int nfe_detach(device_t dev) { struct nfe_softc *sc; struct ifnet *ifp; u_char eaddr[ETHER_ADDR_LEN]; int i; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized")); ifp = sc->nfe_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif for (i = 0; i < ETHER_ADDR_LEN; i++) { eaddr[i] = sc->eaddr[5 - i]; } nfe_set_macaddr(sc, eaddr); if (device_is_attached(dev)) { NFE_LOCK(sc); nfe_stop(ifp, 1); ifp->if_flags &= ~IFF_UP; NFE_UNLOCK(sc); callout_drain(&sc->nfe_stat_ch); ether_ifdetach(ifp); } if (ifp) if_free(ifp); if (sc->nfe_miibus) device_delete_child(dev, sc->nfe_miibus); bus_generic_detach(dev); if (sc->nfe_intrhand) bus_teardown_intr(dev, sc->nfe_irq, sc->nfe_intrhand); if (sc->nfe_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nfe_irq); if (sc->nfe_res) bus_release_resource(dev, SYS_RES_MEMORY, NV_RID, sc->nfe_res); nfe_free_tx_ring(sc, &sc->txq); nfe_free_rx_ring(sc, &sc->rxq); if (sc->nfe_parent_tag) bus_dma_tag_destroy(sc->nfe_parent_tag); mtx_destroy(&sc->nfe_mtx); return (0); } static void nfe_miibus_statchg(device_t dev) { struct nfe_softc *sc; struct mii_data *mii; u_int32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; sc = device_get_softc(dev); mii = device_get_softc(sc->nfe_miibus); phy = NFE_READ(sc, NFE_PHY_IFACE); phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); seed = NFE_READ(sc, NFE_RNDSEED); seed &= ~NFE_SEED_MASK; if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { phy |= NFE_PHY_HDX; /* half-duplex */ misc |= NFE_MISC1_HDX; } switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: /* full-duplex only */ link |= NFE_MEDIA_1000T; seed |= NFE_SEED_1000T; phy |= NFE_PHY_1000T; break; case IFM_100_TX: link |= NFE_MEDIA_100TX; seed |= NFE_SEED_100TX; phy |= NFE_PHY_100TX; break; case IFM_10_T: link |= NFE_MEDIA_10T; seed |= NFE_SEED_10T; break; } NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ NFE_WRITE(sc, NFE_PHY_IFACE, phy); NFE_WRITE(sc, NFE_MISC1, misc); NFE_WRITE(sc, NFE_LINKSPEED, link); } static int nfe_miibus_readreg(device_t dev, int phy, int reg) { struct nfe_softc *sc = device_get_softc(dev); u_int32_t val; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } if (ntries == 1000) { DPRINTFN(2, ("nfe%d: timeout waiting for PHY\n", sc->nfe_unit)); return 0; } if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { DPRINTFN(2, ("nfe%d: could not read PHY\n", sc->nfe_unit)); return 0; } val = NFE_READ(sc, NFE_PHY_DATA); if (val != 0xffffffff && val != 0) sc->mii_phyaddr = phy; DPRINTFN(2, ("nfe%d: mii read phy %d reg 0x%x ret 0x%x\n", sc->nfe_unit, phy, reg, val)); return val; } static int nfe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct nfe_softc *sc = device_get_softc(dev); u_int32_t ctl; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_DATA, val); ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; NFE_WRITE(sc, NFE_PHY_CTL, ctl); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } #ifdef NFE_DEBUG if (nfedebug >= 2 && ntries == 1000) printf("could not write to PHY\n"); #endif return 0; } static int nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; void **desc; bus_addr_t physaddr; int i, error, descsize; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->cur = ring->next = 0; ring->bufsz = (sc->nfe_mtu + NFE_RX_HEADERS <= MCLBYTES) ? MCLBYTES : MJUM9BYTES; error = bus_dma_tag_create(sc->nfe_parent_tag, PAGE_SIZE, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ NFE_RX_RING_COUNT * descsize, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &ring->rx_desc_tag); if (error != 0) { printf("nfe%d: could not create desc DMA tag\n", sc->nfe_unit); goto fail; } /* allocate memory to desc */ error = bus_dmamem_alloc(ring->rx_desc_tag, (void **)desc, BUS_DMA_NOWAIT, &ring->rx_desc_map); if (error != 0) { printf("nfe%d: could not create desc DMA map\n", sc->nfe_unit); goto fail; } /* map desc to device visible address space */ error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, *desc, NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ring->rx_desc_segs, BUS_DMA_NOWAIT); if (error != 0) { printf("nfe%d: could not load desc DMA map\n", sc->nfe_unit); goto fail; } bzero(*desc, NFE_RX_RING_COUNT * descsize); ring->rx_desc_addr = ring->rx_desc_segs.ds_addr; ring->physaddr = ring->rx_desc_addr; /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("nfe%d: could not allocate rx mbuf\n", sc->nfe_unit); error = ENOMEM; goto fail; } error = bus_dma_tag_create(sc->nfe_parent_tag, ETHER_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &data->rx_data_tag); if (error != 0) { printf("nfe%d: could not create DMA map\n", sc->nfe_unit); goto fail; } error = bus_dmamap_create(data->rx_data_tag, 0, &data->rx_data_map); if (error != 0) { printf("nfe%d: could not allocate mbuf cluster\n", sc->nfe_unit); goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { error = ENOMEM; goto fail; } error = bus_dmamap_load(data->rx_data_tag, data->rx_data_map, mtod(data->m, void *), ring->bufsz, nfe_dma_map_segs, &data->rx_data_segs, BUS_DMA_NOWAIT); if (error != 0) { printf("nfe%d: could not load rx buf DMA map\n", sc->nfe_unit); goto fail; } data->rx_data_addr = data->rx_data_segs.ds_addr; physaddr = data->rx_data_addr; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[i]; #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); } else { desc32 = &sc->rxq.desc32[i]; desc32->physaddr = htole32(physaddr); desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: nfe_free_rx_ring(sc, ring); return error; } static void nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { int i; for (i = 0; i < NFE_RX_RING_COUNT; i++) { if (sc->nfe_flags & NFE_40BIT_ADDR) { ring->desc64[i].length = htole16(ring->bufsz); ring->desc64[i].flags = htole16(NFE_RX_READY); } else { ring->desc32[i].length = htole16(ring->bufsz); ring->desc32[i].flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } static void nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; void *desc; int i, descsize; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map); bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map); bus_dma_tag_destroy(ring->rx_desc_tag); } for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &ring->data[i]; if (data->rx_data_map != NULL) { bus_dmamap_sync(data->rx_data_tag, data->rx_data_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(data->rx_data_tag, data->rx_data_map); bus_dmamap_destroy(data->rx_data_tag, data->rx_data_map); bus_dma_tag_destroy(data->rx_data_tag); } if (data->m != NULL) m_freem(data->m); } } static int nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { int i, error; void **desc; int descsize; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->queued = 0; ring->cur = ring->next = 0; error = bus_dma_tag_create(sc->nfe_parent_tag, PAGE_SIZE, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ NFE_TX_RING_COUNT * descsize, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &ring->tx_desc_tag); if (error != 0) { printf("nfe%d: could not create desc DMA tag\n", sc->nfe_unit); goto fail; } error = bus_dmamem_alloc(ring->tx_desc_tag, (void **)desc, BUS_DMA_NOWAIT, &ring->tx_desc_map); if (error != 0) { printf("nfe%d: could not create desc DMA map\n", sc->nfe_unit); goto fail; } error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, *desc, NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ring->tx_desc_segs, BUS_DMA_NOWAIT); if (error != 0) { printf("nfe%d: could not load desc DMA map\n", sc->nfe_unit); goto fail; } bzero(*desc, NFE_TX_RING_COUNT * descsize); ring->tx_desc_addr = ring->tx_desc_segs.ds_addr; ring->physaddr = ring->tx_desc_addr; error = bus_dma_tag_create(sc->nfe_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, NFE_JBYTES, NFE_MAX_SCATTER, NFE_JBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &ring->tx_data_tag); if (error != 0) { printf("nfe%d: could not create DMA tag\n", sc->nfe_unit); goto fail; } for (i = 0; i < NFE_TX_RING_COUNT; i++) { error = bus_dmamap_create(ring->tx_data_tag, 0, &ring->data[i].tx_data_map); if (error != 0) { printf("nfe%d: could not create DMA map\n", sc->nfe_unit); goto fail; } } return 0; fail: nfe_free_tx_ring(sc, ring); return error; } static void nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; int i; for (i = 0; i < NFE_TX_RING_COUNT; i++) { if (sc->nfe_flags & NFE_40BIT_ADDR) ring->desc64[i].flags = 0; else ring->desc32[i].flags = 0; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->tx_data_tag, data->active, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->tx_data_tag, data->active); m_freem(data->m); data->m = NULL; } } bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; } static void nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; void *desc; int i, descsize; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map); bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map); bus_dma_tag_destroy(ring->tx_desc_tag); } for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->tx_data_tag, data->active, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->tx_data_tag, data->active); m_freem(data->m); } } /* ..and now actually destroy the DMA mappings */ for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->tx_data_map == NULL) continue; bus_dmamap_destroy(ring->tx_data_tag, data->tx_data_map); } bus_dma_tag_destroy(ring->tx_data_tag); } #ifdef DEVICE_POLLING static poll_handler_t nfe_poll; static void nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct nfe_softc *sc = ifp->if_softc; NFE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) nfe_poll_locked(ifp, cmd, count); NFE_UNLOCK(sc); } static void nfe_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct nfe_softc *sc = ifp->if_softc; u_int32_t r; NFE_LOCK_ASSERT(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { return; } sc->rxcycles = count; nfe_rxeof(sc); nfe_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nfe_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0) { return; } NFE_WRITE(sc, NFE_IRQ_STATUS, r); if (r & NFE_IRQ_LINK) { NFE_READ(sc, NFE_PHY_STATUS); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); DPRINTF(("nfe%d: link state changed\n", sc->nfe_unit)); } } } #endif /* DEVICE_POLLING */ static int nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct nfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu == ifp->if_mtu) { error = EINVAL; break; } if ((sc->nfe_flags & NFE_JUMBO_SUP) && (ifr->ifr_mtu >= ETHERMIN && ifr->ifr_mtu <= NV_PKTLIMIT_2)) { NFE_LOCK(sc); sc->nfe_mtu = ifp->if_mtu = ifr->ifr_mtu; nfe_stop(ifp, 1); nfe_free_tx_ring(sc, &sc->txq); nfe_free_rx_ring(sc, &sc->rxq); NFE_UNLOCK(sc); /* Reallocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { printf("nfe%d: could not allocate Tx ring\n", sc->nfe_unit); error = ENXIO; break; } if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { printf("nfe%d: could not allocate Rx ring\n", sc->nfe_unit); nfe_free_tx_ring(sc, &sc->txq); error = ENXIO; break; } NFE_LOCK(sc); nfe_init_locked(sc); NFE_UNLOCK(sc); } else { error = EINVAL; } break; case SIOCSIFFLAGS: NFE_LOCK(sc); if (ifp->if_flags & IFF_UP) { /* * If only the PROMISC or ALLMULTI flag changes, then * don't do a full re-init of the chip, just update * the Rx filter. */ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && ((ifp->if_flags ^ sc->nfe_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) nfe_setmulti(sc); else nfe_init_locked(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) nfe_stop(ifp, 1); } sc->nfe_if_flags = ifp->if_flags; NFE_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { NFE_LOCK(sc); nfe_setmulti(sc); NFE_UNLOCK(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->nfe_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: { int init = 0; int mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(nfe_poll, ifp); if (error) return(error); NFE_LOCK(sc); NFE_WRITE(sc, NFE_IRQ_MASK, 0); ifp->if_capenable |= IFCAP_POLLING; NFE_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupt even in error case */ NFE_LOCK(sc); NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); ifp->if_capenable &= ~IFCAP_POLLING; NFE_UNLOCK(sc); } } #endif /* DEVICE_POLLING */ #ifdef NFE_CSUM if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; if (IFCAP_HWCSUM & ifp->if_capenable && IFCAP_HWCSUM & ifp->if_capabilities) ifp->if_hwassist = NFE_CSUM_FEATURES; else ifp->if_hwassist = 0; sc->nfe_flags ^= NFE_HW_CSUM; init = 1; } #endif if (init && ifp->if_drv_flags & IFF_DRV_RUNNING) nfe_init(sc); } break; default: error = ether_ioctl(ifp, cmd, data); break; } return error; } static void nfe_intr(void *arg) { struct nfe_softc *sc = arg; struct ifnet *ifp = sc->nfe_ifp; u_int32_t r; NFE_LOCK(sc); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { NFE_UNLOCK(sc); return; } #endif if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0) { NFE_UNLOCK(sc); return; /* not for us */ } NFE_WRITE(sc, NFE_IRQ_STATUS, r); DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); NFE_WRITE(sc, NFE_IRQ_MASK, 0); if (r & NFE_IRQ_LINK) { NFE_READ(sc, NFE_PHY_STATUS); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); DPRINTF(("nfe%d: link state changed\n", sc->nfe_unit)); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* check Rx ring */ nfe_rxeof(sc); /* check Tx ring */ nfe_txeof(sc); } NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nfe_start_locked(ifp); NFE_UNLOCK(sc); return; } static void nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops); } static void nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops); } static void nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) { bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops); } static void nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) { bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops); } static void nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, ops); } static void nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, ops); } static void nfe_rxeof(struct nfe_softc *sc) { struct ifnet *ifp = sc->nfe_ifp; struct nfe_desc32 *desc32=NULL; struct nfe_desc64 *desc64=NULL; struct nfe_rx_data *data; struct mbuf *m, *mnew; bus_addr_t physaddr; u_int16_t flags; int error, len; #if NVLAN > 1 u_int16_t vlan_tag = 0; int have_tag = 0; #endif NFE_LOCK_ASSERT(sc); for (;;) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif data = &sc->rxq.data[sc->rxq.cur]; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[sc->rxq.cur]; nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); len = letoh16(desc64->length) & 0x3fff; #if NVLAN > 1 if (flags & NFE_TX_VLAN_TAG) { have_tag = 1; vlan_tag = desc64->vtag; } #endif } else { desc32 = &sc->rxq.desc32[sc->rxq.cur]; nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); len = letoh16(desc32->length) & 0x3fff; } if (flags & NFE_RX_READY) break; if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if (!(flags & NFE_RX_VALID_V1)) goto skip; if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } else { if (!(flags & NFE_RX_VALID_V2)) goto skip; if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } if (flags & NFE_RX_ERROR) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load * it before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the * old mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(data->rx_data_tag, data->rx_data_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(data->rx_data_tag, data->rx_data_map); error = bus_dmamap_load(data->rx_data_tag, data->rx_data_map, mtod(mnew, void *), MCLBYTES, nfe_dma_map_segs, &data->rx_data_segs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(data->rx_data_tag, data->rx_data_map, mtod(data->m, void *), MCLBYTES, nfe_dma_map_segs, &data->rx_data_segs, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail.. */ panic("nfe%d: could not load old rx mbuf", sc->nfe_unit); } ifp->if_ierrors++; goto skip; } data->rx_data_addr = data->rx_data_segs.ds_addr; physaddr = data->rx_data_addr; /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; /* finalize mbuf */ m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = ifp; if ((sc->nfe_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK)) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (flags & NFE_RX_IP_CSUMOK_V2) { m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } if (flags & NFE_RX_UDP_CSUMOK_V2 || flags & NFE_RX_TCP_CSUMOK_V2) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } #if NVLAN > 1 if (have_tag) { m->m_pkthdr.ether_vtag = vlan_tag; m->m_flags |= M_VLANTAG; } #endif ifp->if_ipackets++; NFE_UNLOCK(sc); (*ifp->if_input)(ifp, m); NFE_LOCK(sc); /* update mapping address in h/w descriptor */ if (sc->nfe_flags & NFE_40BIT_ADDR) { #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); } else { desc32->physaddr = htole32(physaddr); } skip: if (sc->nfe_flags & NFE_40BIT_ADDR) { desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); } else { desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); } sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT; } //end for(;;) } static void nfe_txeof(struct nfe_softc *sc) { struct ifnet *ifp = sc->nfe_ifp; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data = NULL; u_int16_t flags; NFE_LOCK_ASSERT(sc); while (sc->txq.next != sc->txq.cur) { if (sc->nfe_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[sc->txq.next]; nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); } else { desc32 = &sc->txq.desc32[sc->txq.next]; nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); } if (flags & NFE_TX_VALID) break; data = &sc->txq.data[sc->txq.next]; if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL) goto skip; if ((flags & NFE_TX_ERROR_V1) != 0) { printf("nfe%d: tx v1 error 0x%4b\n", sc->nfe_unit, flags, NFE_V1_TXERR); ifp->if_oerrors++; } else ifp->if_opackets++; } else { if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL) goto skip; if ((flags & NFE_TX_ERROR_V2) != 0) { printf("nfe%d: tx v1 error 0x%4b\n", sc->nfe_unit, flags, NFE_V2_TXERR); ifp->if_oerrors++; } else ifp->if_opackets++; } if (data->m == NULL) { /* should not get there */ printf("nfe%d: last fragment bit w/o associated mbuf!\n", sc->nfe_unit); goto skip; } /* last fragment of the mbuf chain transmitted */ bus_dmamap_sync(sc->txq.tx_data_tag, data->active, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txq.tx_data_tag, data->active); m_freem(data->m); data->m = NULL; ifp->if_timer = 0; skip: sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT; } if (data != NULL) { /* at least one slot freed */ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; nfe_start_locked(ifp); } } static int nfe_encap(struct nfe_softc *sc, struct mbuf *m0) { struct nfe_desc32 *desc32=NULL; struct nfe_desc64 *desc64=NULL; struct nfe_tx_data *data=NULL; bus_dmamap_t map; bus_dma_segment_t segs[NFE_MAX_SCATTER]; int error, i, nsegs; u_int16_t flags = NFE_TX_VALID; map = sc->txq.data[sc->txq.cur].tx_data_map; error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("nfe%d: could not map mbuf (error %d)\n", sc->nfe_unit, error); return error; } if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 1) { bus_dmamap_unload(sc->txq.tx_data_tag, map); return ENOBUFS; } if(sc->nfe_flags & NFE_HW_CSUM){ if (m0->m_pkthdr.csum_flags & CSUM_IP) flags |= NFE_TX_IP_CSUM; if (m0->m_pkthdr.csum_flags & CSUM_TCP) flags |= NFE_TX_TCP_CSUM; if (m0->m_pkthdr.csum_flags & CSUM_UDP) flags |= NFE_TX_TCP_CSUM; } for (i = 0; i < nsegs; i++) { data = &sc->txq.data[sc->txq.cur]; if (sc->nfe_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[sc->txq.cur]; #if defined(__LP64__) desc64->physaddr[0] = htole32(segs[i].ds_addr >> 32); #endif desc64->physaddr[1] = htole32(segs[i].ds_addr & 0xffffffff); desc64->length = htole16(segs[i].ds_len - 1); desc64->flags = htole16(flags); #if NVLAN > 0 if (m0->m_flags & M_VLANTAG) desc64->vtag = htole32(NFE_TX_VTAG | m0->m_pkthdr.ether_vtag); #endif } else { desc32 = &sc->txq.desc32[sc->txq.cur]; desc32->physaddr = htole32(segs[i].ds_addr); desc32->length = htole16(segs[i].ds_len - 1); desc32->flags = htole16(flags); } /* csum flags and vtag belong to the first fragment only */ if (nsegs > 1) { flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM); } sc->txq.queued++; sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT; } /* the whole mbuf chain has been DMA mapped, fix last descriptor */ if (sc->nfe_flags & NFE_40BIT_ADDR) { flags |= NFE_TX_LASTFRAG_V2; desc64->flags = htole16(flags); } else { if (sc->nfe_flags & NFE_JUMBO_SUP) flags |= NFE_TX_LASTFRAG_V2; else flags |= NFE_TX_LASTFRAG_V1; desc32->flags = htole16(flags); } data->m = m0; data->active = map; data->nsegs = nsegs; bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE); return 0; } static void nfe_setmulti(struct nfe_softc *sc) { struct ifnet *ifp = sc->nfe_ifp; struct ifmultiaddr *ifma; int i; u_int32_t filter = NFE_RXFILTER_MAGIC; u_int8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; NFE_LOCK_ASSERT(sc); if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { bzero(addr, ETHER_ADDR_LEN); bzero(mask, ETHER_ADDR_LEN); goto done; } bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN); bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN); IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { u_char *addrp; if (ifma->ifma_addr->sa_family != AF_LINK) continue; addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); for (i = 0; i < ETHER_ADDR_LEN; i++) { u_int8_t mcaddr = addrp[i]; addr[i] &= mcaddr; mask[i] &= ~mcaddr; } } IF_ADDR_UNLOCK(ifp); for (i = 0; i < ETHER_ADDR_LEN; i++) { mask[i] |= addr[i]; } done: addr[0] |= 0x01; /* make sure multicast bit is set */ NFE_WRITE(sc, NFE_MULTIADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); NFE_WRITE(sc, NFE_MULTIADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MULTIMASK_HI, mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); NFE_WRITE(sc, NFE_MULTIMASK_LO, mask[5] << 8 | mask[4]); filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; NFE_WRITE(sc, NFE_RXFILTER, filter); } static void nfe_start(struct ifnet *ifp) { struct nfe_softc *sc; sc = ifp->if_softc; NFE_LOCK(sc); nfe_start_locked(ifp); NFE_UNLOCK(sc); } static void nfe_start_locked(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mbuf *m0; int old = sc->txq.cur; if (!sc->nfe_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) { return; } for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (nfe_encap(sc, m0) != 0) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* packet put in h/w queue, remove from s/w queue */ IFQ_DEQUEUE(&ifp->if_snd, m0); BPF_MTAP(ifp, m0); } if (sc->txq.cur == old) { /* nothing sent */ return; } if (sc->nfe_flags & NFE_40BIT_ADDR) nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); else nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); /* kick Tx */ NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void nfe_watchdog(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; printf("nfe%d: watchdog timeout\n", sc->nfe_unit); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nfe_init(sc); ifp->if_oerrors++; return; } static void nfe_init(void *xsc) { struct nfe_softc *sc = xsc; NFE_LOCK(sc); nfe_init_locked(sc); NFE_UNLOCK(sc); return; } static void nfe_init_locked(void *xsc) { struct nfe_softc *sc = xsc; struct ifnet *ifp = sc->nfe_ifp; struct mii_data *mii; u_int32_t tmp; NFE_LOCK_ASSERT(sc); mii = device_get_softc(sc->nfe_miibus); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } nfe_stop(ifp, 0); NFE_WRITE(sc, NFE_TX_UNK, 0); NFE_WRITE(sc, NFE_STATUS, 0); sc->rxtxctl = NFE_RXTX_BIT2; if (sc->nfe_flags & NFE_40BIT_ADDR) sc->rxtxctl |= NFE_RXTX_V3MAGIC; else if (sc->nfe_flags & NFE_JUMBO_SUP) sc->rxtxctl |= NFE_RXTX_V2MAGIC; if (sc->nfe_flags & NFE_HW_CSUM) sc->rxtxctl |= NFE_RXTX_RXCSUM; #if NVLAN > 0 /* * Although the adapter is capable of stripping VLAN tags from received * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on * purpose. This will be done in software by our network stack. */ if (sc->nfe_flags & NFE_HW_VLAN) sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; #endif NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); #if NVLAN if (sc->nfe_flags & NFE_HW_VLAN) NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); #endif NFE_WRITE(sc, NFE_SETUP_R6, 0); /* set MAC address */ nfe_set_macaddr(sc, sc->eaddr); /* tell MAC where rings are in memory */ #ifdef __LP64__ NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); #ifdef __LP64__ NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); NFE_WRITE(sc, NFE_RING_SIZE, (NFE_RX_RING_COUNT - 1) << 16 | (NFE_TX_RING_COUNT - 1)); NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); /* force MAC to wakeup */ tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); DELAY(10); tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); #if 1 /* configure interrupts coalescing/mitigation */ NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); #else /* no interrupt mitigation: one interrupt per packet */ NFE_WRITE(sc, NFE_IMTIMER, 970); #endif NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC); sc->rxtxctl &= ~NFE_RXTX_BIT2; NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); /* set Rx filter */ nfe_setmulti(sc); nfe_ifmedia_upd(ifp); nfe_tick_locked(sc); /* enable Rx */ NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); /* enable Tx */ NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) NFE_WRITE(sc, NFE_IRQ_MASK, 0); else #endif NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); /* enable interrupts */ ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->nfe_link = 0; return; } static void nfe_stop(struct ifnet *ifp, int disable) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii; NFE_LOCK_ASSERT(sc); ifp->if_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); mii = device_get_softc(sc->nfe_miibus); callout_stop(&sc->nfe_stat_ch); /* abort Tx */ NFE_WRITE(sc, NFE_TX_CTL, 0); /* disable Rx */ NFE_WRITE(sc, NFE_RX_CTL, 0); /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); sc->nfe_link = 0; /* reset Tx and Rx rings */ nfe_reset_tx_ring(sc, &sc->txq); nfe_reset_rx_ring(sc, &sc->rxq); return; } static int nfe_ifmedia_upd(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; NFE_LOCK(sc); nfe_ifmedia_upd_locked(ifp); NFE_UNLOCK(sc); return (0); } static int nfe_ifmedia_upd_locked(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii; NFE_LOCK_ASSERT(sc); mii = device_get_softc(sc->nfe_miibus); if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) { mii_phy_reset(miisc); } } mii_mediachg(mii); return (0); } static void nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nfe_softc *sc; struct mii_data *mii; sc = ifp->if_softc; NFE_LOCK(sc); mii = device_get_softc(sc->nfe_miibus); mii_pollstat(mii); NFE_UNLOCK(sc); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static void nfe_tick(void *xsc) { struct nfe_softc *sc; sc = xsc; NFE_LOCK(sc); nfe_tick_locked(sc); NFE_UNLOCK(sc); } void nfe_tick_locked(struct nfe_softc *arg) { struct nfe_softc *sc; struct mii_data *mii; struct ifnet *ifp; sc = arg; NFE_LOCK_ASSERT(sc); ifp = sc->nfe_ifp; mii = device_get_softc(sc->nfe_miibus); mii_tick(mii); if (!sc->nfe_link) { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->nfe_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T && bootverbose) if_printf(sc->nfe_ifp, "gigabit link up\n"); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nfe_start_locked(ifp); } } callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); return; } static void nfe_shutdown(device_t dev) { struct nfe_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); NFE_LOCK(sc); ifp = sc->nfe_ifp; nfe_stop(ifp,0); /* nfe_reset(sc); */ NFE_UNLOCK(sc); return; } static void nfe_get_macaddr(struct nfe_softc *sc, u_char *addr) { uint32_t tmp; tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[0] = (tmp >> 8) & 0xff; addr[1] = (tmp & 0xff); tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[2] = (tmp >> 24) & 0xff; addr[3] = (tmp >> 16) & 0xff; addr[4] = (tmp >> 8) & 0xff; addr[5] = (tmp & 0xff); } static void nfe_set_macaddr(struct nfe_softc *sc, u_char *addr) { NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); } /* * Map a single buffer address. */ static void nfe_dma_map_segs(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int error, nseg; { if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_dma_segment_t *)arg = *segs; return; }