/* * BSD LICENSE * * Copyright(c) 2017 Cavium, Inc.. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Cavium, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*$FreeBSD: stable/11/sys/dev/liquidio/base/cn23xx_pf_device.c 325618 2017-11-09 19:52:56Z sbruno $*/ #include "lio_bsd.h" #include "lio_common.h" #include "lio_droq.h" #include "lio_iq.h" #include "lio_response_manager.h" #include "lio_device.h" #include "cn23xx_pf_device.h" #include "lio_main.h" #include "lio_rss.h" static int lio_cn23xx_pf_soft_reset(struct octeon_device *oct) { lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF); lio_dev_dbg(oct, "BIST enabled for CN23XX soft reset\n"); lio_write_csr64(oct, LIO_CN23XX_SLI_SCRATCH1, 0x1234ULL); /* Initiate chip-wide soft reset */ lio_pci_readq(oct, LIO_CN23XX_RST_SOFT_RST); lio_pci_writeq(oct, 1, LIO_CN23XX_RST_SOFT_RST); /* Wait for 100ms as Octeon resets. */ lio_mdelay(100); if (lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH1)) { lio_dev_err(oct, "Soft reset failed\n"); return (1); } lio_dev_dbg(oct, "Reset completed\n"); /* restore the reset value */ lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF); return (0); } static void lio_cn23xx_pf_enable_error_reporting(struct octeon_device *oct) { uint32_t corrtable_err_status, uncorrectable_err_mask, regval; regval = lio_read_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL); if (regval & LIO_CN23XX_CFG_PCIE_DEVCTL_MASK) { uncorrectable_err_mask = 0; corrtable_err_status = 0; uncorrectable_err_mask = lio_read_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_UNCORRECT_ERR_MASK); corrtable_err_status = lio_read_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_CORRECT_ERR_STATUS); lio_dev_err(oct, "PCI-E Fatal error detected;\n" "\tdev_ctl_status_reg = 0x%08x\n" "\tuncorrectable_error_mask_reg = 0x%08x\n" "\tcorrectable_error_status_reg = 0x%08x\n", regval, uncorrectable_err_mask, corrtable_err_status); } regval |= 0xf; /* Enable Link error reporting */ lio_dev_dbg(oct, "Enabling PCI-E error reporting..\n"); lio_write_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL, regval); } static uint32_t lio_cn23xx_pf_coprocessor_clock(struct octeon_device *oct) { /* * Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER * for SLI. */ /* TBD: get the info in Hand-shake */ return (((lio_pci_readq(oct, LIO_CN23XX_RST_BOOT) >> 24) & 0x3f) * 50); } uint32_t lio_cn23xx_pf_get_oq_ticks(struct octeon_device *oct, uint32_t time_intr_in_us) { /* This gives the SLI clock per microsec */ uint32_t oqticks_per_us = lio_cn23xx_pf_coprocessor_clock(oct); oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us; /* This gives the clock cycles per millisecond */ oqticks_per_us *= 1000; /* This gives the oq ticks (1024 core clock cycles) per millisecond */ oqticks_per_us /= 1024; /* * time_intr is in microseconds. The next 2 steps gives the oq ticks * corresponding to time_intr. */ oqticks_per_us *= time_intr_in_us; oqticks_per_us /= 1000; return (oqticks_per_us); } static void lio_cn23xx_pf_setup_global_mac_regs(struct octeon_device *oct) { uint64_t reg_val; uint16_t mac_no = oct->pcie_port; uint16_t pf_num = oct->pf_num; /* programming SRN and TRS for each MAC(0..3) */ lio_dev_dbg(oct, "%s: Using pcie port %d\n", __func__, mac_no); /* By default, mapping all 64 IOQs to a single MACs */ reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); /* setting SRN <6:0> */ reg_val = pf_num * LIO_CN23XX_PF_MAX_RINGS; /* setting TRS <23:16> */ reg_val = reg_val | (oct->sriov_info.trs << LIO_CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); /* write these settings to MAC register */ lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), reg_val); lio_dev_dbg(oct, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", mac_no, pf_num, LIO_CAST64(lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)))); } static int lio_cn23xx_pf_reset_io_queues(struct octeon_device *oct) { uint64_t d64; uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT; uint32_t q_no, srn; int ret_val = 0; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; /* As per HRM reg description, s/w cant write 0 to ENB. */ /* to make the queue off, need to set the RST bit. */ /* Reset the Enable bit for all the 64 IQs. */ for (q_no = srn; q_no < ern; q_no++) { /* set RST bit to 1. This bit applies to both IQ and OQ */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 = d64 | LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); } /* wait until the RST bit is clear or the RST and quiet bits are set */ for (q_no = srn; q_no < ern; q_no++) { volatile uint64_t reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop--; } if (!loop) { lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return (-1); } reg_val &= ~LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(oct, "clearing the reset failed for qno: %u\n", q_no); ret_val = -1; } } return (ret_val); } static int lio_cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; struct lio_instr_queue *iq; uint64_t intr_threshold; uint64_t pf_num, reg_val; uint32_t q_no, ern, srn; pf_num = oct->pf_num; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (lio_cn23xx_pf_reset_io_queues(oct)) return (-1); /* * Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg * for all queues.Only PF can set these bits. * bits 29:30 indicate the MAC num. * bits 32:47 indicate the PVF num. */ for (q_no = 0; q_no < ern; q_no++) { reg_val = oct->pcie_port << LIO_CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; reg_val |= pf_num << LIO_CN23XX_PKT_INPUT_CTL_PF_NUM_POS; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* * Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for * pf queues */ for (q_no = srn; q_no < ern; q_no++) { uint32_t inst_cnt_reg; iq = oct->instr_queue[q_no]; if (iq != NULL) inst_cnt_reg = iq->inst_cnt_reg; else inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(q_no); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val |= LIO_CN23XX_PKT_INPUT_CTL_MASK; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); /* Set WMARK level for triggering PI_INT */ /* intr_threshold = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD & */ intr_threshold = LIO_GET_IQ_INTR_PKT_CFG(cn23xx->conf) & LIO_CN23XX_PKT_IN_DONE_WMARK_MASK; lio_write_csr64(oct, inst_cnt_reg, (lio_read_csr64(oct, inst_cnt_reg) & ~(LIO_CN23XX_PKT_IN_DONE_WMARK_MASK << LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | (intr_threshold << LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)); } return (0); } static void lio_cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t time_threshold; uint32_t ern, q_no, reg_val, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (LIO_GET_IS_SLI_BP_ON_CFG(cn23xx->conf)) { lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 32); } else { /* Set Output queue watermark to 0 to disable backpressure */ lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0); } for (q_no = srn; q_no < ern; q_no++) { reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no)); /* set IPTR & DPTR */ reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_DPTR; /* reset BMODE */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_BMODE); /* * No Relaxed Ordering, No Snoop, 64-bit Byte swap for * Output Queue ScatterList reset ROR_P, NSR_P */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR_P); reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR_P); #if BYTE_ORDER == LITTLE_ENDIAN reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ES_P); #else /* BYTE_ORDER != LITTLE_ENDIAN */ reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES_P); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* * No Relaxed Ordering, No Snoop, 64-bit Byte swap for * Output Queue Data reset ROR, NSR */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR); reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR); /* set the ES bit */ reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES); /* write all the selected settings */ lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); /* * Enabling these interrupt in oct->fn_list.enable_interrupt() * routine which called after IOQ init. * Set up interrupt packet and time thresholds * for all the OQs */ time_threshold =lio_cn23xx_pf_get_oq_ticks( oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf)); lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), (LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf) | (time_threshold << 32))); } /* Setting the water mark level for pko back pressure * */ lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0x40); /* Enable channel-level backpressure */ if (oct->pf_num) lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN2_W1S, 0xffffffffffffffffULL); else lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN_W1S, 0xffffffffffffffffULL); } static int lio_cn23xx_pf_setup_device_regs(struct octeon_device *oct) { lio_cn23xx_pf_enable_error_reporting(oct); /* program the MAC(0..3)_RINFO before setting up input/output regs */ lio_cn23xx_pf_setup_global_mac_regs(oct); if (lio_cn23xx_pf_setup_global_input_regs(oct)) return (-1); lio_cn23xx_pf_setup_global_output_regs(oct); /* * Default error timeout value should be 0x200000 to avoid host hang * when reads invalid register */ lio_write_csr64(oct, LIO_CN23XX_SLI_WINDOW_CTL, LIO_CN23XX_SLI_WINDOW_CTL_DEFAULT); /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_IN_JABBER, LIO_CN23XX_MAX_INPUT_JABBER); return (0); } static void lio_cn23xx_pf_setup_iq_regs(struct octeon_device *oct, uint32_t iq_no) { struct lio_instr_queue *iq = oct->instr_queue[iq_no]; uint64_t pkt_in_done; iq_no += oct->sriov_info.pf_srn; /* Write the start of the input queue's ring and its size */ lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); /* * Remember the doorbell & instruction count register addr * for this queue */ iq->doorbell_reg = LIO_CN23XX_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); lio_dev_dbg(oct, "InstQ[%d]:dbell reg @ 0x%x instcnt_reg @ 0x%x\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* * Store the current instruction counter (used in flush_iq * calculation) */ pkt_in_done = lio_read_csr64(oct, iq->inst_cnt_reg); if (oct->msix_on) { /* Set CINT_ENB to enable IQ interrupt */ lio_write_csr64(oct, iq->inst_cnt_reg, (pkt_in_done | LIO_CN23XX_INTR_CINT_ENB)); } else { /* * Clear the count by writing back what we read, but don't * enable interrupts */ lio_write_csr64(oct, iq->inst_cnt_reg, pkt_in_done); } iq->reset_instr_cnt = 0; } static void lio_cn23xx_pf_setup_oq_regs(struct octeon_device *oct, uint32_t oq_no) { struct lio_droq *droq = oct->droq[oq_no]; struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t cnt_threshold; uint64_t time_threshold; uint32_t reg_val; oq_no += oct->sriov_info.pf_srn; lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), droq->buffer_size); /* pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = LIO_CN23XX_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = LIO_CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); if (!oct->msix_on) { /* * Enable this output queue to generate Packet Timer * Interrupt */ reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_TENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); /* * Enable this output queue to generate Packet Count * Interrupt */ reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_CENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); } else { time_threshold = lio_cn23xx_pf_get_oq_ticks(oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf)); cnt_threshold = (uint32_t)LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf); lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), ((time_threshold << 32 | cnt_threshold))); } } static int lio_cn23xx_pf_enable_io_queues(struct octeon_device *oct) { uint64_t reg_val; uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT; uint32_t q_no, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; for (q_no = srn; q_no < ern; q_no++) { /* set the corresponding IQ IS_64B bit */ if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_IS_64B; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* set the corresponding IQ ENB bit */ if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { /* * IOQs are in reset by default in PEM2 mode, * clearing reset bit */ reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop--; } if (!loop) { lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return (-1); } reg_val = reg_val & ~LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(oct, "clearing the reset failed for qno: %u\n", q_no); return (-1); } } reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_RING_ENB; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } } for (q_no = srn; q_no < ern; q_no++) { uint32_t reg_val; /* set the corresponding OQ ENB bit */ if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_OUTPUT_CTL_RING_ENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } return (0); } static void lio_cn23xx_pf_disable_io_queues(struct octeon_device *oct) { volatile uint64_t d64; volatile uint32_t d32; int loop; unsigned int q_no; uint32_t ern, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; /* Disable Input Queues. */ for (q_no = srn; q_no < ern; q_no++) { loop = lio_ms_to_ticks(1000); /* start the Reset for a particular ring */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 &= ~LIO_CN23XX_PKT_INPUT_CTL_RING_ENB; d64 |= LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); /* * Wait until hardware indicates that the particular IQ * is out of reset. */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); while (!(d64 & BIT_ULL(q_no)) && loop--) { d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); lio_sleep_timeout(1); loop--; } /* Reset the doorbell register for this Input Queue. */ lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); while (((lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no))) != 0ULL) && loop--) { lio_sleep_timeout(1); } } /* Disable Output Queues. */ for (q_no = srn; q_no < ern; q_no++) { loop = lio_ms_to_ticks(1000); /* * Wait until hardware indicates that the particular IQ * is out of reset.It given that SLI_PKT_RING_RST is * common for both IQs and OQs */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); while (!(d64 & BIT_ULL(q_no)) && loop--) { d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); lio_sleep_timeout(1); loop--; } /* Reset the doorbell register for this Output Queue. */ lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 0xFFFFFFFF); while ((lio_read_csr64(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) != 0ULL) && loop--) { lio_sleep_timeout(1); } /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ d32 = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no)); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no), d32); } } static uint64_t lio_cn23xx_pf_msix_interrupt_handler(void *dev) { struct lio_ioq_vector *ioq_vector = (struct lio_ioq_vector *)dev; struct octeon_device *oct = ioq_vector->oct_dev; struct lio_droq *droq = oct->droq[ioq_vector->droq_index]; uint64_t pkts_sent; uint64_t ret = 0; if (droq == NULL) { lio_dev_err(oct, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n", oct->pf_num, ioq_vector->ioq_num); return (0); } pkts_sent = lio_read_csr64(oct, droq->pkts_sent_reg); /* * If our device has interrupted, then proceed. Also check * for all f's if interrupt was triggered on an error * and the PCI read fails. */ if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) return (ret); /* Write count reg in sli_pkt_cnts to clear these int. */ if (pkts_sent & LIO_CN23XX_INTR_PO_INT) ret |= LIO_MSIX_PO_INT; if (pkts_sent & LIO_CN23XX_INTR_PI_INT) /* We will clear the count when we update the read_index. */ ret |= LIO_MSIX_PI_INT; /* * Never need to handle msix mbox intr for pf. They arrive on the last * msix */ return (ret); } static void lio_cn23xx_pf_interrupt_handler(void *dev) { struct octeon_device *oct = (struct octeon_device *)dev; struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr64; lio_dev_dbg(oct, "In %s octeon_dev @ %p\n", __func__, oct); intr64 = lio_read_csr64(oct, cn23xx->intr_sum_reg64); oct->int_status = 0; if (intr64 & LIO_CN23XX_INTR_ERR) lio_dev_err(oct, "Error Intr: 0x%016llx\n", LIO_CAST64(intr64)); if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { if (intr64 & LIO_CN23XX_INTR_PKT_DATA) oct->int_status |= LIO_DEV_INTR_PKT_DATA; } if (intr64 & (LIO_CN23XX_INTR_DMA0_FORCE)) oct->int_status |= LIO_DEV_INTR_DMA0_FORCE; if (intr64 & (LIO_CN23XX_INTR_DMA1_FORCE)) oct->int_status |= LIO_DEV_INTR_DMA1_FORCE; /* Clear the current interrupts */ lio_write_csr64(oct, cn23xx->intr_sum_reg64, intr64); } static void lio_cn23xx_pf_bar1_idx_setup(struct octeon_device *oct, uint64_t core_addr, uint32_t idx, int valid) { volatile uint64_t bar1; uint64_t reg_adr; if (!valid) { reg_adr = lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); bar1 = reg_adr; lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL), LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); reg_adr = lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); bar1 = reg_adr; return; } /* * The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores * bits <41:22> of the Core Addr */ lio_pci_writeq(oct, (((core_addr >> 22) << 4) | LIO_PCI_BAR1_MASK), LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); bar1 = lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); } static void lio_cn23xx_pf_bar1_idx_write(struct octeon_device *oct, uint32_t idx, uint32_t mask) { lio_pci_writeq(oct, mask, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); } static uint32_t lio_cn23xx_pf_bar1_idx_read(struct octeon_device *oct, uint32_t idx) { return ((uint32_t)lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx))); } /* always call with lock held */ static uint32_t lio_cn23xx_pf_update_read_index(struct lio_instr_queue *iq) { struct octeon_device *oct = iq->oct_dev; uint32_t new_idx; uint32_t last_done; uint32_t pkt_in_done = lio_read_csr32(oct, iq->inst_cnt_reg); last_done = pkt_in_done - iq->pkt_in_done; iq->pkt_in_done = pkt_in_done; /* * Modulo of the new index with the IQ size will give us * the new index. The iq->reset_instr_cnt is always zero for * cn23xx, so no extra adjustments are needed. */ new_idx = (iq->octeon_read_index + ((uint32_t)(last_done & LIO_CN23XX_PKT_IN_DONE_CNT_MASK))) % iq->max_count; return (new_idx); } static void lio_cn23xx_pf_enable_interrupt(struct octeon_device *oct, uint8_t intr_flag) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr_val = 0; /* Divide the single write to multiple writes based on the flag. */ /* Enable Interrupt */ if (intr_flag == OCTEON_ALL_INTR) { lio_write_csr64(oct, cn23xx->intr_enb_reg64, cn23xx->intr_mask64); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64); intr_val |= LIO_CN23XX_INTR_PKT_DATA; lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val); } } static void lio_cn23xx_pf_disable_interrupt(struct octeon_device *oct, uint8_t intr_flag) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr_val = 0; /* Disable Interrupts */ if (intr_flag == OCTEON_ALL_INTR) { lio_write_csr64(oct, cn23xx->intr_enb_reg64, 0); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64); intr_val &= ~LIO_CN23XX_INTR_PKT_DATA; lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val); } } static void lio_cn23xx_pf_get_pcie_qlmport(struct octeon_device *oct) { oct->pcie_port = (lio_read_csr32(oct, LIO_CN23XX_SLI_MAC_NUMBER)) & 0xff; lio_dev_dbg(oct, "CN23xx uses PCIE Port %d\n", oct->pcie_port); } static void lio_cn23xx_pf_get_pf_num(struct octeon_device *oct) { uint32_t fdl_bit; /* Read Function Dependency Link reg to get the function number */ fdl_bit = lio_read_pci_cfg(oct, LIO_CN23XX_PCIE_SRIOV_FDL); oct->pf_num = ((fdl_bit >> LIO_CN23XX_PCIE_SRIOV_FDL_BIT_POS) & LIO_CN23XX_PCIE_SRIOV_FDL_MASK); } static void lio_cn23xx_pf_setup_reg_address(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; oct->reg_list.pci_win_wr_addr = LIO_CN23XX_SLI_WIN_WR_ADDR64; oct->reg_list.pci_win_rd_addr_hi = LIO_CN23XX_SLI_WIN_RD_ADDR_HI; oct->reg_list.pci_win_rd_addr_lo = LIO_CN23XX_SLI_WIN_RD_ADDR64; oct->reg_list.pci_win_rd_addr = LIO_CN23XX_SLI_WIN_RD_ADDR64; oct->reg_list.pci_win_wr_data_hi = LIO_CN23XX_SLI_WIN_WR_DATA_HI; oct->reg_list.pci_win_wr_data_lo = LIO_CN23XX_SLI_WIN_WR_DATA_LO; oct->reg_list.pci_win_wr_data = LIO_CN23XX_SLI_WIN_WR_DATA64; oct->reg_list.pci_win_rd_data = LIO_CN23XX_SLI_WIN_RD_DATA64; lio_cn23xx_pf_get_pcie_qlmport(oct); cn23xx->intr_mask64 = LIO_CN23XX_INTR_MASK; if (!oct->msix_on) cn23xx->intr_mask64 |= LIO_CN23XX_INTR_PKT_TIME; cn23xx->intr_sum_reg64 = LIO_CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num); cn23xx->intr_enb_reg64 = LIO_CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num); } static int lio_cn23xx_pf_sriov_config(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint32_t num_pf_rings, total_rings, max_rings; cn23xx->conf = (struct lio_config *)lio_get_config_info(oct, LIO_23XX); max_rings = LIO_CN23XX_PF_MAX_RINGS; if (oct->sriov_info.num_pf_rings) { num_pf_rings = oct->sriov_info.num_pf_rings; if (num_pf_rings > max_rings) { num_pf_rings = min(mp_ncpus, max_rings); lio_dev_warn(oct, "num_queues_per_pf requested %u is more than available rings (%u). Reducing to %u\n", oct->sriov_info.num_pf_rings, max_rings, num_pf_rings); } } else { #ifdef RSS num_pf_rings = min(rss_getnumbuckets(), mp_ncpus); #else num_pf_rings = min(mp_ncpus, max_rings); #endif } total_rings = num_pf_rings; oct->sriov_info.trs = total_rings; oct->sriov_info.pf_srn = total_rings - num_pf_rings; oct->sriov_info.num_pf_rings = num_pf_rings; lio_dev_dbg(oct, "trs:%d pf_srn:%d num_pf_rings:%d\n", oct->sriov_info.trs, oct->sriov_info.pf_srn, oct->sriov_info.num_pf_rings); return (0); } int lio_cn23xx_pf_setup_device(struct octeon_device *oct) { uint64_t BAR0, BAR1; uint32_t data32; data32 = lio_read_pci_cfg(oct, 0x10); BAR0 = (uint64_t)(data32 & ~0xf); data32 = lio_read_pci_cfg(oct, 0x14); BAR0 |= ((uint64_t)data32 << 32); data32 = lio_read_pci_cfg(oct, 0x18); BAR1 = (uint64_t)(data32 & ~0xf); data32 = lio_read_pci_cfg(oct, 0x1c); BAR1 |= ((uint64_t)data32 << 32); if (!BAR0 || !BAR1) { if (!BAR0) lio_dev_err(oct, "Device BAR0 unassigned\n"); if (!BAR1) lio_dev_err(oct, "Device BAR1 unassigned\n"); return (1); } if (lio_map_pci_barx(oct, 0)) return (1); if (lio_map_pci_barx(oct, 1)) { lio_dev_err(oct, "%s CN23XX BAR1 map failed\n", __func__); lio_unmap_pci_barx(oct, 0); return (1); } lio_cn23xx_pf_get_pf_num(oct); if (lio_cn23xx_pf_sriov_config(oct)) { lio_unmap_pci_barx(oct, 0); lio_unmap_pci_barx(oct, 1); return (1); } lio_write_csr64(oct, LIO_CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); oct->fn_list.setup_iq_regs = lio_cn23xx_pf_setup_iq_regs; oct->fn_list.setup_oq_regs = lio_cn23xx_pf_setup_oq_regs; oct->fn_list.process_interrupt_regs = lio_cn23xx_pf_interrupt_handler; oct->fn_list.msix_interrupt_handler = lio_cn23xx_pf_msix_interrupt_handler; oct->fn_list.soft_reset = lio_cn23xx_pf_soft_reset; oct->fn_list.setup_device_regs = lio_cn23xx_pf_setup_device_regs; oct->fn_list.update_iq_read_idx = lio_cn23xx_pf_update_read_index; oct->fn_list.bar1_idx_setup = lio_cn23xx_pf_bar1_idx_setup; oct->fn_list.bar1_idx_write = lio_cn23xx_pf_bar1_idx_write; oct->fn_list.bar1_idx_read = lio_cn23xx_pf_bar1_idx_read; oct->fn_list.enable_interrupt = lio_cn23xx_pf_enable_interrupt; oct->fn_list.disable_interrupt = lio_cn23xx_pf_disable_interrupt; oct->fn_list.enable_io_queues = lio_cn23xx_pf_enable_io_queues; oct->fn_list.disable_io_queues = lio_cn23xx_pf_disable_io_queues; lio_cn23xx_pf_setup_reg_address(oct); oct->coproc_clock_rate = 1000000ULL * lio_cn23xx_pf_coprocessor_clock(oct); return (0); } int lio_cn23xx_pf_fw_loaded(struct octeon_device *oct) { uint64_t val; val = lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH2); return ((val >> SCR2_BIT_FW_LOADED) & 1ULL); }