/* * Copyright (c) 1995, David Greenman * All rights reserved. * * Modifications to support media selection: * Copyright (c) 1997 Jason R. Thorpe. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: head/sys/dev/fxp/if_fxp.c 66188 2000-09-21 20:01:57Z wpaul $ */ /* * Intel EtherExpress Pro/100B PCI Fast Ethernet driver */ #include #include #include #include #include #include #include #include #include #ifdef NS #include #include #endif #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include /* for PCIM_CMD_xxx */ #include #include #ifdef __alpha__ /* XXX */ /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va)) #endif /* __alpha__ */ /* * NOTE! On the Alpha, we have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * alignes the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE 2 /* * Inline function to copy a 16-bit aligned 32-bit quantity. */ static __inline void fxp_lwcopy __P((volatile u_int32_t *, volatile u_int32_t *)); static __inline void fxp_lwcopy(src, dst) volatile u_int32_t *src, *dst; { #ifdef __i386__ *dst = *src; #else volatile u_int16_t *a = (volatile u_int16_t *)src; volatile u_int16_t *b = (volatile u_int16_t *)dst; b[0] = a[0]; b[1] = a[1]; #endif } /* * Template for default configuration parameters. * See struct fxp_cb_config for the bit definitions. */ static u_char fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x80, 0x2, /* cb_command */ 0xff, 0xff, 0xff, 0xff, /* link_addr */ 0x16, /* 0 */ 0x8, /* 1 */ 0x0, /* 2 */ 0x0, /* 3 */ 0x0, /* 4 */ 0x80, /* 5 */ 0xb2, /* 6 */ 0x3, /* 7 */ 0x1, /* 8 */ 0x0, /* 9 */ 0x26, /* 10 */ 0x0, /* 11 */ 0x60, /* 12 */ 0x0, /* 13 */ 0xf2, /* 14 */ 0x48, /* 15 */ 0x0, /* 16 */ 0x40, /* 17 */ 0xf3, /* 18 */ 0x0, /* 19 */ 0x3f, /* 20 */ 0x5 /* 21 */ }; /* Supported media types. */ struct fxp_supported_media { const int fsm_phy; /* PHY type */ const int *fsm_media; /* the media array */ const int fsm_nmedia; /* the number of supported media */ const int fsm_defmedia; /* default media for this PHY */ }; static const int fxp_media_standard[] = { IFM_ETHER|IFM_10_T, IFM_ETHER|IFM_10_T|IFM_FDX, IFM_ETHER|IFM_100_TX, IFM_ETHER|IFM_100_TX|IFM_FDX, IFM_ETHER|IFM_AUTO, }; #define FXP_MEDIA_STANDARD_DEFMEDIA (IFM_ETHER|IFM_AUTO) static const int fxp_media_default[] = { IFM_ETHER|IFM_MANUAL, /* XXX IFM_AUTO ? */ }; #define FXP_MEDIA_DEFAULT_DEFMEDIA (IFM_ETHER|IFM_MANUAL) static const struct fxp_supported_media fxp_media[] = { { FXP_PHY_DP83840, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_DP83840A, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_82553A, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_82553C, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_82555, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_82555B, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_80C24, fxp_media_default, sizeof(fxp_media_default) / sizeof(fxp_media_default[0]), FXP_MEDIA_DEFAULT_DEFMEDIA }, }; #define NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0])) static int fxp_mediachange __P((struct ifnet *)); static void fxp_mediastatus __P((struct ifnet *, struct ifmediareq *)); static void fxp_set_media __P((struct fxp_softc *, int)); static __inline void fxp_scb_wait __P((struct fxp_softc *)); static __inline void fxp_dma_wait __P((volatile u_int16_t *, struct fxp_softc *sc)); static void fxp_intr __P((void *)); static void fxp_start __P((struct ifnet *)); static int fxp_ioctl __P((struct ifnet *, u_long, caddr_t)); static void fxp_init __P((void *)); static void fxp_stop __P((struct fxp_softc *)); static void fxp_watchdog __P((struct ifnet *)); static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *)); static int fxp_mdi_read __P((struct fxp_softc *, int, int)); static void fxp_mdi_write __P((struct fxp_softc *, int, int, int)); static void fxp_autosize_eeprom __P((struct fxp_softc *)); static void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int)); static int fxp_attach_common __P((struct fxp_softc *, u_int8_t *)); static void fxp_stats_update __P((void *)); static void fxp_mc_setup __P((struct fxp_softc *)); /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * Number of transmit control blocks. This determines the number * of transmit buffers that can be chained in the CB list. * This must be a power of two. */ #define FXP_NTXCB 128 /* * Number of completed TX commands at which point an interrupt * will be generated to garbage collect the attached buffers. * Must be at least one less than FXP_NTXCB, and should be * enough less so that the transmitter doesn't becomes idle * during the buffer rundown (which would reduce performance). */ #define FXP_CXINT_THRESH 120 /* * TxCB list index mask. This is used to do list wrap-around. */ #define FXP_TXCB_MASK (FXP_NTXCB - 1) /* * Number of receive frame area buffers. These are large so chose * wisely. */ #define FXP_NRFABUFS 64 /* * Maximum number of seconds that the receiver can be idle before we * assume it's dead and attempt to reset it by reprogramming the * multicast filter. This is part of a work-around for a bug in the * NIC. See fxp_stats_update(). */ #define FXP_MAX_RX_IDLE 15 /* * Wait for the previous command to be accepted (but not necessarily * completed). */ static __inline void fxp_scb_wait(sc) struct fxp_softc *sc; { int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) DELAY(2); if (i == 0) printf("fxp%d: SCB timeout\n", FXP_UNIT(sc)); } static __inline void fxp_dma_wait(status, sc) volatile u_int16_t *status; struct fxp_softc *sc; { int i = 10000; while (!(*status & FXP_CB_STATUS_C) && --i) DELAY(2); if (i == 0) printf("fxp%d: DMA timeout\n", FXP_UNIT(sc)); } /* * Return identification string if this is device is ours. */ static int fxp_probe(device_t dev) { if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { switch (pci_get_device(dev)) { case FXP_DEVICEID_i82557: device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet"); return 0; case FXP_DEVICEID_i82559: device_set_desc(dev, "Intel InBusiness 10/100 Ethernet"); return 0; case FXP_DEVICEID_i82559ER: device_set_desc(dev, "Intel Embedded 10/100 Ethernet"); return 0; case FXP_DEVICEID_i82562: device_set_desc(dev, "Intel PLC 10/100 Ethernet"); return 0; default: break; } } return ENXIO; } static int fxp_attach(device_t dev) { int error = 0; struct fxp_softc *sc = device_get_softc(dev); struct ifnet *ifp; u_long val; int rid; mtx_init(&sc->sc_mtx, "fxp", MTX_DEF); callout_handle_init(&sc->stat_ch); FXP_LOCK(sc); /* * Enable bus mastering. */ val = pci_read_config(dev, PCIR_COMMAND, 2); val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, val, 2); /* * Map control/status registers. */ rid = FXP_PCI_MMBA; sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (!sc->mem) { device_printf(dev, "could not map memory\n"); error = ENXIO; goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); /* * Allocate our interrupt. */ rid = 0; sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->irq == NULL) { device_printf(dev, "could not map interrupt\n"); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, fxp_intr, sc, &sc->ih); if (error) { device_printf(dev, "could not setup irq\n"); goto fail; } /* Do generic parts of attach. */ if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) { /* Failed! */ bus_teardown_intr(dev, sc->irq, sc->ih); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem); error = ENXIO; goto fail; } device_printf(dev, "Ethernet address %6D%s\n", sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : ""); ifp = &sc->arpcom.ac_if; ifp->if_unit = device_get_unit(dev); ifp->if_name = "fxp"; ifp->if_output = ether_output; ifp->if_baudrate = 100000000; ifp->if_init = fxp_init; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; ifp->if_watchdog = fxp_watchdog; /* * Attach the interface. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); /* * Let the system queue as many packets as we have available * TX descriptors. */ ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; FXP_UNLOCK(sc); return 0; fail: FXP_UNLOCK(sc); mtx_destroy(&sc->sc_mtx); return error; } /* * Detach interface. */ static int fxp_detach(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); FXP_LOCK(sc); /* * Close down routes etc. */ ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED); /* * Stop DMA and drop transmit queue. */ fxp_stop(sc); /* * Deallocate resources. */ bus_teardown_intr(dev, sc->irq, sc->ih); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem); /* * Free all the receive buffers. */ if (sc->rfa_headm != NULL) m_freem(sc->rfa_headm); /* * Free all media structures. */ ifmedia_removeall(&sc->sc_media); /* * Free anciliary structures. */ free(sc->cbl_base, M_DEVBUF); free(sc->fxp_stats, M_DEVBUF); free(sc->mcsp, M_DEVBUF); FXP_UNLOCK(sc); return 0; } /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ static int fxp_shutdown(device_t dev) { /* * Make sure that DMA is disabled prior to reboot. Not doing * do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ fxp_stop((struct fxp_softc *) device_get_softc(dev)); return 0; } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int fxp_suspend(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); int i; FXP_LOCK(sc); fxp_stop(sc); for (i=0; i<5; i++) sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4); sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; FXP_UNLOCK(sc); return 0; } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int fxp_resume(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->sc_if; u_int16_t pci_command; int i; FXP_LOCK(sc); /* better way to do this? */ for (i=0; i<5; i++) pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); /* reenable busmastering */ pci_command = pci_read_config(dev, PCIR_COMMAND, 2); pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, pci_command, 2); CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) fxp_init(sc); sc->suspended = 0; FXP_UNLOCK(sc); return 0; } static device_method_t fxp_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fxp_probe), DEVMETHOD(device_attach, fxp_attach), DEVMETHOD(device_detach, fxp_detach), DEVMETHOD(device_shutdown, fxp_shutdown), DEVMETHOD(device_suspend, fxp_suspend), DEVMETHOD(device_resume, fxp_resume), { 0, 0 } }; static driver_t fxp_driver = { "fxp", fxp_methods, sizeof(struct fxp_softc), }; static devclass_t fxp_devclass; DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); /* * Do generic parts of attach. */ static int fxp_attach_common(sc, enaddr) struct fxp_softc *sc; u_int8_t *enaddr; { u_int16_t data; int i, nmedia, defmedia; const int *media; /* * Reset to a stable state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, M_DEVBUF, M_NOWAIT); if (sc->cbl_base == NULL) goto fail; bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB); sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT); if (sc->fxp_stats == NULL) goto fail; bzero(sc->fxp_stats, sizeof(struct fxp_stats)); sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); if (sc->mcsp == NULL) goto fail; /* * Pre-allocate our receive buffers. */ for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { goto fail; } } /* * Find out how large of an SEEPROM we have. */ fxp_autosize_eeprom(sc); /* * Get info about the primary PHY */ fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1); sc->phy_primary_addr = data & 0xff; sc->phy_primary_device = (data >> 8) & 0x3f; sc->phy_10Mbps_only = data >> 15; /* * Read MAC address. */ fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3); /* * Initialize the media structures. */ media = fxp_media_default; nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]); defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA; for (i = 0; i < NFXPMEDIA; i++) { if (sc->phy_primary_device == fxp_media[i].fsm_phy) { media = fxp_media[i].fsm_media; nmedia = fxp_media[i].fsm_nmedia; defmedia = fxp_media[i].fsm_defmedia; } } ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus); for (i = 0; i < nmedia; i++) { if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only) continue; ifmedia_add(&sc->sc_media, media[i], 0, NULL); } ifmedia_set(&sc->sc_media, defmedia); return (0); fail: printf("fxp%d: Failed to malloc memory\n", FXP_UNIT(sc)); if (sc->cbl_base) free(sc->cbl_base, M_DEVBUF); if (sc->fxp_stats) free(sc->fxp_stats, M_DEVBUF); if (sc->mcsp) free(sc->mcsp, M_DEVBUF); /* frees entire chain */ if (sc->rfa_headm) m_freem(sc->rfa_headm); return (ENOMEM); } /* * From NetBSD: * * Figure out EEPROM size. * * 559's can have either 64-word or 256-word EEPROMs, the 558 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet * talks about the existance of 16 to 256 word EEPROMs. * * The only known sizes are 64 and 256, where the 256 version is used * by CardBus cards to store CIS information. * * The address is shifted in msb-to-lsb, and after the last * address-bit the EEPROM is supposed to output a `dummy zero' bit, * after which follows the actual data. We try to detect this zero, by * probing the data-out bit in the EEPROM control register just after * having shifted in a bit. If the bit is zero, we assume we've * shifted enough address bits. The data-out should be tri-state, * before this, which should translate to a logical one. * * Other ways to do this would be to try to read a register with known * contents with a varying number of address bits, but no such * register seem to be available. The high bits of register 10 are 01 * on the 558 and 559, but apparently not on the 557. * * The Linux driver computes a checksum on the EEPROM data, but the * value of this checksum is not very well documented. */ static void fxp_autosize_eeprom(sc) struct fxp_softc *sc; { u_int16_t reg; int x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ for (x = 3; x > 0; x--) { if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } /* * Shift in address. * Wait for the dummy zero following a correct address shift. */ for (x = 1; x <= 8; x++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS | FXP_EEPROM_EESK); DELAY(1); if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0) break; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(1); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); sc->eeprom_size = x; } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ static void fxp_read_eeprom(sc, data, offset, words) struct fxp_softc *sc; u_short *data; int offset; int words; { u_int16_t reg; int i, x; for (i = 0; i < words; i++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ for (x = 3; x > 0; x--) { if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } /* * Shift in address. */ for (x = sc->eeprom_size; x > 0; x--) { if ((i + offset) & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } reg = FXP_EEPROM_EECS; data[i] = 0; /* * Shift out data. */ for (x = 16; x > 0; x--) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data[i] |= (1 << (x - 1)); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); } } /* * Start packet transmission on the interface. */ static void fxp_start(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; struct fxp_cb_tx *txp; FXP_LOCK(sc); /* * See if we need to suspend xmit until the multicast filter * has been reprogrammed (which can only be done at the head * of the command chain). */ if (sc->need_mcsetup) { FXP_UNLOCK(sc); return; } txp = NULL; /* * We're finished if there is nothing more to add to the list or if * we're all filled up with buffers to transmit. * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add * a NOP command when needed. */ while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { struct mbuf *m, *mb_head; int segment; /* * Grab a packet to transmit. */ IF_DEQUEUE(&ifp->if_snd, mb_head); /* * Get pointer to next available tx desc. */ txp = sc->cbl_last->next; /* * Go through each of the mbufs in the chain and initialize * the transmit buffer descriptors with the physical address * and size of the mbuf. */ tbdinit: for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (segment == FXP_NTXSEG) break; txp->tbd[segment].tb_addr = vtophys(mtod(m, vm_offset_t)); txp->tbd[segment].tb_size = m->m_len; segment++; } } if (m != NULL) { struct mbuf *mn; /* * We ran out of segments. We have to recopy this mbuf * chain first. Bail out if we can't get the new buffers. */ MGETHDR(mn, M_DONTWAIT, MT_DATA); if (mn == NULL) { m_freem(mb_head); break; } if (mb_head->m_pkthdr.len > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(mn); m_freem(mb_head); break; } } m_copydata(mb_head, 0, mb_head->m_pkthdr.len, mtod(mn, caddr_t)); mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; m_freem(mb_head); mb_head = mn; goto tbdinit; } txp->tbd_number = segment; txp->mb_head = mb_head; txp->cb_status = 0; if (sc->tx_queued != FXP_CXINT_THRESH - 1) { txp->cb_command = FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S; } else { txp->cb_command = FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; /* * Set a 5 second timer just in case we don't hear from the * card again. */ ifp->if_timer = 5; } txp->tx_threshold = tx_threshold; /* * Advance the end of list forward. */ #ifdef __alpha__ /* * On platforms which can't access memory in 16-bit * granularities, we must prevent the card from DMA'ing * up the status while we update the command field. * This could cause us to overwrite the completion status. */ atomic_clear_short(&sc->cbl_last->cb_command, FXP_CB_COMMAND_S); #else sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; #endif /*__alpha__*/ sc->cbl_last = txp; /* * Advance the beginning of the list forward if there are * no other packets queued (when nothing is queued, cbl_first * sits on the last TxCB that was sent out). */ if (sc->tx_queued == 0) sc->cbl_first = txp; sc->tx_queued++; /* * Pass packet to bpf if there is a listener. */ if (ifp->if_bpf) bpf_mtap(ifp, mb_head); } /* * We're finished. If we added to the list, issue a RESUME to get DMA * going again if suspended. */ if (txp != NULL) { fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME); } FXP_UNLOCK(sc); } /* * Process interface interrupts. */ static void fxp_intr(arg) void *arg; { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; u_int8_t statack; FXP_LOCK(sc); if (sc->suspended) { FXP_UNLOCK(sc); return; } while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); /* * Free any finished transmit mbuf chains. * * Handle the CNA event likt a CXTNO event. It used to * be that this event (control unit not ready) was not * encountered, but it is now with the SMPng modifications. * The exact sequence of events that occur when the interface * is brought up are different now, and if this event * goes unhandled, the configuration/rxfilter setup sequence * can stall for several seconds. The result is that no * packets go out onto the wire for about 5 to 10 seconds * after the interface is ifconfig'ed for the first time. */ if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { struct fxp_cb_tx *txp; for (txp = sc->cbl_first; sc->tx_queued && (txp->cb_status & FXP_CB_STATUS_C) != 0; txp = txp->next) { if (txp->mb_head != NULL) { m_freem(txp->mb_head); txp->mb_head = NULL; } sc->tx_queued--; } sc->cbl_first = txp; ifp->if_timer = 0; if (sc->tx_queued == 0) { if (sc->need_mcsetup) fxp_mc_setup(sc); } /* * Try to start more packets transmitting. */ if (ifp->if_snd.ifq_head != NULL) fxp_start(ifp); } /* * Process receiver interrupts. If a no-resource (RNR) * condition exists, get whatever packets we can and * re-start the receiver. */ if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { struct mbuf *m; struct fxp_rfa *rfa; rcvloop: m = sc->rfa_headm; rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); if (rfa->rfa_status & FXP_RFA_STATUS_C) { /* * Remove first packet from the chain. */ sc->rfa_headm = m->m_next; m->m_next = NULL; /* * Add a new buffer to the receive chain. * If this fails, the old buffer is recycled * instead. */ if (fxp_add_rfabuf(sc, m) == 0) { struct ether_header *eh; int total_len; total_len = rfa->actual_size & (MCLBYTES - 1); if (total_len < sizeof(struct ether_header)) { m_freem(m); goto rcvloop; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; eh = mtod(m, struct ether_header *); m->m_data += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_pkthdr.len = m->m_len; ether_input(ifp, eh, m); } goto rcvloop; } if (statack & FXP_SCB_STATACK_RNR) { fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START); } } } FXP_UNLOCK(sc); } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ static void fxp_stats_update(arg) void *arg; { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; struct fxp_stats *sp = sc->fxp_stats; struct fxp_cb_tx *txp; ifp->if_opackets += sp->tx_good; ifp->if_collisions += sp->tx_total_collisions; if (sp->rx_good) { ifp->if_ipackets += sp->rx_good; sc->rx_idle_secs = 0; } else { /* * Receiver's been idle for another second. */ sc->rx_idle_secs++; } ifp->if_ierrors += sp->rx_crc_errors + sp->rx_alignment_errors + sp->rx_rnr_errors + sp->rx_overrun_errors; /* * If any transmit underruns occured, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { ifp->if_oerrors += sp->tx_underruns; if (tx_threshold < 192) tx_threshold += 64; } FXP_LOCK(sc); /* * Release any xmit buffers that have completed DMA. This isn't * strictly necessary to do here, but it's advantagous for mbufs * with external storage to be released in a timely manner rather * than being defered for a potentially long time. This limits * the delay to a maximum of one second. */ for (txp = sc->cbl_first; sc->tx_queued && (txp->cb_status & FXP_CB_STATUS_C) != 0; txp = txp->next) { if (txp->mb_head != NULL) { m_freem(txp->mb_head); txp->mb_head = NULL; } sc->tx_queued--; } sc->cbl_first = txp; /* * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter. This is * a work-around for a bug in the 82557 where the receiver locks * up if it gets certain types of garbage in the syncronization * bits prior to the packet header. This bug is supposed to only * occur in 10Mbps mode, but has been seen to occur in 100Mbps * mode as well (perhaps due to a 10/100 speed transition). */ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { sc->rx_idle_secs = 0; fxp_mc_setup(sc); } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMPRESET); } else { /* * A previous command is still waiting to be accepted. * Just zero our copy of the stats and wait for the * next timer event to update them. */ sp->tx_good = 0; sp->tx_underruns = 0; sp->tx_total_collisions = 0; sp->rx_good = 0; sp->rx_crc_errors = 0; sp->rx_alignment_errors = 0; sp->rx_rnr_errors = 0; sp->rx_overrun_errors = 0; } FXP_UNLOCK(sc); /* * Schedule another timeout one second from now. */ sc->stat_ch = timeout(fxp_stats_update, sc, hz); } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ static void fxp_stop(sc) struct fxp_softc *sc; { struct ifnet *ifp = &sc->sc_if; struct fxp_cb_tx *txp; int i; FXP_LOCK(sc); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; /* * Cancel stats updater. */ untimeout(fxp_stats_update, sc, sc->stat_ch); /* * Issue software reset */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* * Release any xmit buffers. */ txp = sc->cbl_base; if (txp != NULL) { for (i = 0; i < FXP_NTXCB; i++) { if (txp[i].mb_head != NULL) { m_freem(txp[i].mb_head); txp[i].mb_head = NULL; } } } sc->tx_queued = 0; /* * Free all the receive buffers then reallocate/reinitialize */ if (sc->rfa_headm != NULL) m_freem(sc->rfa_headm); sc->rfa_headm = NULL; sc->rfa_tailm = NULL; for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { /* * This "can't happen" - we're at splimp() * and we just freed all the buffers we need * above. */ panic("fxp_stop: no buffers!"); } } FXP_UNLOCK(sc); } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ static void fxp_watchdog(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; printf("fxp%d: device timeout\n", FXP_UNIT(sc)); ifp->if_oerrors++; fxp_init(sc); } static void fxp_init(xsc) void *xsc; { struct fxp_softc *sc = xsc; struct ifnet *ifp = &sc->sc_if; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_cb_tx *txp; int i, prm; FXP_LOCK(sc); /* * Cancel any pending I/O */ fxp_stop(sc); prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE); /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR); /* * We temporarily use memory that contains the TxCB list to * construct the config CB. The TxCB list memory is rebuilt * later. */ cbp = (struct fxp_cb_config *) sc->cbl_base; /* * This bcopy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ bcopy(fxp_cb_config_template, (void *)(uintptr_t)(volatile void *)&cbp->cb_status, sizeof(fxp_cb_config_template)); cbp->cb_status = 0; cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; cbp->link_addr = -1; /* (no) next command */ cbp->byte_count = 22; /* (22) bytes to config */ cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_bce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->tno_int = 0; /* (disable) tx not okay interrupt */ cbp->ci_int = 1; /* interrupt on CU idle */ cbp->save_bf = prm; /* save bad frames */ cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->crscdt = 0; /* (CRS only) */ cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = sc->all_mcasts;/* accept all multicasts */ /* * Start the config command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&cbp->cb_status, sc); /* * Now initialize the station address. Temporarily use the TxCB * memory area like we did above for the config CB. */ cb_ias = (struct fxp_cb_ias *) sc->cbl_base; cb_ias->cb_status = 0; cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; cb_ias->link_addr = -1; bcopy(sc->arpcom.ac_enaddr, (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, sizeof(sc->arpcom.ac_enaddr)); /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&cb_ias->cb_status, sc); /* * Initialize transmit control block (TxCB) list. */ txp = sc->cbl_base; bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); for (i = 0; i < FXP_NTXCB; i++) { txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; txp[i].cb_command = FXP_CB_COMMAND_NOP; txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; } /* * Set the suspend flag on the first TxCB and start the control * unit. It will execute the NOP and then suspend. */ txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; sc->cbl_first = sc->cbl_last = txp; sc->tx_queued = 1; fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START); /* * Set current media. */ fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; FXP_UNLOCK(sc); /* * Start stats updater. */ sc->stat_ch = timeout(fxp_stats_update, sc, hz); } static void fxp_set_media(sc, media) struct fxp_softc *sc; int media; { switch (sc->phy_primary_device) { case FXP_PHY_DP83840: case FXP_PHY_DP83840A: fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR, fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) | FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */ FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */ FXP_DP83840_PCR_BIT10); /* XXX I have no idea */ /* fall through */ case FXP_PHY_82553A: case FXP_PHY_82553C: /* untested */ case FXP_PHY_82555: case FXP_PHY_82555B: if (IFM_SUBTYPE(media) != IFM_AUTO) { int flags; flags = (IFM_SUBTYPE(media) == IFM_100_TX) ? FXP_PHY_BMCR_SPEED_100M : 0; flags |= (media & IFM_FDX) ? FXP_PHY_BMCR_FULLDUPLEX : 0; fxp_mdi_write(sc, sc->phy_primary_addr, FXP_PHY_BMCR, (fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR) & ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M | FXP_PHY_BMCR_FULLDUPLEX)) | flags); } else { fxp_mdi_write(sc, sc->phy_primary_addr, FXP_PHY_BMCR, (fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN)); } break; /* * The Seeq 80c24 doesn't have a PHY programming interface, so do * nothing. */ case FXP_PHY_80C24: break; default: printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n", FXP_UNIT(sc), sc->phy_primary_device, sc->phy_primary_addr); } } /* * Change media according to request. */ int fxp_mediachange(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); fxp_set_media(sc, ifm->ifm_media); return (0); } /* * Notify the world which media we're using. */ void fxp_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct fxp_softc *sc = ifp->if_softc; int flags, stsflags; switch (sc->phy_primary_device) { case FXP_PHY_82555: case FXP_PHY_82555B: case FXP_PHY_DP83840: case FXP_PHY_DP83840A: ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */ ifmr->ifm_active = IFM_ETHER; /* * the following is not an error. * You need to read this register twice to get current * status. This is correct documented behaviour, the * first read gets latched values. */ stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS); stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS); if (stsflags & FXP_PHY_STS_LINK_STS) ifmr->ifm_status |= IFM_ACTIVE; /* * If we are in auto mode, then try report the result. */ flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR); if (flags & FXP_PHY_BMCR_AUTOEN) { ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */ if (stsflags & FXP_PHY_STS_AUTO_DONE) { /* * Intel and National parts report * differently on what they found. */ if ((sc->phy_primary_device == FXP_PHY_82555) || (sc->phy_primary_device == FXP_PHY_82555B)) { flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_USC); if (flags & FXP_PHY_USC_SPEED) ifmr->ifm_active |= IFM_100_TX; else ifmr->ifm_active |= IFM_10_T; if (flags & FXP_PHY_USC_DUPLEX) ifmr->ifm_active |= IFM_FDX; } else { /* it's National. only know speed */ flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PAR); if (flags & FXP_DP83840_PAR_SPEED_10) ifmr->ifm_active |= IFM_10_T; else ifmr->ifm_active |= IFM_100_TX; } } } else { /* in manual mode.. just report what we were set to */ if (flags & FXP_PHY_BMCR_SPEED_100M) ifmr->ifm_active |= IFM_100_TX; else ifmr->ifm_active |= IFM_10_T; if (flags & FXP_PHY_BMCR_FULLDUPLEX) ifmr->ifm_active |= IFM_FDX; } break; case FXP_PHY_80C24: default: ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */ } } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, 1 for failure. A failure results in * adding the 'oldm' (if non-NULL) on to the end of the list - * tossing out its old contents and recycling it. * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ static int fxp_add_rfabuf(sc, oldm) struct fxp_softc *sc; struct mbuf *oldm; { u_int32_t v; struct mbuf *m; struct fxp_rfa *rfa, *p_rfa; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } } else { if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfa = mtod(m, struct fxp_rfa *); m->m_data += sizeof(struct fxp_rfa); rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. Instead, * we use an optimized, inline copy. */ rfa->rfa_status = 0; rfa->rfa_control = FXP_RFA_CONTROL_EL; rfa->actual_size = 0; v = -1; fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); /* * If there are other buffers already on the list, attach this * one to the end by fixing up the tail to point to this one. */ if (sc->rfa_headm != NULL) { p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); sc->rfa_tailm->m_next = m; v = vtophys(rfa); fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); p_rfa->rfa_control = 0; } else { sc->rfa_headm = m; } sc->rfa_tailm = m; return (m == oldm); } static volatile int fxp_mdi_read(sc, phy, reg) struct fxp_softc *sc; int phy; int reg; { int count = 10000; int value; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf("fxp%d: fxp_mdi_read: timed out\n", FXP_UNIT(sc)); return (value & 0xffff); } static void fxp_mdi_write(sc, phy, reg, value) struct fxp_softc *sc; int phy; int reg; int value; { int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | (value & 0xffff)); while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf("fxp%d: fxp_mdi_write: timed out\n", FXP_UNIT(sc)); } static int fxp_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct fxp_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error = 0; FXP_LOCK(sc); switch (command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. * XXX If it's up then re-initialize it. This is so flags * such as IFF_PROMISC are handled. */ if (ifp->if_flags & IFF_UP) { fxp_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) fxp_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; /* * Multicast list has changed; set the hardware filter * accordingly. */ if (!sc->all_mcasts) fxp_mc_setup(sc); /* * fxp_mc_setup() can turn on sc->all_mcasts, so check it * again rather than else {}. */ if (sc->all_mcasts) fxp_init(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; default: error = EINVAL; } FXP_UNLOCK(sc); return (error); } /* * Program the multicast filter. * * We have an artificial restriction that the multicast setup command * must be the first command in the chain, so we take steps to ensure * this. By requiring this, it allows us to keep up the performance of * the pre-initialized command ring (esp. link pointers) by not actually * inserting the mcsetup command in the ring - i.e. its link pointer * points to the TxCB ring, but the mcsetup descriptor itself is not part * of it. We then can do 'CU_START' on the mcsetup descriptor and have it * lead into the regular TxCB ring when it completes. * * This function must be called at splimp. */ static void fxp_mc_setup(sc) struct fxp_softc *sc; { struct fxp_cb_mcs *mcsp = sc->mcsp; struct ifnet *ifp = &sc->sc_if; struct ifmultiaddr *ifma; int nmcasts; int count; /* * If there are queued commands, we must wait until they are all * completed. If we are already waiting, then add a NOP command * with interrupt option so that we're notified when all commands * have been completed - fxp_start() ensures that no additional * TX commands will be added when need_mcsetup is true. */ if (sc->tx_queued) { struct fxp_cb_tx *txp; /* * need_mcsetup will be true if we are already waiting for the * NOP command to be completed (see below). In this case, bail. */ if (sc->need_mcsetup) return; sc->need_mcsetup = 1; /* * Add a NOP command with interrupt so that we are notified when all * TX commands have been processed. */ txp = sc->cbl_last->next; txp->mb_head = NULL; txp->cb_status = 0; txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; /* * Advance the end of list forward. */ sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; sc->cbl_last = txp; sc->tx_queued++; /* * Issue a resume in case the CU has just suspended. */ fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME); /* * Set a 5 second timer just in case we don't hear from the * card again. */ ifp->if_timer = 5; return; } sc->need_mcsetup = 0; /* * Initialize multicast setup descriptor. */ mcsp->next = sc->cbl_base; mcsp->mb_head = NULL; mcsp->cb_status = 0; mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); nmcasts = 0; if (!sc->all_mcasts) { for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (nmcasts >= MAXMCADDR) { sc->all_mcasts = 1; nmcasts = 0; break; } bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (void *)(uintptr_t)(volatile void *) &sc->mcsp->mc_addr[nmcasts][0], 6); nmcasts++; } } mcsp->mc_cnt = nmcasts * 6; sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; sc->tx_queued = 1; /* * Wait until command unit is not active. This should never * be the case when nothing is queued, but make sure anyway. */ count = 100; while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == FXP_SCB_CUS_ACTIVE && --count) DELAY(10); if (count == 0) { printf("fxp%d: command queue timeout\n", FXP_UNIT(sc)); return; } /* * Start the multicast setup command. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); ifp->if_timer = 2; return; }