/*- * Copyright (c) 2003 Stuart Walsh * and Duncan Barclay * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: head/sys/dev/bfe/if_bfe.c 157518 2006-04-04 22:30:12Z pjd $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for DELAY */ #include #include #include #include #include #include #include "miidevs.h" #include #include #include MODULE_DEPEND(bfe, pci, 1, 1, 1); MODULE_DEPEND(bfe, ether, 1, 1, 1); MODULE_DEPEND(bfe, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define BFE_DEVDESC_MAX 64 /* Maximum device description length */ static struct bfe_type bfe_devs[] = { { BCOM_VENDORID, BCOM_DEVICEID_BCM4401, "Broadcom BCM4401 Fast Ethernet" }, { BCOM_VENDORID, BCOM_DEVICEID_BCM4401B0, "Broadcom BCM4401-B0 Fast Ethernet" }, { 0, 0, NULL } }; static int bfe_probe (device_t); static int bfe_attach (device_t); static int bfe_detach (device_t); static void bfe_release_resources (struct bfe_softc *); static void bfe_intr (void *); static void bfe_start (struct ifnet *); static void bfe_start_locked (struct ifnet *); static int bfe_ioctl (struct ifnet *, u_long, caddr_t); static void bfe_init (void *); static void bfe_init_locked (void *); static void bfe_stop (struct bfe_softc *); static void bfe_watchdog (struct ifnet *); static void bfe_shutdown (device_t); static void bfe_tick (void *); static void bfe_txeof (struct bfe_softc *); static void bfe_rxeof (struct bfe_softc *); static void bfe_set_rx_mode (struct bfe_softc *); static int bfe_list_rx_init (struct bfe_softc *); static int bfe_list_newbuf (struct bfe_softc *, int, struct mbuf*); static void bfe_rx_ring_free (struct bfe_softc *); static void bfe_pci_setup (struct bfe_softc *, u_int32_t); static int bfe_ifmedia_upd (struct ifnet *); static void bfe_ifmedia_sts (struct ifnet *, struct ifmediareq *); static int bfe_miibus_readreg (device_t, int, int); static int bfe_miibus_writereg (device_t, int, int, int); static void bfe_miibus_statchg (device_t); static int bfe_wait_bit (struct bfe_softc *, u_int32_t, u_int32_t, u_long, const int); static void bfe_get_config (struct bfe_softc *sc); static void bfe_read_eeprom (struct bfe_softc *, u_int8_t *); static void bfe_stats_update (struct bfe_softc *); static void bfe_clear_stats (struct bfe_softc *); static int bfe_readphy (struct bfe_softc *, u_int32_t, u_int32_t*); static int bfe_writephy (struct bfe_softc *, u_int32_t, u_int32_t); static int bfe_resetphy (struct bfe_softc *); static int bfe_setupphy (struct bfe_softc *); static void bfe_chip_reset (struct bfe_softc *); static void bfe_chip_halt (struct bfe_softc *); static void bfe_core_reset (struct bfe_softc *); static void bfe_core_disable (struct bfe_softc *); static int bfe_dma_alloc (device_t); static void bfe_dma_map_desc (void *, bus_dma_segment_t *, int, int); static void bfe_dma_map (void *, bus_dma_segment_t *, int, int); static void bfe_cam_write (struct bfe_softc *, u_char *, int); static device_method_t bfe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bfe_probe), DEVMETHOD(device_attach, bfe_attach), DEVMETHOD(device_detach, bfe_detach), DEVMETHOD(device_shutdown, bfe_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bfe_miibus_readreg), DEVMETHOD(miibus_writereg, bfe_miibus_writereg), DEVMETHOD(miibus_statchg, bfe_miibus_statchg), { 0, 0 } }; static driver_t bfe_driver = { "bfe", bfe_methods, sizeof(struct bfe_softc) }; static devclass_t bfe_devclass; DRIVER_MODULE(bfe, pci, bfe_driver, bfe_devclass, 0, 0); DRIVER_MODULE(miibus, bfe, miibus_driver, miibus_devclass, 0, 0); /* * Probe for a Broadcom 4401 chip. */ static int bfe_probe(device_t dev) { struct bfe_type *t; struct bfe_softc *sc; t = bfe_devs; sc = device_get_softc(dev); bzero(sc, sizeof(struct bfe_softc)); sc->bfe_unit = device_get_unit(dev); sc->bfe_dev = dev; while(t->bfe_name != NULL) { if ((pci_get_vendor(dev) == t->bfe_vid) && (pci_get_device(dev) == t->bfe_did)) { device_set_desc_copy(dev, t->bfe_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } static int bfe_dma_alloc(device_t dev) { struct bfe_softc *sc; int error, i; sc = device_get_softc(dev); /* parent tag */ error = bus_dma_tag_create(NULL, /* parent */ PAGE_SIZE, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR_32BIT, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* num of segments */ BUS_SPACE_MAXSIZE_32BIT, /* max segment size */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_parent_tag); /* tag for TX ring */ error = bus_dma_tag_create(sc->bfe_parent_tag, BFE_TX_LIST_SIZE, BFE_TX_LIST_SIZE, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BFE_TX_LIST_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->bfe_tx_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* tag for RX ring */ error = bus_dma_tag_create(sc->bfe_parent_tag, BFE_RX_LIST_SIZE, BFE_RX_LIST_SIZE, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BFE_RX_LIST_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->bfe_rx_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* tag for mbufs */ error = bus_dma_tag_create(sc->bfe_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->bfe_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* pre allocate dmamaps for RX list */ for (i = 0; i < BFE_RX_LIST_CNT; i++) { error = bus_dmamap_create(sc->bfe_tag, 0, &sc->bfe_rx_ring[i].bfe_map); if (error) { device_printf(dev, "cannot create DMA map for RX\n"); return (ENOMEM); } } /* pre allocate dmamaps for TX list */ for (i = 0; i < BFE_TX_LIST_CNT; i++) { error = bus_dmamap_create(sc->bfe_tag, 0, &sc->bfe_tx_ring[i].bfe_map); if (error) { device_printf(dev, "cannot create DMA map for TX\n"); return (ENOMEM); } } /* Alloc dma for rx ring */ error = bus_dmamem_alloc(sc->bfe_rx_tag, (void *)&sc->bfe_rx_list, BUS_DMA_NOWAIT, &sc->bfe_rx_map); if(error) return (ENOMEM); bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE); error = bus_dmamap_load(sc->bfe_rx_tag, sc->bfe_rx_map, sc->bfe_rx_list, sizeof(struct bfe_desc), bfe_dma_map, &sc->bfe_rx_dma, 0); if(error) return (ENOMEM); bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD); error = bus_dmamem_alloc(sc->bfe_tx_tag, (void *)&sc->bfe_tx_list, BUS_DMA_NOWAIT, &sc->bfe_tx_map); if (error) return (ENOMEM); error = bus_dmamap_load(sc->bfe_tx_tag, sc->bfe_tx_map, sc->bfe_tx_list, sizeof(struct bfe_desc), bfe_dma_map, &sc->bfe_tx_dma, 0); if(error) return (ENOMEM); bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE); bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD); return (0); } static int bfe_attach(device_t dev) { struct ifnet *ifp = NULL; struct bfe_softc *sc; int unit, error = 0, rid; sc = device_get_softc(dev); mtx_init(&sc->bfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); unit = device_get_unit(dev); sc->bfe_dev = dev; sc->bfe_unit = unit; /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = BFE_PCI_MEMLO; sc->bfe_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bfe_res == NULL) { printf ("bfe%d: couldn't map memory\n", unit); error = ENXIO; goto fail; } sc->bfe_btag = rman_get_bustag(sc->bfe_res); sc->bfe_bhandle = rman_get_bushandle(sc->bfe_res); sc->bfe_vhandle = (vm_offset_t)rman_get_virtual(sc->bfe_res); /* Allocate interrupt */ rid = 0; sc->bfe_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bfe_irq == NULL) { printf("bfe%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } if (bfe_dma_alloc(dev)) { printf("bfe%d: failed to allocate DMA resources\n", sc->bfe_unit); error = ENXIO; goto fail; } /* Set up ifnet structure */ ifp = sc->bfe_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { printf("bfe%d: failed to if_alloc()\n", sc->bfe_unit); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bfe_ioctl; ifp->if_start = bfe_start; ifp->if_watchdog = bfe_watchdog; ifp->if_init = bfe_init; ifp->if_mtu = ETHERMTU; IFQ_SET_MAXLEN(&ifp->if_snd, BFE_TX_QLEN); ifp->if_snd.ifq_drv_maxlen = BFE_TX_QLEN; IFQ_SET_READY(&ifp->if_snd); bfe_get_config(sc); /* Reset the chip and turn on the PHY */ BFE_LOCK(sc); bfe_chip_reset(sc); BFE_UNLOCK(sc); if (mii_phy_probe(dev, &sc->bfe_miibus, bfe_ifmedia_upd, bfe_ifmedia_sts)) { printf("bfe%d: MII without any PHY!\n", sc->bfe_unit); error = ENXIO; goto fail; } ether_ifattach(ifp, sc->bfe_enaddr); callout_handle_init(&sc->bfe_stat_ch); /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_MTU; /* * Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->bfe_irq, INTR_TYPE_NET | INTR_MPSAFE, bfe_intr, sc, &sc->bfe_intrhand); if (error) { printf("bfe%d: couldn't set up irq\n", unit); goto fail; } fail: if (error) bfe_release_resources(sc); return (error); } static int bfe_detach(device_t dev) { struct bfe_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->bfe_mtx), ("bfe mutex not initialized")); BFE_LOCK(sc); ifp = sc->bfe_ifp; if (device_is_attached(dev)) { bfe_stop(sc); ether_ifdetach(ifp); } bfe_chip_reset(sc); bus_generic_detach(dev); if(sc->bfe_miibus != NULL) device_delete_child(dev, sc->bfe_miibus); bfe_release_resources(sc); BFE_UNLOCK(sc); mtx_destroy(&sc->bfe_mtx); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void bfe_shutdown(device_t dev) { struct bfe_softc *sc; sc = device_get_softc(dev); BFE_LOCK(sc); bfe_stop(sc); BFE_UNLOCK(sc); return; } static int bfe_miibus_readreg(device_t dev, int phy, int reg) { struct bfe_softc *sc; u_int32_t ret; sc = device_get_softc(dev); if(phy != sc->bfe_phyaddr) return (0); bfe_readphy(sc, reg, &ret); return (ret); } static int bfe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bfe_softc *sc; sc = device_get_softc(dev); if(phy != sc->bfe_phyaddr) return (0); bfe_writephy(sc, reg, val); return (0); } static void bfe_miibus_statchg(device_t dev) { return; } static void bfe_tx_ring_free(struct bfe_softc *sc) { int i; for(i = 0; i < BFE_TX_LIST_CNT; i++) { if(sc->bfe_tx_ring[i].bfe_mbuf != NULL) { m_freem(sc->bfe_tx_ring[i].bfe_mbuf); sc->bfe_tx_ring[i].bfe_mbuf = NULL; bus_dmamap_unload(sc->bfe_tag, sc->bfe_tx_ring[i].bfe_map); } } bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE); bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD); } static void bfe_rx_ring_free(struct bfe_softc *sc) { int i; for (i = 0; i < BFE_RX_LIST_CNT; i++) { if (sc->bfe_rx_ring[i].bfe_mbuf != NULL) { m_freem(sc->bfe_rx_ring[i].bfe_mbuf); sc->bfe_rx_ring[i].bfe_mbuf = NULL; bus_dmamap_unload(sc->bfe_tag, sc->bfe_rx_ring[i].bfe_map); } } bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE); bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD); } static int bfe_list_rx_init(struct bfe_softc *sc) { int i; for(i = 0; i < BFE_RX_LIST_CNT; i++) { if(bfe_list_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD); CSR_WRITE_4(sc, BFE_DMARX_PTR, (i * sizeof(struct bfe_desc))); sc->bfe_rx_cons = 0; return (0); } static int bfe_list_newbuf(struct bfe_softc *sc, int c, struct mbuf *m) { struct bfe_rxheader *rx_header; struct bfe_desc *d; struct bfe_data *r; u_int32_t ctrl; if ((c < 0) || (c >= BFE_RX_LIST_CNT)) return (EINVAL); if(m == NULL) { m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if(m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; } else m->m_data = m->m_ext.ext_buf; rx_header = mtod(m, struct bfe_rxheader *); rx_header->len = 0; rx_header->flags = 0; /* Map the mbuf into DMA */ sc->bfe_rx_cnt = c; d = &sc->bfe_rx_list[c]; r = &sc->bfe_rx_ring[c]; bus_dmamap_load(sc->bfe_tag, r->bfe_map, mtod(m, void *), MCLBYTES, bfe_dma_map_desc, d, 0); bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_PREREAD); ctrl = ETHER_MAX_LEN + 32; if(c == BFE_RX_LIST_CNT - 1) ctrl |= BFE_DESC_EOT; d->bfe_ctrl = ctrl; r->bfe_mbuf = m; bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD); return (0); } static void bfe_get_config(struct bfe_softc *sc) { u_int8_t eeprom[128]; bfe_read_eeprom(sc, eeprom); sc->bfe_enaddr[0] = eeprom[79]; sc->bfe_enaddr[1] = eeprom[78]; sc->bfe_enaddr[2] = eeprom[81]; sc->bfe_enaddr[3] = eeprom[80]; sc->bfe_enaddr[4] = eeprom[83]; sc->bfe_enaddr[5] = eeprom[82]; sc->bfe_phyaddr = eeprom[90] & 0x1f; sc->bfe_mdc_port = (eeprom[90] >> 14) & 0x1; sc->bfe_core_unit = 0; sc->bfe_dma_offset = BFE_PCI_DMA; } static void bfe_pci_setup(struct bfe_softc *sc, u_int32_t cores) { u_int32_t bar_orig, pci_rev, val; bar_orig = pci_read_config(sc->bfe_dev, BFE_BAR0_WIN, 4); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, BFE_REG_PCI, 4); pci_rev = CSR_READ_4(sc, BFE_SBIDHIGH) & BFE_RC_MASK; val = CSR_READ_4(sc, BFE_SBINTVEC); val |= cores; CSR_WRITE_4(sc, BFE_SBINTVEC, val); val = CSR_READ_4(sc, BFE_SSB_PCI_TRANS_2); val |= BFE_SSB_PCI_PREF | BFE_SSB_PCI_BURST; CSR_WRITE_4(sc, BFE_SSB_PCI_TRANS_2, val); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, bar_orig, 4); } static void bfe_clear_stats(struct bfe_softc *sc) { u_long reg; BFE_LOCK_ASSERT(sc); CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ); for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) CSR_READ_4(sc, reg); for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) CSR_READ_4(sc, reg); } static int bfe_resetphy(struct bfe_softc *sc) { u_int32_t val; bfe_writephy(sc, 0, BMCR_RESET); DELAY(100); bfe_readphy(sc, 0, &val); if (val & BMCR_RESET) { printf("bfe%d: PHY Reset would not complete.\n", sc->bfe_unit); return (ENXIO); } return (0); } static void bfe_chip_halt(struct bfe_softc *sc) { BFE_LOCK_ASSERT(sc); /* disable interrupts - not that it actually does..*/ CSR_WRITE_4(sc, BFE_IMASK, 0); CSR_READ_4(sc, BFE_IMASK); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 200, 1); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); DELAY(10); } static void bfe_chip_reset(struct bfe_softc *sc) { u_int32_t val; BFE_LOCK_ASSERT(sc); /* Set the interrupt vector for the enet core */ bfe_pci_setup(sc, BFE_INTVEC_ENET0); /* is core up? */ val = CSR_READ_4(sc, BFE_SBTMSLOW) & (BFE_RESET | BFE_REJECT | BFE_CLOCK); if (val == BFE_CLOCK) { /* It is, so shut it down */ CSR_WRITE_4(sc, BFE_RCV_LAZY, 0); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 100, 1); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); sc->bfe_tx_cnt = sc->bfe_tx_prod = sc->bfe_tx_cons = 0; if (CSR_READ_4(sc, BFE_DMARX_STAT) & BFE_STAT_EMASK) bfe_wait_bit(sc, BFE_DMARX_STAT, BFE_STAT_SIDLE, 100, 0); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); sc->bfe_rx_prod = sc->bfe_rx_cons = 0; } bfe_core_reset(sc); bfe_clear_stats(sc); /* * We want the phy registers to be accessible even when * the driver is "downed" so initialize MDC preamble, frequency, * and whether internal or external phy here. */ /* 4402 has 62.5Mhz SB clock and internal phy */ CSR_WRITE_4(sc, BFE_MDIO_CTRL, 0x8d); /* Internal or external PHY? */ val = CSR_READ_4(sc, BFE_DEVCTRL); if(!(val & BFE_IPP)) CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_EPSEL); else if(CSR_READ_4(sc, BFE_DEVCTRL) & BFE_EPR) { BFE_AND(sc, BFE_DEVCTRL, ~BFE_EPR); DELAY(100); } /* Enable CRC32 generation and set proper LED modes */ BFE_OR(sc, BFE_MAC_CTRL, BFE_CTRL_CRC32_ENAB | BFE_CTRL_LED); /* Reset or clear powerdown control bit */ BFE_AND(sc, BFE_MAC_CTRL, ~BFE_CTRL_PDOWN); CSR_WRITE_4(sc, BFE_RCV_LAZY, ((1 << BFE_LAZY_FC_SHIFT) & BFE_LAZY_FC_MASK)); /* * We don't want lazy interrupts, so just send them at * the end of a frame, please */ BFE_OR(sc, BFE_RCV_LAZY, 0); /* Set max lengths, accounting for VLAN tags */ CSR_WRITE_4(sc, BFE_RXMAXLEN, ETHER_MAX_LEN+32); CSR_WRITE_4(sc, BFE_TXMAXLEN, ETHER_MAX_LEN+32); /* Set watermark XXX - magic */ CSR_WRITE_4(sc, BFE_TX_WMARK, 56); /* * Initialise DMA channels * - not forgetting dma addresses need to be added to BFE_PCI_DMA */ CSR_WRITE_4(sc, BFE_DMATX_CTRL, BFE_TX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMATX_ADDR, sc->bfe_tx_dma + BFE_PCI_DMA); CSR_WRITE_4(sc, BFE_DMARX_CTRL, (BFE_RX_OFFSET << BFE_RX_CTRL_ROSHIFT) | BFE_RX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMARX_ADDR, sc->bfe_rx_dma + BFE_PCI_DMA); bfe_resetphy(sc); bfe_setupphy(sc); } static void bfe_core_disable(struct bfe_softc *sc) { if((CSR_READ_4(sc, BFE_SBTMSLOW)) & BFE_RESET) return; /* * Set reject, wait for it set, then wait for the core to stop * being busy, then set reset and reject and enable the clocks. */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_CLOCK)); bfe_wait_bit(sc, BFE_SBTMSLOW, BFE_REJECT, 1000, 0); bfe_wait_bit(sc, BFE_SBTMSHIGH, BFE_BUSY, 1000, 1); CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_FGC | BFE_CLOCK | BFE_REJECT | BFE_RESET)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave reset and reject set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_RESET)); DELAY(10); } static void bfe_core_reset(struct bfe_softc *sc) { u_int32_t val; /* Disable the core */ bfe_core_disable(sc); /* and bring it back up */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_RESET | BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Chip bug, clear SERR, IB and TO if they are set. */ if (CSR_READ_4(sc, BFE_SBTMSHIGH) & BFE_SERR) CSR_WRITE_4(sc, BFE_SBTMSHIGH, 0); val = CSR_READ_4(sc, BFE_SBIMSTATE); if (val & (BFE_IBE | BFE_TO)) CSR_WRITE_4(sc, BFE_SBIMSTATE, val & ~(BFE_IBE | BFE_TO)); /* Clear reset and allow it to move through the core */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave the clock set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, BFE_CLOCK); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); } static void bfe_cam_write(struct bfe_softc *sc, u_char *data, int index) { u_int32_t val; val = ((u_int32_t) data[2]) << 24; val |= ((u_int32_t) data[3]) << 16; val |= ((u_int32_t) data[4]) << 8; val |= ((u_int32_t) data[5]); CSR_WRITE_4(sc, BFE_CAM_DATA_LO, val); val = (BFE_CAM_HI_VALID | (((u_int32_t) data[0]) << 8) | (((u_int32_t) data[1]))); CSR_WRITE_4(sc, BFE_CAM_DATA_HI, val); CSR_WRITE_4(sc, BFE_CAM_CTRL, (BFE_CAM_WRITE | ((u_int32_t) index << BFE_CAM_INDEX_SHIFT))); bfe_wait_bit(sc, BFE_CAM_CTRL, BFE_CAM_BUSY, 10000, 1); } static void bfe_set_rx_mode(struct bfe_softc *sc) { struct ifnet *ifp = sc->bfe_ifp; struct ifmultiaddr *ifma; u_int32_t val; int i = 0; val = CSR_READ_4(sc, BFE_RXCONF); if (ifp->if_flags & IFF_PROMISC) val |= BFE_RXCONF_PROMISC; else val &= ~BFE_RXCONF_PROMISC; if (ifp->if_flags & IFF_BROADCAST) val &= ~BFE_RXCONF_DBCAST; else val |= BFE_RXCONF_DBCAST; CSR_WRITE_4(sc, BFE_CAM_CTRL, 0); bfe_cam_write(sc, IF_LLADDR(sc->bfe_ifp), i++); if (ifp->if_flags & IFF_ALLMULTI) val |= BFE_RXCONF_ALLMULTI; else { val &= ~BFE_RXCONF_ALLMULTI; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; bfe_cam_write(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i++); } IF_ADDR_UNLOCK(ifp); } CSR_WRITE_4(sc, BFE_RXCONF, val); BFE_OR(sc, BFE_CAM_CTRL, BFE_CAM_ENABLE); } static void bfe_dma_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) { u_int32_t *ptr; ptr = arg; *ptr = segs->ds_addr; } static void bfe_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct bfe_desc *d; d = arg; /* The chip needs all addresses to be added to BFE_PCI_DMA */ d->bfe_addr = segs->ds_addr + BFE_PCI_DMA; } static void bfe_release_resources(struct bfe_softc *sc) { device_t dev; int i; dev = sc->bfe_dev; if (sc->bfe_vpd_prodname != NULL) free(sc->bfe_vpd_prodname, M_DEVBUF); if (sc->bfe_vpd_readonly != NULL) free(sc->bfe_vpd_readonly, M_DEVBUF); if (sc->bfe_intrhand != NULL) bus_teardown_intr(dev, sc->bfe_irq, sc->bfe_intrhand); if (sc->bfe_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bfe_irq); if (sc->bfe_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, 0x10, sc->bfe_res); if (sc->bfe_ifp != NULL) if_free(sc->bfe_ifp); if(sc->bfe_tx_tag != NULL) { bus_dmamap_unload(sc->bfe_tx_tag, sc->bfe_tx_map); bus_dmamem_free(sc->bfe_tx_tag, sc->bfe_tx_list, sc->bfe_tx_map); bus_dma_tag_destroy(sc->bfe_tx_tag); sc->bfe_tx_tag = NULL; } if(sc->bfe_rx_tag != NULL) { bus_dmamap_unload(sc->bfe_rx_tag, sc->bfe_rx_map); bus_dmamem_free(sc->bfe_rx_tag, sc->bfe_rx_list, sc->bfe_rx_map); bus_dma_tag_destroy(sc->bfe_rx_tag); sc->bfe_rx_tag = NULL; } if(sc->bfe_tag != NULL) { for(i = 0; i < BFE_TX_LIST_CNT; i++) { bus_dmamap_destroy(sc->bfe_tag, sc->bfe_tx_ring[i].bfe_map); } for(i = 0; i < BFE_RX_LIST_CNT; i++) { bus_dmamap_destroy(sc->bfe_tag, sc->bfe_rx_ring[i].bfe_map); } bus_dma_tag_destroy(sc->bfe_tag); sc->bfe_tag = NULL; } if(sc->bfe_parent_tag != NULL) bus_dma_tag_destroy(sc->bfe_parent_tag); return; } static void bfe_read_eeprom(struct bfe_softc *sc, u_int8_t *data) { long i; u_int16_t *ptr = (u_int16_t *)data; for(i = 0; i < 128; i += 2) ptr[i/2] = CSR_READ_4(sc, 4096 + i); } static int bfe_wait_bit(struct bfe_softc *sc, u_int32_t reg, u_int32_t bit, u_long timeout, const int clear) { u_long i; for (i = 0; i < timeout; i++) { u_int32_t val = CSR_READ_4(sc, reg); if (clear && !(val & bit)) break; if (!clear && (val & bit)) break; DELAY(10); } if (i == timeout) { printf("bfe%d: BUG! Timeout waiting for bit %08x of register " "%x to %s.\n", sc->bfe_unit, bit, reg, (clear ? "clear" : "set")); return (-1); } return (0); } static int bfe_readphy(struct bfe_softc *sc, u_int32_t reg, u_int32_t *val) { int err; /* Clear MII ISR */ CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_READ << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT))); err = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); *val = CSR_READ_4(sc, BFE_MDIO_DATA) & BFE_MDIO_DATA_DATA; return (err); } static int bfe_writephy(struct bfe_softc *sc, u_int32_t reg, u_int32_t val) { int status; CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_WRITE << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT) | (val & BFE_MDIO_DATA_DATA))); status = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); return (status); } /* * XXX - I think this is handled by the PHY driver, but it can't hurt to do it * twice */ static int bfe_setupphy(struct bfe_softc *sc) { u_int32_t val; /* Enable activity LED */ bfe_readphy(sc, 26, &val); bfe_writephy(sc, 26, val & 0x7fff); bfe_readphy(sc, 26, &val); /* Enable traffic meter LED mode */ bfe_readphy(sc, 27, &val); bfe_writephy(sc, 27, val | (1 << 6)); return (0); } static void bfe_stats_update(struct bfe_softc *sc) { u_long reg; u_int32_t *val; val = &sc->bfe_hwstats.tx_good_octets; for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) { *val++ += CSR_READ_4(sc, reg); } val = &sc->bfe_hwstats.rx_good_octets; for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) { *val++ += CSR_READ_4(sc, reg); } } static void bfe_txeof(struct bfe_softc *sc) { struct ifnet *ifp; int i, chipidx; BFE_LOCK_ASSERT(sc); ifp = sc->bfe_ifp; chipidx = CSR_READ_4(sc, BFE_DMATX_STAT) & BFE_STAT_CDMASK; chipidx /= sizeof(struct bfe_desc); i = sc->bfe_tx_cons; /* Go through the mbufs and free those that have been transmitted */ while(i != chipidx) { struct bfe_data *r = &sc->bfe_tx_ring[i]; if(r->bfe_mbuf != NULL) { ifp->if_opackets++; m_freem(r->bfe_mbuf); r->bfe_mbuf = NULL; bus_dmamap_unload(sc->bfe_tag, r->bfe_map); } sc->bfe_tx_cnt--; BFE_INC(i, BFE_TX_LIST_CNT); } if(i != sc->bfe_tx_cons) { /* we freed up some mbufs */ sc->bfe_tx_cons = i; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } if(sc->bfe_tx_cnt == 0) ifp->if_timer = 0; else ifp->if_timer = 5; } /* Pass a received packet up the stack */ static void bfe_rxeof(struct bfe_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct bfe_rxheader *rxheader; struct bfe_data *r; int cons; u_int32_t status, current, len, flags; BFE_LOCK_ASSERT(sc); cons = sc->bfe_rx_cons; status = CSR_READ_4(sc, BFE_DMARX_STAT); current = (status & BFE_STAT_CDMASK) / sizeof(struct bfe_desc); ifp = sc->bfe_ifp; while(current != cons) { r = &sc->bfe_rx_ring[cons]; m = r->bfe_mbuf; rxheader = mtod(m, struct bfe_rxheader*); bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_POSTWRITE); len = rxheader->len; r->bfe_mbuf = NULL; bus_dmamap_unload(sc->bfe_tag, r->bfe_map); flags = rxheader->flags; len -= ETHER_CRC_LEN; /* flag an error and try again */ if ((len > ETHER_MAX_LEN+32) || (flags & BFE_RX_FLAG_ERRORS)) { ifp->if_ierrors++; if (flags & BFE_RX_FLAG_SERR) ifp->if_collisions++; bfe_list_newbuf(sc, cons, m); BFE_INC(cons, BFE_RX_LIST_CNT); continue; } /* Go past the rx header */ if (bfe_list_newbuf(sc, cons, NULL) == 0) { m_adj(m, BFE_RX_OFFSET); m->m_len = m->m_pkthdr.len = len; } else { bfe_list_newbuf(sc, cons, m); ifp->if_ierrors++; BFE_INC(cons, BFE_RX_LIST_CNT); continue; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; BFE_UNLOCK(sc); (*ifp->if_input)(ifp, m); BFE_LOCK(sc); BFE_INC(cons, BFE_RX_LIST_CNT); } sc->bfe_rx_cons = cons; } static void bfe_intr(void *xsc) { struct bfe_softc *sc = xsc; struct ifnet *ifp; u_int32_t istat, imask, flag; ifp = sc->bfe_ifp; BFE_LOCK(sc); istat = CSR_READ_4(sc, BFE_ISTAT); imask = CSR_READ_4(sc, BFE_IMASK); /* * Defer unsolicited interrupts - This is necessary because setting the * chips interrupt mask register to 0 doesn't actually stop the * interrupts */ istat &= imask; CSR_WRITE_4(sc, BFE_ISTAT, istat); CSR_READ_4(sc, BFE_ISTAT); /* not expecting this interrupt, disregard it */ if(istat == 0) { BFE_UNLOCK(sc); return; } if(istat & BFE_ISTAT_ERRORS) { flag = CSR_READ_4(sc, BFE_DMATX_STAT); if(flag & BFE_STAT_EMASK) ifp->if_oerrors++; flag = CSR_READ_4(sc, BFE_DMARX_STAT); if(flag & BFE_RX_FLAG_ERRORS) ifp->if_ierrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bfe_init_locked(sc); } /* A packet was received */ if(istat & BFE_ISTAT_RX) bfe_rxeof(sc); /* A packet was sent */ if(istat & BFE_ISTAT_TX) bfe_txeof(sc); /* We have packets pending, fire them out */ if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bfe_start_locked(ifp); BFE_UNLOCK(sc); } static int bfe_encap(struct bfe_softc *sc, struct mbuf *m_head, u_int32_t *txidx) { struct bfe_desc *d = NULL; struct bfe_data *r = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; int chainlen = 0; if(BFE_TX_LIST_CNT - sc->bfe_tx_cnt < 2) return (ENOBUFS); /* * Count the number of frags in this chain to see if * we need to m_defrag. Since the descriptor list is shared * by all packets, we'll m_defrag long chains so that they * do not use up the entire list, even if they would fit. */ for(m = m_head; m != NULL; m = m->m_next) chainlen++; if ((chainlen > BFE_TX_LIST_CNT / 4) || ((BFE_TX_LIST_CNT - (chainlen + sc->bfe_tx_cnt)) < 2)) { m = m_defrag(m_head, M_DONTWAIT); if (m == NULL) return (ENOBUFS); m_head = m; } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur = frag = *txidx; cnt = 0; for(m = m_head; m != NULL; m = m->m_next) { if(m->m_len != 0) { if((BFE_TX_LIST_CNT - (sc->bfe_tx_cnt + cnt)) < 2) return (ENOBUFS); d = &sc->bfe_tx_list[cur]; r = &sc->bfe_tx_ring[cur]; d->bfe_ctrl = BFE_DESC_LEN & m->m_len; /* always intterupt on completion */ d->bfe_ctrl |= BFE_DESC_IOC; if(cnt == 0) /* Set start of frame */ d->bfe_ctrl |= BFE_DESC_SOF; if(cur == BFE_TX_LIST_CNT - 1) /* * Tell the chip to wrap to the start of * the descriptor list */ d->bfe_ctrl |= BFE_DESC_EOT; bus_dmamap_load(sc->bfe_tag, r->bfe_map, mtod(m, void*), m->m_len, bfe_dma_map_desc, d, 0); bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_PREREAD); frag = cur; BFE_INC(cur, BFE_TX_LIST_CNT); cnt++; } } if (m != NULL) return (ENOBUFS); sc->bfe_tx_list[frag].bfe_ctrl |= BFE_DESC_EOF; sc->bfe_tx_ring[frag].bfe_mbuf = m_head; bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD); *txidx = cur; sc->bfe_tx_cnt += cnt; return (0); } /* * Set up to transmit a packet. */ static void bfe_start(struct ifnet *ifp) { BFE_LOCK((struct bfe_softc *)ifp->if_softc); bfe_start_locked(ifp); BFE_UNLOCK((struct bfe_softc *)ifp->if_softc); } /* * Set up to transmit a packet. The softc is already locked. */ static void bfe_start_locked(struct ifnet *ifp) { struct bfe_softc *sc; struct mbuf *m_head = NULL; int idx, queued = 0; sc = ifp->if_softc; idx = sc->bfe_tx_prod; BFE_LOCK_ASSERT(sc); /* * Not much point trying to send if the link is down * or we have nothing to send. */ if (!sc->bfe_link && ifp->if_snd.ifq_len < 10) return; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) return; while(sc->bfe_tx_ring[idx].bfe_mbuf == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if(m_head == NULL) break; /* * Pack the data into the tx ring. If we dont have * enough room, let the chip drain the ring. */ if(bfe_encap(sc, m_head, &idx)) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (queued) { sc->bfe_tx_prod = idx; /* Transmit - twice due to apparent hardware bug */ CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc)); CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc)); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } static void bfe_init(void *xsc) { BFE_LOCK((struct bfe_softc *)xsc); bfe_init_locked(xsc); BFE_UNLOCK((struct bfe_softc *)xsc); } static void bfe_init_locked(void *xsc) { struct bfe_softc *sc = (struct bfe_softc*)xsc; struct ifnet *ifp = sc->bfe_ifp; BFE_LOCK_ASSERT(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; bfe_stop(sc); bfe_chip_reset(sc); if (bfe_list_rx_init(sc) == ENOBUFS) { printf("bfe%d: bfe_init: Not enough memory for list buffers\n", sc->bfe_unit); bfe_stop(sc); return; } bfe_set_rx_mode(sc); /* Enable the chip and core */ BFE_OR(sc, BFE_ENET_CTRL, BFE_ENET_ENABLE); /* Enable interrupts */ CSR_WRITE_4(sc, BFE_IMASK, BFE_IMASK_DEF); bfe_ifmedia_upd(ifp); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->bfe_stat_ch = timeout(bfe_tick, sc, hz); } /* * Set media options. */ static int bfe_ifmedia_upd(struct ifnet *ifp) { struct bfe_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->bfe_miibus); sc->bfe_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ static void bfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bfe_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->bfe_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int bfe_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFFLAGS: BFE_LOCK(sc); if(ifp->if_flags & IFF_UP) if(ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_set_rx_mode(sc); else bfe_init_locked(sc); else if(ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_stop(sc); BFE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: BFE_LOCK(sc); if(ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_set_rx_mode(sc); BFE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->bfe_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void bfe_watchdog(struct ifnet *ifp) { struct bfe_softc *sc; sc = ifp->if_softc; BFE_LOCK(sc); printf("bfe%d: watchdog timeout -- resetting\n", sc->bfe_unit); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bfe_init_locked(sc); ifp->if_oerrors++; BFE_UNLOCK(sc); } static void bfe_tick(void *xsc) { struct bfe_softc *sc = xsc; struct mii_data *mii; if (sc == NULL) return; BFE_LOCK(sc); mii = device_get_softc(sc->bfe_miibus); bfe_stats_update(sc); sc->bfe_stat_ch = timeout(bfe_tick, sc, hz); if(sc->bfe_link) { BFE_UNLOCK(sc); return; } mii_tick(mii); if (!sc->bfe_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->bfe_link++; BFE_UNLOCK(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bfe_stop(struct bfe_softc *sc) { struct ifnet *ifp; BFE_LOCK_ASSERT(sc); untimeout(bfe_tick, sc, sc->bfe_stat_ch); ifp = sc->bfe_ifp; bfe_chip_halt(sc); bfe_tx_ring_free(sc); bfe_rx_ring_free(sc); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); }