/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 52635 1999-10-29 18:09:36Z phk $ */ #include "npx.h" #include "opt_user_ldt.h" #ifdef PC98 #include "opt_pc98.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #include #include #include #include #include #include #include #ifdef PC98 #include #else #include #endif static void cpu_reset_real __P((void)); #ifdef SMP static void cpu_reset_proxy __P((void)); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif /* * quick version of vm_fault */ int vm_fault_quick(v, prot) caddr_t v; int prot; { int r; if (prot & VM_PROT_WRITE) r = subyte(v, fubyte(v)); else r = fubyte(v); return(r); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(p1, p2) register struct proc *p1, *p2; { struct pcb *pcb2 = &p2->p_addr->u_pcb; #if NNPX > 0 /* Ensure that p1's pcb is up to date. */ if (npxproc == p1) npxsave(&p1->p_addr->u_pcb.pcb_savefpu); #endif /* Copy p1's pcb. */ p2->p_addr->u_pcb = p1->p_addr->u_pcb; /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies the user mode register values. */ p2->p_md.md_regs = (struct trapframe *) ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1; *p2->p_md.md_regs = *p1->p_md.md_regs; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); pcb2->pcb_edi = p2->p_md.md_regs->tf_edi; pcb2->pcb_esi = (int)fork_return; pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp; pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *); pcb2->pcb_ebx = (int)p2; pcb2->pcb_eip = (int)fork_trampoline; /* * pcb2->pcb_ldt: duplicated below, if necessary. * pcb2->pcb_ldt_len: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above (always 0 here?). * pcb2->pcb_onfault: cloned above (always NULL here?). */ #ifdef SMP pcb2->pcb_mpnest = 1; #endif /* * XXX don't copy the i/o pages. this should probably be fixed. */ pcb2->pcb_ext = 0; #ifdef USER_LDT /* Copy the LDT, if necessary. */ if (pcb2->pcb_ldt != 0) { union descriptor *new_ldt; size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor); new_ldt = (union descriptor *)kmem_alloc(kernel_map, len); bcopy(pcb2->pcb_ldt, new_ldt, len); pcb2->pcb_ldt = (caddr_t)new_ldt; } #endif /* * Now, cpu_switch() can schedule the new process. * pcb_esp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to proc_trampoline(), which will have * %ebx loaded with the new proc's pointer. proc_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(p, func, arg) struct proc *p; void (*func) __P((void *)); void *arg; { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ p->p_addr->u_pcb.pcb_esi = (int) func; /* function */ p->p_addr->u_pcb.pcb_ebx = (int) arg; /* first arg */ } void cpu_exit(p) register struct proc *p; { struct pcb *pcb = &p->p_addr->u_pcb; #if NNPX > 0 npxexit(p); #endif /* NNPX */ if (pcb->pcb_ext != 0) { /* * XXX do we need to move the TSS off the allocated pages * before freeing them? (not done here) */ kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, ctob(IOPAGES + 1)); pcb->pcb_ext = 0; } #ifdef USER_LDT if (pcb->pcb_ldt != 0) { if (pcb == curpcb) { lldt(_default_ldt); currentldt = _default_ldt; } kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, pcb->pcb_ldt_len * sizeof(union descriptor)); pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; } #endif cnt.v_swtch++; cpu_switch(p); panic("cpu_exit"); } void cpu_wait(p) struct proc *p; { /* drop per-process resources */ pmap_dispose_proc(p); /* and clean-out the vmspace */ vmspace_free(p->p_vmspace); } /* * Dump the machine specific header information at the start of a core dump. */ int cpu_coredump(p, vp, cred) struct proc *p; struct vnode *vp; struct ucred *cred; { int error; caddr_t tempuser; tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK); if (!tempuser) return EINVAL; bzero(tempuser, ctob(UPAGES)); bcopy(p->p_addr, tempuser, sizeof(struct user)); bcopy(p->p_md.md_regs, tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr), sizeof(struct trapframe)); error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser, ctob(UPAGES), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p); free(tempuser, M_TEMP); return error; } #ifdef notyet static void setredzone(pte, vaddr) u_short *pte; caddr_t vaddr; { /* eventually do this by setting up an expand-down stack segment for ss0: selector, allowing stack access down to top of u. this means though that protection violations need to be handled thru a double fault exception that must do an integral task switch to a known good context, within which a dump can be taken. a sensible scheme might be to save the initial context used by sched (that has physical memory mapped 1:1 at bottom) and take the dump while still in mapped mode */ } #endif /* * Convert kernel VA to physical address */ u_long kvtop(void *addr) { vm_offset_t va; va = pmap_kextract((vm_offset_t)addr); if (va == 0) panic("kvtop: zero page frame"); return((int)va); } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. */ void vmapbuf(bp) register struct buf *bp; { register caddr_t addr, v, kva; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE, v += PAGE_SIZE) { /* * Do the vm_fault if needed; do the copy-on-write thing * when reading stuff off device into memory. */ vm_fault_quick(addr, (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); pa = trunc_page(pmap_kextract((vm_offset_t) addr)); if (pa == 0) panic("vmapbuf: page not present"); vm_page_hold(PHYS_TO_VM_PAGE(pa)); pmap_kenter((vm_offset_t) v, pa); } kva = bp->b_saveaddr; bp->b_saveaddr = bp->b_data; bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. */ void vunmapbuf(bp) register struct buf *bp; { register caddr_t addr; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE) { pa = trunc_page(pmap_kextract((vm_offset_t) addr)); pmap_kremove((vm_offset_t) addr); vm_page_unhold(PHYS_TO_VM_PAGE(pa)); } bp->b_data = bp->b_saveaddr; } /* * Force reset the processor by invalidating the entire address space! */ #ifdef SMP static void cpu_reset_proxy() { u_int saved_mp_lock; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to disable interupts */ saved_mp_lock = mp_lock; mp_lock = 1; printf("cpu_reset_proxy: Grabbed mp lock for BSP\n"); cpu_reset_proxy_active = 3; while (cpu_reset_proxy_active == 3) ; /* Wait for other cpu to enable interrupts */ stop_cpus((1<" */ invltlb(); /* NOTREACHED */ while(1); } int grow_stack(p, sp) struct proc *p; u_int sp; { int rv; rv = vm_map_growstack (p, sp); if (rv != KERN_SUCCESS) return (0); return (1); } SYSCTL_DECL(_vm_stats_misc); static int cnt_prezero; SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, ""); /* * Implement the pre-zeroed page mechanism. * This routine is called from the idle loop. */ #define ZIDLE_LO(v) ((v) * 2 / 3) #define ZIDLE_HI(v) ((v) * 4 / 5) int vm_page_zero_idle() { static int free_rover; static int zero_state; vm_page_t m; int s; /* * Attempt to maintain approximately 1/2 of our free pages in a * PG_ZERO'd state. Add some hysteresis to (attempt to) avoid * generally zeroing a page when the system is near steady-state. * Otherwise we might get 'flutter' during disk I/O / IPC or * fast sleeps. We also do not want to be continuously zeroing * pages because doing so may flush our L1 and L2 caches too much. */ if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count)) return(0); if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count)) return(0); #ifdef SMP if (try_mplock()) { #endif s = splvm(); __asm __volatile("sti" : : : "memory"); zero_state = 0; m = vm_page_list_find(PQ_FREE, free_rover, FALSE); if (m != NULL && (m->flags & PG_ZERO) == 0) { vm_page_queues[m->queue].lcnt--; TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq); m->queue = PQ_NONE; splx(s); #if 0 rel_mplock(); #endif pmap_zero_page(VM_PAGE_TO_PHYS(m)); #if 0 get_mplock(); #endif (void)splvm(); vm_page_flag_set(m, PG_ZERO); m->queue = PQ_FREE + m->pc; vm_page_queues[m->queue].lcnt++; TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq); ++vm_page_zero_count; ++cnt_prezero; if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count)) zero_state = 1; } free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK; splx(s); __asm __volatile("cli" : : : "memory"); #ifdef SMP rel_mplock(); #endif return (1); #ifdef SMP } #endif return (0); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm() { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ #include "isa.h" int is_physical_memory(addr) vm_offset_t addr; { #if NISA > 0 /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; }