/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $Id: vm_machdep.c,v 1.106 1998/05/16 14:44:11 kato Exp $ */ #include "npx.h" #include "opt_bounce.h" #include "opt_user_ldt.h" #include "opt_vm86.h" #ifdef PC98 #include "opt_pc98.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifdef VM86 #include #include #endif #include #include #include #include #include #include #include #include #include #ifdef PC98 #include #else #include #endif static void cpu_reset_real __P((void)); #ifdef SMP static void cpu_reset_proxy __P((void)); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif #ifdef BOUNCE_BUFFERS static vm_offset_t vm_bounce_kva __P((int size, int waitok)); static void vm_bounce_kva_free __P((vm_offset_t addr, vm_offset_t size, int now)); static vm_offset_t vm_bounce_page_find __P((int count)); static void vm_bounce_page_free __P((vm_offset_t pa, int count)); static volatile int kvasfreecnt; caddr_t bouncememory; static int bpwait; static vm_offset_t *bouncepa; static int bmwait, bmfreeing; #define BITS_IN_UNSIGNED (8*sizeof(unsigned)) static int bounceallocarraysize; static unsigned *bounceallocarray; static int bouncefree; #if defined(PC98) && defined (EPSON_BOUNCEDMA) #define SIXTEENMEG (3840*4096) /* 15MB boundary */ #else #define SIXTEENMEG (4096*4096) #endif #define MAXBKVA 1024 int maxbkva = MAXBKVA*PAGE_SIZE; /* special list that can be used at interrupt time for eventual kva free */ static struct kvasfree { vm_offset_t addr; vm_offset_t size; } kvaf[MAXBKVA]; /* * get bounce buffer pages (count physically contiguous) * (only 1 inplemented now) */ static vm_offset_t vm_bounce_page_find(count) int count; { int bit; int s,i; if (count != 1) panic("vm_bounce_page_find -- no support for > 1 page yet!!!"); s = splbio(); retry: for (i = 0; i < bounceallocarraysize; i++) { if (bounceallocarray[i] != 0xffffffff) { bit = ffs(~bounceallocarray[i]); if (bit) { bounceallocarray[i] |= 1 << (bit - 1) ; bouncefree -= count; splx(s); return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))]; } } } bpwait = 1; tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0); goto retry; } static void vm_bounce_kva_free(addr, size, now) vm_offset_t addr; vm_offset_t size; int now; { int s = splbio(); kvaf[kvasfreecnt].addr = addr; kvaf[kvasfreecnt].size = size; ++kvasfreecnt; if( now) { /* * this will do wakeups */ vm_bounce_kva(0,0); } else { if (bmwait) { /* * if anyone is waiting on the bounce-map, then wakeup */ wakeup((caddr_t) io_map); bmwait = 0; } } splx(s); } /* * free count bounce buffer pages */ static void vm_bounce_page_free(pa, count) vm_offset_t pa; int count; { int allocindex; int index; int bit; if (count != 1) panic("vm_bounce_page_free -- no support for > 1 page yet!!!"); for(index=0;indexb_flags & B_BOUNCE) { printf("vm_bounce_alloc: called recursively???\n"); return; } if (bp->b_bufsize < bp->b_bcount) { printf( "vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n", bp->b_bufsize, bp->b_bcount); panic("vm_bounce_alloc"); } /* * This is not really necessary * if( bp->b_bufsize != bp->b_bcount) { * printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount); * } */ vastart = (vm_offset_t) bp->b_data; vaend = (vm_offset_t) bp->b_data + bp->b_bufsize; vapstart = trunc_page(vastart); vapend = round_page(vaend); countvmpg = (vapend - vapstart) / PAGE_SIZE; /* * if any page is above 16MB, then go into bounce-buffer mode */ va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) ++dobounceflag; if( pa == 0) panic("vm_bounce_alloc: Unmapped page"); va += PAGE_SIZE; } if (dobounceflag == 0) return; if (bouncepages < dobounceflag) panic("Not enough bounce buffers!!!"); /* * allocate a replacement kva for b_addr */ kva = vm_bounce_kva(countvmpg*PAGE_SIZE, 1); #if 0 printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ", (bp->b_flags & B_READ) ? "read":"write", vapstart, vapend, countvmpg, kva); #endif va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) { /* * allocate a replacement page */ vm_offset_t bpa = vm_bounce_page_find(1); pmap_kenter(kva + (PAGE_SIZE * i), bpa); #if 0 printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa); #endif /* * if we are writing, the copy the data into the page */ if ((bp->b_flags & B_READ) == 0) { bcopy((caddr_t) va, (caddr_t) kva + (PAGE_SIZE * i), PAGE_SIZE); } } else { /* * use original page */ pmap_kenter(kva + (PAGE_SIZE * i), pa); } va += PAGE_SIZE; } /* * flag the buffer as being bounced */ bp->b_flags |= B_BOUNCE; /* * save the original buffer kva */ bp->b_savekva = bp->b_data; /* * put our new kva into the buffer (offset by original offset) */ bp->b_data = (caddr_t) (((vm_offset_t) kva) | ((vm_offset_t) bp->b_savekva & PAGE_MASK)); #if 0 printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data); #endif return; } /* * hook into biodone to free bounce buffer */ void vm_bounce_free(bp) struct buf *bp; { int i; vm_offset_t origkva, bouncekva, bouncekvaend; /* * if this isn't a bounced buffer, then just return */ if ((bp->b_flags & B_BOUNCE) == 0) return; /* * This check is not necessary * if (bp->b_bufsize != bp->b_bcount) { * printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n", * bp->b_bufsize, bp->b_bcount); * } */ origkva = (vm_offset_t) bp->b_savekva; bouncekva = (vm_offset_t) bp->b_data; /* printf("free: %d ", bp->b_bufsize); */ /* * check every page in the kva space for b_addr */ for (i = 0; i < bp->b_bufsize; ) { vm_offset_t mybouncepa; vm_offset_t copycount; copycount = round_page(bouncekva + 1) - bouncekva; mybouncepa = pmap_kextract(trunc_page(bouncekva)); /* * if this is a bounced pa, then process as one */ if ( mybouncepa != pmap_kextract( trunc_page( origkva))) { vm_offset_t tocopy = copycount; if (i + tocopy > bp->b_bufsize) tocopy = bp->b_bufsize - i; /* * if this is a read, then copy from bounce buffer into original buffer */ if (bp->b_flags & B_READ) bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy); /* * free the bounce allocation */ /* printf("(kva: %x, pa: %x)", bouncekva, mybouncepa); */ vm_bounce_page_free(mybouncepa, 1); } origkva += copycount; bouncekva += copycount; i += copycount; } /* printf("\n"); */ /* * add the old kva into the "to free" list */ bouncekva= trunc_page((vm_offset_t) bp->b_data); bouncekvaend= round_page((vm_offset_t)bp->b_data + bp->b_bufsize); /* printf("freeva: %d\n", (bouncekvaend - bouncekva) / PAGE_SIZE); */ vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0); bp->b_data = bp->b_savekva; bp->b_savekva = 0; bp->b_flags &= ~B_BOUNCE; return; } /* * init the bounce buffer system */ void vm_bounce_init() { int i; kvasfreecnt = 0; if (bouncepages == 0) return; bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED; bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT); if (!bounceallocarray) panic("Cannot allocate bounce resource array"); bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT); if (!bouncepa) panic("Cannot allocate physical memory array"); for(i=0;i= SIXTEENMEG) { printf("vm_bounce_init: bounce memory out of range -- bounce disabled\n"); free(bounceallocarray, M_TEMP); bounceallocarray = NULL; free(bouncepa, M_TEMP); bouncepa = NULL; bouncepages = 0; break; } if( pa == 0) panic("bounce memory not resident"); bouncepa[i] = pa; bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int)))); } bouncefree = bouncepages; } #endif /* BOUNCE_BUFFERS */ /* * quick version of vm_fault */ void vm_fault_quick(v, prot) caddr_t v; int prot; { if (prot & VM_PROT_WRITE) subyte(v, fubyte(v)); else fubyte(v); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(p1, p2) register struct proc *p1, *p2; { struct pcb *pcb2 = &p2->p_addr->u_pcb; #if NNPX > 0 /* Ensure that p1's pcb is up to date. */ if (npxproc == p1) npxsave(&p1->p_addr->u_pcb.pcb_savefpu); #endif /* Copy p1's pcb. */ p2->p_addr->u_pcb = p1->p_addr->u_pcb; /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies the user mode register values. */ p2->p_md.md_regs = (struct trapframe *) #ifdef VM86 ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1; #else ((int)p2->p_addr + UPAGES * PAGE_SIZE) - 1; #endif /* VM86 */ *p2->p_md.md_regs = *p1->p_md.md_regs; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir); pcb2->pcb_edi = p2->p_md.md_regs->tf_edi; pcb2->pcb_esi = (int)fork_return; pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp; pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *); pcb2->pcb_ebx = (int)p2; pcb2->pcb_eip = (int)fork_trampoline; /* * pcb2->pcb_ldt: duplicated below, if necessary. * pcb2->pcb_ldt_len: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above (always 0 here?). * pcb2->pcb_onfault: cloned above (always NULL here?). */ #ifdef VM86 /* * XXX don't copy the i/o pages. this should probably be fixed. */ pcb2->pcb_ext = 0; #endif #ifdef USER_LDT /* Copy the LDT, if necessary. */ if (pcb2->pcb_ldt != 0) { union descriptor *new_ldt; size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor); new_ldt = (union descriptor *)kmem_alloc(kernel_map, len); bcopy(pcb2->pcb_ldt, new_ldt, len); pcb2->pcb_ldt = (caddr_t)new_ldt; } #endif /* * Now, cpu_switch() can schedule the new process. * pcb_esp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to proc_trampoline(), which will have * %ebx loaded with the new proc's pointer. proc_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(p, func, arg) struct proc *p; void (*func) __P((void *)); void *arg; { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ p->p_addr->u_pcb.pcb_esi = (int) func; /* function */ p->p_addr->u_pcb.pcb_ebx = (int) arg; /* first arg */ } void cpu_exit(p) register struct proc *p; { #if defined(USER_LDT) || defined(VM86) struct pcb *pcb = &p->p_addr->u_pcb; #endif #if NNPX > 0 npxexit(p); #endif /* NNPX */ #ifdef VM86 if (pcb->pcb_ext != 0) { /* * XXX do we need to move the TSS off the allocated pages * before freeing them? (not done here) */ kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, ctob(IOPAGES + 1)); pcb->pcb_ext = 0; } #endif #ifdef USER_LDT if (pcb->pcb_ldt != 0) { if (pcb == curpcb) lldt(GSEL(GUSERLDT_SEL, SEL_KPL)); kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, pcb->pcb_ldt_len * sizeof(union descriptor)); pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; } #endif cnt.v_swtch++; cpu_switch(p); panic("cpu_exit"); } void cpu_wait(p) struct proc *p; { /* drop per-process resources */ pmap_dispose_proc(p); /* and clean-out the vmspace */ vmspace_free(p->p_vmspace); } /* * Dump the machine specific header information at the start of a core dump. */ int cpu_coredump(p, vp, cred) struct proc *p; struct vnode *vp; struct ucred *cred; { return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p)); } #ifdef notyet static void setredzone(pte, vaddr) u_short *pte; caddr_t vaddr; { /* eventually do this by setting up an expand-down stack segment for ss0: selector, allowing stack access down to top of u. this means though that protection violations need to be handled thru a double fault exception that must do an integral task switch to a known good context, within which a dump can be taken. a sensible scheme might be to save the initial context used by sched (that has physical memory mapped 1:1 at bottom) and take the dump while still in mapped mode */ } #endif /* * Convert kernel VA to physical address */ u_long kvtop(void *addr) { vm_offset_t va; va = pmap_kextract((vm_offset_t)addr); if (va == 0) panic("kvtop: zero page frame"); return((int)va); } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. */ void vmapbuf(bp) register struct buf *bp; { register caddr_t addr, v, kva; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE, v += PAGE_SIZE) { /* * Do the vm_fault if needed; do the copy-on-write thing * when reading stuff off device into memory. */ vm_fault_quick(addr, (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); pa = trunc_page(pmap_kextract((vm_offset_t) addr)); if (pa == 0) panic("vmapbuf: page not present"); vm_page_hold(PHYS_TO_VM_PAGE(pa)); pmap_kenter((vm_offset_t) v, pa); } kva = bp->b_saveaddr; bp->b_saveaddr = bp->b_data; bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. */ void vunmapbuf(bp) register struct buf *bp; { register caddr_t addr; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); for (addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE) { pa = trunc_page(pmap_kextract((vm_offset_t) addr)); pmap_kremove((vm_offset_t) addr); vm_page_unhold(PHYS_TO_VM_PAGE(pa)); } bp->b_data = bp->b_saveaddr; } /* * Force reset the processor by invalidating the entire address space! */ #ifdef SMP static void cpu_reset_proxy() { u_int saved_mp_lock; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to disable interupts */ saved_mp_lock = mp_lock; mp_lock = 1; printf("cpu_reset_proxy: Grabbed mp lock for BSP\n"); cpu_reset_proxy_active = 3; while (cpu_reset_proxy_active == 3) ; /* Wait for other cpu to enable interrupts */ stop_cpus((1<" */ invltlb(); /* NOTREACHED */ while(1); } /* * Grow the user stack to allow for 'sp'. This version grows the stack in * chunks of SGROWSIZ. */ int grow(p, sp) struct proc *p; u_int sp; { unsigned int nss; caddr_t v; struct vmspace *vm = p->p_vmspace; if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK) return (1); nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE); if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) return (0); if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) < nss) { int grow_amount; /* * If necessary, grow the VM that the stack occupies * to allow for the rlimit. This allows us to not have * to allocate all of the VM up-front in execve (which * is expensive). * Grow the VM by the amount requested rounded up to * the nearest SGROWSIZ to provide for some hysteresis. */ grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ); v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) - grow_amount; /* * If there isn't enough room to extend by SGROWSIZ, then * just extend to the maximum size */ if (v < vm->vm_maxsaddr) { v = vm->vm_maxsaddr; grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT); } if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v, grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) { return (0); } vm->vm_ssize += grow_amount >> PAGE_SHIFT; } return (1); } static int cnt_prezero; SYSCTL_INT(_machdep, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, ""); /* * Implement the pre-zeroed page mechanism. * This routine is called from the idle loop. */ int vm_page_zero_idle() { static int free_rover; vm_page_t m; int s; /* * XXX * We stop zeroing pages when there are sufficent prezeroed pages. * This threshold isn't really needed, except we want to * bypass unneeded calls to vm_page_list_find, and the * associated cache flush and latency. The pre-zero will * still be called when there are significantly more * non-prezeroed pages than zeroed pages. The threshold * of half the number of reserved pages is arbitrary, but * approximately the right amount. Eventually, we should * perhaps interrupt the zero operation when a process * is found to be ready to run. */ if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2) return (0); #ifdef SMP if (try_mplock()) { #endif s = splvm(); __asm __volatile("sti" : : : "memory"); m = vm_page_list_find(PQ_FREE, free_rover); if (m != NULL) { --(*vm_page_queues[m->queue].lcnt); TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq); m->queue = PQ_NONE; splx(s); #if 0 rel_mplock(); #endif pmap_zero_page(VM_PAGE_TO_PHYS(m)); #if 0 get_mplock(); #endif (void)splvm(); m->queue = PQ_ZERO + m->pc; ++(*vm_page_queues[m->queue].lcnt); TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq); free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK; ++vm_page_zero_count; ++cnt_prezero; } splx(s); __asm __volatile("cli" : : : "memory"); #ifdef SMP rel_mplock(); #endif return (1); #ifdef SMP } #endif return (0); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm() { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ #include "isa.h" int is_physical_memory(addr) vm_offset_t addr; { #if NISA > 0 /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; }