/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $Id: vm_machdep.c,v 1.23 1994/08/06 09:20:56 davidg Exp $ */ #include "npx.h" #include #include #include #include #include #include #include #include #include #include #ifndef NOBOUNCE vm_map_t io_map; volatile int kvasfreecnt; caddr_t bouncememory; int bouncepages, bpwait; vm_offset_t *bouncepa; int bmwait, bmfreeing; #define BITS_IN_UNSIGNED (8*sizeof(unsigned)) int bounceallocarraysize; unsigned *bounceallocarray; int bouncefree; #define SIXTEENMEG (4096*4096) #define MAXBKVA 1024 int maxbkva = MAXBKVA*NBPG; /* special list that can be used at interrupt time for eventual kva free */ struct kvasfree { vm_offset_t addr; vm_offset_t size; } kvaf[MAXBKVA]; vm_offset_t vm_bounce_kva(); /* * get bounce buffer pages (count physically contiguous) * (only 1 inplemented now) */ vm_offset_t vm_bounce_page_find(count) int count; { int bit; int s,i; if (count != 1) panic("vm_bounce_page_find -- no support for > 1 page yet!!!"); s = splbio(); retry: for (i = 0; i < bounceallocarraysize; i++) { if (bounceallocarray[i] != 0xffffffff) { if (bit = ffs(~bounceallocarray[i])) { bounceallocarray[i] |= 1 << (bit - 1) ; bouncefree -= count; splx(s); return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))]; } } } bpwait = 1; tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0); goto retry; } void vm_bounce_kva_free(addr, size, now) vm_offset_t addr; vm_offset_t size; int now; { int s = splbio(); kvaf[kvasfreecnt].addr = addr; kvaf[kvasfreecnt].size = size; ++kvasfreecnt; if( now) { /* * this will do wakeups */ vm_bounce_kva(0,0); } else { if (bmwait) { /* * if anyone is waiting on the bounce-map, then wakeup */ wakeup((caddr_t) io_map); bmwait = 0; } } splx(s); } /* * free count bounce buffer pages */ void vm_bounce_page_free(pa, count) vm_offset_t pa; int count; { int allocindex; int index; int bit; if (count != 1) panic("vm_bounce_page_free -- no support for > 1 page yet!!!\n"); for(index=0;indexb_flags & B_BOUNCE) { printf("vm_bounce_alloc: called recursively???\n"); return; } if (bp->b_bufsize < bp->b_bcount) { printf("vm_bounce_alloc: b_bufsize(0x%x) < b_bcount(0x%x) !!!!\n", bp->b_bufsize, bp->b_bcount); panic("vm_bounce_alloc"); } /* * This is not really necessary * if( bp->b_bufsize != bp->b_bcount) { * printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount); * } */ vastart = (vm_offset_t) bp->b_data; vaend = (vm_offset_t) bp->b_data + bp->b_bufsize; vapstart = i386_trunc_page(vastart); vapend = i386_round_page(vaend); countvmpg = (vapend - vapstart) / NBPG; /* * if any page is above 16MB, then go into bounce-buffer mode */ va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) ++dobounceflag; va += NBPG; } if (dobounceflag == 0) return; if (bouncepages < dobounceflag) panic("Not enough bounce buffers!!!"); /* * allocate a replacement kva for b_addr */ kva = vm_bounce_kva(countvmpg*NBPG, 1); #if 0 printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ", (bp->b_flags & B_READ) ? "read":"write", vapstart, vapend, countvmpg, kva); #endif va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) { /* * allocate a replacement page */ vm_offset_t bpa = vm_bounce_page_find(1); pmap_kenter(kva + (NBPG * i), bpa); #if 0 printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa); #endif /* * if we are writing, the copy the data into the page */ if ((bp->b_flags & B_READ) == 0) { pmap_update(); bcopy((caddr_t) va, (caddr_t) kva + (NBPG * i), NBPG); } } else { /* * use original page */ pmap_kenter(kva + (NBPG * i), pa); } va += NBPG; } pmap_update(); /* * flag the buffer as being bounced */ bp->b_flags |= B_BOUNCE; /* * save the original buffer kva */ bp->b_savekva = bp->b_data; /* * put our new kva into the buffer (offset by original offset) */ bp->b_data = (caddr_t) (((vm_offset_t) kva) | ((vm_offset_t) bp->b_savekva & (NBPG - 1))); #if 0 printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data); #endif return; } /* * hook into biodone to free bounce buffer */ void vm_bounce_free(bp) struct buf *bp; { int i; vm_offset_t origkva, bouncekva, bouncekvaend; int countvmpg; int s; /* * if this isn't a bounced buffer, then just return */ if ((bp->b_flags & B_BOUNCE) == 0) return; /* * This check is not necessary * if (bp->b_bufsize != bp->b_bcount) { * printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n", * bp->b_bufsize, bp->b_bcount); * } */ origkva = (vm_offset_t) bp->b_savekva; bouncekva = (vm_offset_t) bp->b_data; /* printf("free: %d ", bp->b_bufsize); */ /* * check every page in the kva space for b_addr */ for (i = 0; i < bp->b_bufsize; ) { vm_offset_t mybouncepa; vm_offset_t copycount; copycount = i386_round_page(bouncekva + 1) - bouncekva; mybouncepa = pmap_kextract(i386_trunc_page(bouncekva)); /* * if this is a bounced pa, then process as one */ if ( mybouncepa != pmap_kextract( i386_trunc_page( origkva))) { vm_offset_t tocopy = copycount; if (i + tocopy > bp->b_bufsize) tocopy = bp->b_bufsize - i; /* * if this is a read, then copy from bounce buffer into original buffer */ if (bp->b_flags & B_READ) bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy); /* * free the bounce allocation */ /* printf("(kva: %x, pa: %x)", bouncekva, mybouncepa); */ vm_bounce_page_free(mybouncepa, 1); } origkva += copycount; bouncekva += copycount; i += copycount; } /* printf("\n"); */ /* * add the old kva into the "to free" list */ bouncekva= i386_trunc_page((vm_offset_t) bp->b_data); bouncekvaend= i386_round_page((vm_offset_t)bp->b_data + bp->b_bufsize); /* printf("freeva: %d\n", (bouncekvaend - bouncekva) / NBPG); */ vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0); bp->b_data = bp->b_savekva; bp->b_savekva = 0; bp->b_flags &= ~B_BOUNCE; return; } /* * init the bounce buffer system */ void vm_bounce_init() { vm_offset_t minaddr, maxaddr; int i; kvasfreecnt = 0; if (bouncepages == 0) return; bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED; bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT); if (!bounceallocarray) panic("Cannot allocate bounce resource array\n"); bzero(bounceallocarray, bounceallocarraysize * sizeof(unsigned)); bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT); if (!bouncepa) panic("Cannot allocate physical memory array\n"); for(i=0;i= SIXTEENMEG) panic("bounce memory out of range"); if( pa == 0) panic("bounce memory not resident"); bouncepa[i] = pa; } bouncefree = bouncepages; } #endif /* NOBOUNCE */ /* * quick version of vm_fault */ void vm_fault_quick( v, prot) vm_offset_t v; int prot; { if( (cpu_class == CPUCLASS_386) && (prot & VM_PROT_WRITE)) vm_fault(&curproc->p_vmspace->vm_map, v, VM_PROT_READ|VM_PROT_WRITE, FALSE); else if( prot & VM_PROT_WRITE) *(volatile char *)v += 0; else *(volatile char *)v; } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the kernel stack and pcb, making the child * ready to run, and marking it so that it can return differently * than the parent. Returns 1 in the child process, 0 in the parent. * We currently double-map the user area so that the stack is at the same * address in each process; in the future we will probably relocate * the frame pointers on the stack after copying. */ int cpu_fork(p1, p2) register struct proc *p1, *p2; { register struct user *up = p2->p_addr; int foo, offset, addr, i; extern char kstack[]; extern int mvesp(); /* * Copy pcb and stack from proc p1 to p2. * We do this as cheaply as possible, copying only the active * part of the stack. The stack and pcb need to agree; * this is tricky, as the final pcb is constructed by savectx, * but its frame isn't yet on the stack when the stack is copied. * swtch compensates for this when the child eventually runs. * This should be done differently, with a single call * that copies and updates the pcb+stack, * replacing the bcopy and savectx. */ p2->p_addr->u_pcb = p1->p_addr->u_pcb; offset = mvesp() - (int)kstack; bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset, (unsigned) ctob(UPAGES) - offset); p2->p_md.md_regs = p1->p_md.md_regs; pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb); /* * * Arrange for a non-local goto when the new process * is started, to resume here, returning nonzero from setjmp. */ if (savectx(up, 1)) { /* * Return 1 in child. */ return (1); } return (0); } void cpu_exit(p) register struct proc *p; { #if NNPX > 0 npxexit(p); #endif /* NNPX */ curproc = p; mi_switch(); /* * This is to shutup the compiler, and if swtch() failed I suppose * this would be a good thing. This keeps gcc happy because panic * is a volatile void function as well. */ panic("cpu_exit"); } void cpu_wait(p) struct proc *p; { /* extern vm_map_t upages_map; */ extern char kstack[]; /* drop per-process resources */ pmap_remove(vm_map_pmap(kernel_map), (vm_offset_t) p->p_addr, ((vm_offset_t) p->p_addr) + ctob(UPAGES)); kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES)); vmspace_free(p->p_vmspace); } /* * Dump the machine specific header information at the start of a core dump. */ int cpu_coredump(p, vp, cred) struct proc *p; struct vnode *vp; struct ucred *cred; { return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p)); } /* * Set a red zone in the kernel stack after the u. area. */ void setredzone(pte, vaddr) u_short *pte; caddr_t vaddr; { /* eventually do this by setting up an expand-down stack segment for ss0: selector, allowing stack access down to top of u. this means though that protection violations need to be handled thru a double fault exception that must do an integral task switch to a known good context, within which a dump can be taken. a sensible scheme might be to save the initial context used by sched (that has physical memory mapped 1:1 at bottom) and take the dump while still in mapped mode */ } /* * Move pages from one kernel virtual address to another. * Both addresses are assumed to reside in the Sysmap, * and size must be a multiple of CLSIZE. */ void pagemove(from, to, size) register caddr_t from, to; int size; { register vm_offset_t pa; if (size & CLOFSET) panic("pagemove"); while (size > 0) { pa = pmap_kextract((vm_offset_t)from); if (pa == 0) panic("pagemove 2"); if (pmap_kextract((vm_offset_t)to) != 0) panic("pagemove 3"); pmap_remove(kernel_pmap, (vm_offset_t)from, (vm_offset_t)from + PAGE_SIZE); pmap_kenter( (vm_offset_t)to, pa); from += PAGE_SIZE; to += PAGE_SIZE; size -= PAGE_SIZE; } pmap_update(); } /* * Convert kernel VA to physical address */ u_long kvtop(void *addr) { vm_offset_t va; va = pmap_kextract((vm_offset_t)addr); if (va == 0) panic("kvtop: zero page frame"); return((int)va); } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. */ void vmapbuf(bp) register struct buf *bp; { register int npf; register caddr_t addr; int off; vm_offset_t kva; vm_offset_t pa, lastv, v; if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); /* * this is the kva that is to be used for * the temporary kernel mapping */ kva = (vm_offset_t) bp->b_saveaddr; lastv = 0; for (addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE) { /* * make sure that the pde is valid and held */ v = trunc_page(((vm_offset_t)vtopte(addr))); if (v != lastv) { vm_fault_quick(v, VM_PROT_READ); pa = pmap_extract(&curproc->p_vmspace->vm_pmap, v); vm_page_hold(PHYS_TO_VM_PAGE(pa)); lastv = v; } /* * do the vm_fault if needed, do the copy-on-write thing when * reading stuff off device into memory. */ vm_fault_quick(addr, (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t) addr); /* * hold the data page */ vm_page_hold(PHYS_TO_VM_PAGE(pa)); } addr = bp->b_saveaddr = bp->b_data; off = (int)addr & PGOFSET; npf = btoc(round_page(bp->b_bufsize + off)); bp->b_data = (caddr_t) (kva + off); while (npf--) { pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t)addr); if (pa == 0) panic("vmapbuf: null page frame"); pmap_kenter(kva, trunc_page(pa)); addr += PAGE_SIZE; kva += PAGE_SIZE; } pmap_update(); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. */ void vunmapbuf(bp) register struct buf *bp; { register int npf; register caddr_t addr = bp->b_data; vm_offset_t kva,va,v,lastv,pa; if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); bp->b_data = bp->b_saveaddr; bp->b_saveaddr = NULL; /* * unhold the pde, and data pages */ lastv = 0; for (addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += NBPG) { /* * release the data page */ pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t) addr); vm_page_unhold(PHYS_TO_VM_PAGE(pa)); /* * and unhold the page table */ v = trunc_page(((vm_offset_t)vtopte(addr))); if (v != lastv) { pa = pmap_extract(&curproc->p_vmspace->vm_pmap, v); vm_page_unhold(PHYS_TO_VM_PAGE(pa)); lastv = v; } pmap_kremove((vm_offset_t)addr); } } /* * Force reset the processor by invalidating the entire address space! */ void cpu_reset() { /* force a shutdown by unmapping entire address space ! */ bzero((caddr_t) PTD, NBPG); /* "good night, sweet prince .... " */ tlbflush(); /* NOTREACHED */ while(1); } /* * Grow the user stack to allow for 'sp'. This version grows the stack in * chunks of SGROWSIZ. */ int grow(p, sp) struct proc *p; u_int sp; { unsigned int nss; caddr_t v; struct vmspace *vm = p->p_vmspace; if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK) return (1); nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE); if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) return (0); if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) < nss) { int grow_amount; /* * If necessary, grow the VM that the stack occupies * to allow for the rlimit. This allows us to not have * to allocate all of the VM up-front in execve (which * is expensive). * Grow the VM by the amount requested rounded up to * the nearest SGROWSIZ to provide for some hysteresis. */ grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ); v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) - grow_amount; /* * If there isn't enough room to extend by SGROWSIZ, then * just extend to the maximum size */ if (v < vm->vm_maxsaddr) { v = vm->vm_maxsaddr; grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT); } if (vm_allocate(&vm->vm_map, (vm_offset_t *)&v, grow_amount, FALSE) != KERN_SUCCESS) { return (0); } vm->vm_ssize += grow_amount >> PAGE_SHIFT; } return (1); }