/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $Id: vm_machdep.c,v 1.66 1996/06/20 08:07:30 davidg Exp $ */ #include "npx.h" #include "opt_bounce.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef BOUNCE_BUFFERS static vm_offset_t vm_bounce_kva __P((int size, int waitok)); static void vm_bounce_kva_free __P((vm_offset_t addr, vm_offset_t size, int now)); static vm_offset_t vm_bounce_page_find __P((int count)); static void vm_bounce_page_free __P((vm_offset_t pa, int count)); static volatile int kvasfreecnt; caddr_t bouncememory; int bouncepages; static int bpwait; static vm_offset_t *bouncepa; static int bmwait, bmfreeing; #define BITS_IN_UNSIGNED (8*sizeof(unsigned)) static int bounceallocarraysize; static unsigned *bounceallocarray; static int bouncefree; #define SIXTEENMEG (4096*4096) #define MAXBKVA 1024 int maxbkva = MAXBKVA*PAGE_SIZE; /* special list that can be used at interrupt time for eventual kva free */ static struct kvasfree { vm_offset_t addr; vm_offset_t size; } kvaf[MAXBKVA]; /* * get bounce buffer pages (count physically contiguous) * (only 1 inplemented now) */ static vm_offset_t vm_bounce_page_find(count) int count; { int bit; int s,i; if (count != 1) panic("vm_bounce_page_find -- no support for > 1 page yet!!!"); s = splbio(); retry: for (i = 0; i < bounceallocarraysize; i++) { if (bounceallocarray[i] != 0xffffffff) { bit = ffs(~bounceallocarray[i]); if (bit) { bounceallocarray[i] |= 1 << (bit - 1) ; bouncefree -= count; splx(s); return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))]; } } } bpwait = 1; tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0); goto retry; } static void vm_bounce_kva_free(addr, size, now) vm_offset_t addr; vm_offset_t size; int now; { int s = splbio(); kvaf[kvasfreecnt].addr = addr; kvaf[kvasfreecnt].size = size; ++kvasfreecnt; if( now) { /* * this will do wakeups */ vm_bounce_kva(0,0); } else { if (bmwait) { /* * if anyone is waiting on the bounce-map, then wakeup */ wakeup((caddr_t) io_map); bmwait = 0; } } splx(s); } /* * free count bounce buffer pages */ static void vm_bounce_page_free(pa, count) vm_offset_t pa; int count; { int allocindex; int index; int bit; if (count != 1) panic("vm_bounce_page_free -- no support for > 1 page yet!!!"); for(index=0;indexb_flags & B_BOUNCE) { printf("vm_bounce_alloc: called recursively???\n"); return; } if (bp->b_bufsize < bp->b_bcount) { printf( "vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n", bp->b_bufsize, bp->b_bcount); panic("vm_bounce_alloc"); } /* * This is not really necessary * if( bp->b_bufsize != bp->b_bcount) { * printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount); * } */ vastart = (vm_offset_t) bp->b_data; vaend = (vm_offset_t) bp->b_data + bp->b_bufsize; vapstart = trunc_page(vastart); vapend = round_page(vaend); countvmpg = (vapend - vapstart) / PAGE_SIZE; /* * if any page is above 16MB, then go into bounce-buffer mode */ va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) ++dobounceflag; if( pa == 0) panic("vm_bounce_alloc: Unmapped page"); va += PAGE_SIZE; } if (dobounceflag == 0) return; if (bouncepages < dobounceflag) panic("Not enough bounce buffers!!!"); /* * allocate a replacement kva for b_addr */ kva = vm_bounce_kva(countvmpg*PAGE_SIZE, 1); #if 0 printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ", (bp->b_flags & B_READ) ? "read":"write", vapstart, vapend, countvmpg, kva); #endif va = vapstart; for (i = 0; i < countvmpg; i++) { pa = pmap_kextract(va); if (pa >= SIXTEENMEG) { /* * allocate a replacement page */ vm_offset_t bpa = vm_bounce_page_find(1); pmap_kenter(kva + (PAGE_SIZE * i), bpa); #if 0 printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa); #endif /* * if we are writing, the copy the data into the page */ if ((bp->b_flags & B_READ) == 0) { bcopy((caddr_t) va, (caddr_t) kva + (PAGE_SIZE * i), PAGE_SIZE); } } else { /* * use original page */ pmap_kenter(kva + (PAGE_SIZE * i), pa); } va += PAGE_SIZE; } /* * flag the buffer as being bounced */ bp->b_flags |= B_BOUNCE; /* * save the original buffer kva */ bp->b_savekva = bp->b_data; /* * put our new kva into the buffer (offset by original offset) */ bp->b_data = (caddr_t) (((vm_offset_t) kva) | ((vm_offset_t) bp->b_savekva & PAGE_MASK)); #if 0 printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data); #endif return; } /* * hook into biodone to free bounce buffer */ void vm_bounce_free(bp) struct buf *bp; { int i; vm_offset_t origkva, bouncekva, bouncekvaend; /* * if this isn't a bounced buffer, then just return */ if ((bp->b_flags & B_BOUNCE) == 0) return; /* * This check is not necessary * if (bp->b_bufsize != bp->b_bcount) { * printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n", * bp->b_bufsize, bp->b_bcount); * } */ origkva = (vm_offset_t) bp->b_savekva; bouncekva = (vm_offset_t) bp->b_data; /* printf("free: %d ", bp->b_bufsize); */ /* * check every page in the kva space for b_addr */ for (i = 0; i < bp->b_bufsize; ) { vm_offset_t mybouncepa; vm_offset_t copycount; copycount = round_page(bouncekva + 1) - bouncekva; mybouncepa = pmap_kextract(trunc_page(bouncekva)); /* * if this is a bounced pa, then process as one */ if ( mybouncepa != pmap_kextract( trunc_page( origkva))) { vm_offset_t tocopy = copycount; if (i + tocopy > bp->b_bufsize) tocopy = bp->b_bufsize - i; /* * if this is a read, then copy from bounce buffer into original buffer */ if (bp->b_flags & B_READ) bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy); /* * free the bounce allocation */ /* printf("(kva: %x, pa: %x)", bouncekva, mybouncepa); */ vm_bounce_page_free(mybouncepa, 1); } origkva += copycount; bouncekva += copycount; i += copycount; } /* printf("\n"); */ /* * add the old kva into the "to free" list */ bouncekva= trunc_page((vm_offset_t) bp->b_data); bouncekvaend= round_page((vm_offset_t)bp->b_data + bp->b_bufsize); /* printf("freeva: %d\n", (bouncekvaend - bouncekva) / PAGE_SIZE); */ vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0); bp->b_data = bp->b_savekva; bp->b_savekva = 0; bp->b_flags &= ~B_BOUNCE; return; } /* * init the bounce buffer system */ void vm_bounce_init() { int i; kvasfreecnt = 0; if (bouncepages == 0) return; bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED; bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT); if (!bounceallocarray) panic("Cannot allocate bounce resource array"); bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT); if (!bouncepa) panic("Cannot allocate physical memory array"); for(i=0;i= SIXTEENMEG) panic("bounce memory out of range"); if( pa == 0) panic("bounce memory not resident"); bouncepa[i] = pa; bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int)))); } bouncefree = bouncepages; } #endif /* BOUNCE_BUFFERS */ /* * quick version of vm_fault */ void vm_fault_quick(v, prot) caddr_t v; int prot; { if (prot & VM_PROT_WRITE) subyte(v, fubyte(v)); else fubyte(v); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the kernel stack and pcb, making the child * ready to run, and marking it so that it can return differently * than the parent. Returns 1 in the child process, 0 in the parent. * We currently double-map the user area so that the stack is at the same * address in each process; in the future we will probably relocate * the frame pointers on the stack after copying. */ int cpu_fork(p1, p2) register struct proc *p1, *p2; { struct pcb *pcb2 = &p2->p_addr->u_pcb; int sp, offset; volatile int retval; /* * Copy pcb and stack from proc p1 to p2. * We do this as cheaply as possible, copying only the active * part of the stack. The stack and pcb need to agree; * this is tricky, as the final pcb is constructed by savectx, * but its frame isn't yet on the stack when the stack is copied. * This should be done differently, with a single call * that copies and updates the pcb+stack, * replacing the bcopy and savectx. */ __asm __volatile("movl %%esp,%0" : "=r" (sp)); offset = sp - (int)kstack; retval = 1; /* return 1 in child */ bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset, (unsigned) ctob(UPAGES) - offset); p2->p_md.md_regs = p1->p_md.md_regs; *pcb2 = p1->p_addr->u_pcb; pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir); retval = 0; /* return 0 in parent */ savectx(pcb2); return (retval); } void cpu_exit(p) register struct proc *p; { #ifdef USER_LDT struct pcb *pcb; #endif #if NNPX > 0 npxexit(p); #endif /* NNPX */ #ifdef USER_LDT pcb = &p->p_addr->u_pcb; if (pcb->pcb_ldt != 0) { if (pcb == curpcb) lldt(GSEL(GUSERLDT_SEL, SEL_KPL)); kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, pcb->pcb_ldt_len * sizeof(union descriptor)); pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; } #endif cnt.v_swtch++; cpu_switch(p); panic("cpu_exit"); } void cpu_wait(p) struct proc *p; { /* drop per-process resources */ pmap_qremove((vm_offset_t) p->p_addr, UPAGES); kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES)); vmspace_free(p->p_vmspace); } /* * Dump the machine specific header information at the start of a core dump. */ int cpu_coredump(p, vp, cred) struct proc *p; struct vnode *vp; struct ucred *cred; { return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p)); } #ifdef notyet static void setredzone(pte, vaddr) u_short *pte; caddr_t vaddr; { /* eventually do this by setting up an expand-down stack segment for ss0: selector, allowing stack access down to top of u. this means though that protection violations need to be handled thru a double fault exception that must do an integral task switch to a known good context, within which a dump can be taken. a sensible scheme might be to save the initial context used by sched (that has physical memory mapped 1:1 at bottom) and take the dump while still in mapped mode */ } #endif /* * Convert kernel VA to physical address */ u_long kvtop(void *addr) { vm_offset_t va; va = pmap_kextract((vm_offset_t)addr); if (va == 0) panic("kvtop: zero page frame"); return((int)va); } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. */ void vmapbuf(bp) register struct buf *bp; { register caddr_t addr, v, kva; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE, v += PAGE_SIZE) { /* * Do the vm_fault if needed; do the copy-on-write thing * when reading stuff off device into memory. */ vm_fault_quick(addr, (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); pa = trunc_page(pmap_kextract((vm_offset_t) addr)); if (pa == 0) panic("vmapbuf: page not present"); vm_page_hold(PHYS_TO_VM_PAGE(pa)); pmap_kenter((vm_offset_t) v, pa); } kva = bp->b_saveaddr; bp->b_saveaddr = bp->b_data; bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. */ void vunmapbuf(bp) register struct buf *bp; { register caddr_t addr; vm_offset_t pa; if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); for (addr = (caddr_t)trunc_page(bp->b_data); addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE) { pa = trunc_page(pmap_kextract((vm_offset_t) addr)); pmap_kremove((vm_offset_t) addr); vm_page_unhold(PHYS_TO_VM_PAGE(pa)); } bp->b_data = bp->b_saveaddr; } /* * Force reset the processor by invalidating the entire address space! */ void cpu_reset() { /* * Attempt to do a CPU reset via the keyboard controller, * do not turn of the GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ #ifndef BROKEN_KEYBOARD_RESET outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ printf("Keyboard reset did not work, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ #endif /* force a shutdown by unmapping entire address space ! */ bzero((caddr_t) PTD, PAGE_SIZE); /* "good night, sweet prince .... " */ pmap_update(); /* NOTREACHED */ while(1); } /* * Grow the user stack to allow for 'sp'. This version grows the stack in * chunks of SGROWSIZ. */ int grow(p, sp) struct proc *p; u_int sp; { unsigned int nss; caddr_t v; struct vmspace *vm = p->p_vmspace; if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK) return (1); nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE); if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) return (0); if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) < nss) { int grow_amount; /* * If necessary, grow the VM that the stack occupies * to allow for the rlimit. This allows us to not have * to allocate all of the VM up-front in execve (which * is expensive). * Grow the VM by the amount requested rounded up to * the nearest SGROWSIZ to provide for some hysteresis. */ grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ); v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT, SGROWSIZ) - grow_amount; /* * If there isn't enough room to extend by SGROWSIZ, then * just extend to the maximum size */ if (v < vm->vm_maxsaddr) { v = vm->vm_maxsaddr; grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT); } if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v, grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) { return (0); } vm->vm_ssize += grow_amount >> PAGE_SHIFT; } return (1); } /* * prototype routine to implement the pre-zeroed page mechanism * this routine is called from the idle loop. */ int vm_page_zero_idle() { vm_page_t m; if ((cnt.v_free_count > cnt.v_interrupt_free_min) && (m = TAILQ_FIRST(&vm_page_queue_free))) { TAILQ_REMOVE(&vm_page_queue_free, m, pageq); enable_intr(); pmap_zero_page(VM_PAGE_TO_PHYS(m)); disable_intr(); TAILQ_INSERT_HEAD(&vm_page_queue_zero, m, pageq); m->queue = PQ_ZERO; ++vm_page_zero_count; return 1; } return 0; }