/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 103049 2002-09-07 01:26:34Z peter $ */ #include "opt_npx.h" #ifdef PC98 #include "opt_pc98.h" #endif #include "opt_reset.h" #include "opt_isa.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PC98 #include #else #include #endif static void cpu_reset_real(void); #ifdef SMP static void cpu_reset_proxy(void); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif extern int _ucodesel, _udatasel; /* * quick version of vm_fault */ int vm_fault_quick(v, prot) caddr_t v; int prot; { int r; if (prot & VM_PROT_WRITE) r = subyte(v, fubyte(v)); else r = fubyte(v); return(r); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(td1, p2, td2, flags) register struct thread *td1; register struct proc *p2; struct thread *td2; int flags; { register struct proc *p1; struct pcb *pcb2; struct mdproc *mdp2; #ifdef DEV_NPX register_t savecrit; #endif p1 = td1->td_proc; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ struct mdproc *mdp1 = &p1->p_md; struct proc_ldt *pldt = mdp1->md_ldt; if (pldt && pldt->ldt_refcnt > 1) { pldt = user_ldt_alloc(mdp1, pldt->ldt_len); if (pldt == NULL) panic("could not copy LDT"); mdp1->md_ldt = pldt; set_user_ldt(mdp1); user_ldt_free(td1); } } return; } /* Ensure that p1's pcb is up to date. */ #ifdef DEV_NPX if (td1 == curthread) td1->td_pcb->pcb_gs = rgs(); savecrit = intr_disable(); if (PCPU_GET(fpcurthread) == td1) npxsave(&td1->td_pcb->pcb_save); intr_restore(savecrit); #endif /* Point the pcb to the top of the stack */ pcb2 = (struct pcb *)(td2->td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; td2->td_pcb = pcb2; /* Copy p1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Point mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. * The -16 is so we can expand the trapframe if we go to vm86. */ td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); td2->td_frame->tf_eax = 0; /* Child returns zero */ td2->td_frame->tf_eflags &= ~PSL_C; /* success */ td2->td_frame->tf_edx = 1; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); pcb2->pcb_edi = 0; pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ pcb2->pcb_ebp = 0; pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ pcb2->pcb_eip = (int)fork_trampoline; pcb2->pcb_psl = td2->td_frame->tf_eflags & ~PSL_I; /* ints disabled */ /*- * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_gs: cloned above. * pcb2->pcb_ext: cleared below. */ /* * XXX don't copy the i/o pages. this should probably be fixed. */ pcb2->pcb_ext = 0; /* Copy the LDT, if necessary. */ mtx_lock_spin(&sched_lock); if (mdp2->md_ldt != 0) { if (flags & RFMEM) { mdp2->md_ldt->ldt_refcnt++; } else { mdp2->md_ldt = user_ldt_alloc(mdp2, mdp2->md_ldt->ldt_len); if (mdp2->md_ldt == NULL) panic("could not copy LDT"); } } mtx_unlock_spin(&sched_lock); /* * Now, cpu_switch() can schedule the new process. * pcb_esp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new proc's pointer. fork_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(td, func, arg) struct thread *td; void (*func)(void *); void *arg; { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ td->td_pcb->pcb_esi = (int) func; /* function */ td->td_pcb->pcb_ebx = (int) arg; /* first arg */ } void cpu_exit(struct thread *td) { struct mdproc *mdp; mdp = &td->td_proc->p_md; if (mdp->md_ldt) user_ldt_free(td); reset_dbregs(); } void cpu_thread_exit(struct thread *td) { struct pcb *pcb = td->td_pcb; #ifdef DEV_NPX npxexit(td); #endif if (pcb->pcb_ext != 0) { /* XXXKSE XXXSMP not SMP SAFE.. what locks do we have? */ /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ /* * XXX do we need to move the TSS off the allocated pages * before freeing them? (not done here) */ kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, ctob(IOPAGES + 1)); pcb->pcb_ext = 0; } if (pcb->pcb_flags & PCB_DBREGS) { /* * disable all hardware breakpoints */ reset_dbregs(); pcb->pcb_flags &= ~PCB_DBREGS; } } void cpu_sched_exit(td) register struct thread *td; { } void cpu_thread_setup(struct thread *td) { td->td_pcb = (struct pcb *)(td->td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1; } struct md_store { struct pcb mds_pcb; struct trapframe mds_frame; }; void cpu_save_upcall(struct thread *td, struct kse *newkse) { struct trapframe *tf; newkse->ke_mdstorage = malloc(sizeof(struct md_store), M_TEMP, M_WAITOK); /* Note: use of M_WAITOK means it won't fail. */ /* set up shortcuts in MI section */ newkse->ke_pcb = &(((struct md_store *)(newkse->ke_mdstorage))->mds_pcb); newkse->ke_frame = &(((struct md_store *)(newkse->ke_mdstorage))->mds_frame); tf = newkse->ke_frame; /* Copy the upcall pcb. Kernel mode & fp regs are here. */ /* XXXKSE this may be un-needed */ bcopy(td->td_pcb, newkse->ke_pcb, sizeof(struct pcb)); /* * This initialises most of the user mode register values * to good values. Eventually set them explicitly to know values */ bcopy(td->td_frame, newkse->ke_frame, sizeof(struct trapframe)); tf->tf_edi = 0; tf->tf_esi = 0; /* trampoline arg */ tf->tf_ebp = 0; tf->tf_esp = (int)newkse->ke_stackbase + newkse->ke_stacksize - 16; tf->tf_ebx = 0; /* trampoline arg */ tf->tf_eip = (int)newkse->ke_upcall; } void cpu_set_upcall(struct thread *td, void *pcb) { struct pcb *pcb2; td->td_flags |= TDF_UPCALLING; /* Point the pcb to the top of the stack. */ pcb2 = td->td_pcb; /* * Copy the upcall pcb. This loads kernel regs. * Those not loaded individually below get their default * values here. * * XXXKSE It might be a good idea to simply skip this as * the values of the other registers may be unimportant. * This would remove any requirement for knowing the KSE * at this time (see the matching comment below for * more analysis) (need a good safe default). */ bcopy(pcb, pcb2, sizeof(*pcb2)); /* * Create a new fresh stack for the new thread. * The -16 is so we can expand the trapframe if we go to vm86. * Don't forget to set this stack value into whatever supplies * the address for the fault handlers. * The contexts are filled in at the time we actually DO the * upcall as only then do we know which KSE we got. */ td->td_frame = (struct trapframe *)((caddr_t)pcb2 - 16) - 1; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir); pcb2->pcb_edi = 0; pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ pcb2->pcb_ebp = 0; pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ pcb2->pcb_ebx = (int)td; /* trampoline arg */ pcb2->pcb_eip = (int)fork_trampoline; pcb2->pcb_psl &= ~(PSL_I); /* interrupts must be disabled */ /* * If we didn't copy the pcb, we'd need to do the following registers: * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_gs: cloned above. XXXKSE ??? * pcb2->pcb_ext: cleared below. */ pcb2->pcb_ext = NULL; } void cpu_set_args(struct thread *td, struct kse *ke) { suword((void *)(ke->ke_frame->tf_esp + sizeof(void *)), (int)ke->ke_mailbox); } void cpu_free_kse_mdstorage(struct kse *kse) { free(kse->ke_mdstorage, M_TEMP); kse->ke_mdstorage = NULL; kse->ke_pcb = NULL; kse->ke_frame = NULL; } int cpu_export_context(struct thread *td) { struct trapframe *frame; struct thread_mailbox *tm; struct trapframe *uframe; int error; frame = td->td_frame; tm = td->td_mailbox; uframe = &tm->ctx.tfrm.tf_tf; error = copyout(frame, uframe, sizeof(*frame)); /* * "What about the fp regs?" I hear you ask.... XXXKSE * Don't know where gs and "onstack" come from. * May need to fiddle a few other values too. */ return (error); } void cpu_wait(p) struct proc *p; { } /* * Convert kernel VA to physical address */ u_long kvtop(void *addr) { vm_offset_t va; va = pmap_kextract((vm_offset_t)addr); if (va == 0) panic("kvtop: zero page frame"); return((int)va); } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. */ void vmapbuf(bp) register struct buf *bp; { register caddr_t addr, kva; vm_offset_t pa; int pidx; struct vm_page *m; GIANT_REQUIRED; if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0; addr < bp->b_data + bp->b_bufsize; addr += PAGE_SIZE, pidx++) { /* * Do the vm_fault if needed; do the copy-on-write thing * when reading stuff off device into memory. */ vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, (bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); pa = trunc_page(pmap_kextract((vm_offset_t) addr)); if (pa == 0) panic("vmapbuf: page not present"); m = PHYS_TO_VM_PAGE(pa); vm_page_hold(m); bp->b_pages[pidx] = m; } if (pidx > btoc(MAXPHYS)) panic("vmapbuf: mapped more than MAXPHYS"); pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); kva = bp->b_saveaddr; bp->b_npages = pidx; bp->b_saveaddr = bp->b_data; bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. */ void vunmapbuf(bp) register struct buf *bp; { int pidx; int npages; vm_page_t *m; GIANT_REQUIRED; if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); npages = bp->b_npages; pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); m = bp->b_pages; for (pidx = 0; pidx < npages; pidx++) vm_page_unhold(*m++); bp->b_data = bp->b_saveaddr; } /* * Force reset the processor by invalidating the entire address space! */ #ifdef SMP static void cpu_reset_proxy() { cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to see that we've started */ stop_cpus((1<" */ invltlb(); /* NOTREACHED */ while(1); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(addr) vm_offset_t addr; { #ifdef DEV_ISA /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; }