/* * Copyright (c) 2006-2016 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "libcxgb4.h" #include "cxgb4-abi.h" static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq) { struct t4_cqe cqe; PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__, wq, cq, cq->sw_cidx, cq->sw_pidx); memset(&cqe, 0, sizeof(cqe)); cqe.header = htobe32(V_CQE_STATUS(T4_ERR_SWFLUSH) | V_CQE_OPCODE(FW_RI_SEND) | V_CQE_TYPE(0) | V_CQE_SWCQE(1) | V_CQE_QPID(wq->sq.qid)); cqe.bits_type_ts = htobe64(V_CQE_GENBIT((u64)cq->gen)); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); } int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count) { int flushed = 0; int in_use = wq->rq.in_use - count; BUG_ON(in_use < 0); PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__, wq, cq, wq->rq.in_use, count); while (in_use--) { insert_recv_cqe(wq, cq); flushed++; } return flushed; } static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq, struct t4_swsqe *swcqe) { struct t4_cqe cqe; PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__, wq, cq, cq->sw_cidx, cq->sw_pidx); memset(&cqe, 0, sizeof(cqe)); cqe.header = htobe32(V_CQE_STATUS(T4_ERR_SWFLUSH) | V_CQE_OPCODE(swcqe->opcode) | V_CQE_TYPE(1) | V_CQE_SWCQE(1) | V_CQE_QPID(wq->sq.qid)); CQE_WRID_SQ_IDX(&cqe) = swcqe->idx; cqe.bits_type_ts = htobe64(V_CQE_GENBIT((u64)cq->gen)); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); } static void advance_oldest_read(struct t4_wq *wq); void c4iw_flush_sq(struct c4iw_qp *qhp) { unsigned short flushed = 0; struct t4_wq *wq = &qhp->wq; struct c4iw_cq *chp = to_c4iw_cq(qhp->ibv_qp.send_cq); struct t4_cq *cq = &chp->cq; int idx; struct t4_swsqe *swsqe; if (wq->sq.flush_cidx == -1) wq->sq.flush_cidx = wq->sq.cidx; idx = wq->sq.flush_cidx; BUG_ON(idx >= wq->sq.size); while (idx != wq->sq.pidx) { swsqe = &wq->sq.sw_sq[idx]; BUG_ON(swsqe->flushed); swsqe->flushed = 1; insert_sq_cqe(wq, cq, swsqe); if (wq->sq.oldest_read == swsqe) { BUG_ON(swsqe->opcode != FW_RI_READ_REQ); advance_oldest_read(wq); } flushed++; if (++idx == wq->sq.size) idx = 0; } wq->sq.flush_cidx += flushed; if (wq->sq.flush_cidx >= wq->sq.size) wq->sq.flush_cidx -= wq->sq.size; } static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq) { struct t4_swsqe *swsqe; unsigned short cidx; if (wq->sq.flush_cidx == -1) wq->sq.flush_cidx = wq->sq.cidx; cidx = wq->sq.flush_cidx; BUG_ON(cidx >= wq->sq.size); while (cidx != wq->sq.pidx) { swsqe = &wq->sq.sw_sq[cidx]; if (!swsqe->signaled) { if (++cidx == wq->sq.size) cidx = 0; } else if (swsqe->complete) { BUG_ON(swsqe->flushed); /* * Insert this completed cqe into the swcq. */ PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n", __func__, cidx, cq->sw_pidx); swsqe->cqe.header |= htobe32(V_CQE_SWCQE(1)); cq->sw_queue[cq->sw_pidx] = swsqe->cqe; t4_swcq_produce(cq); swsqe->flushed = 1; if (++cidx == wq->sq.size) cidx = 0; wq->sq.flush_cidx = cidx; } else break; } } static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe, struct t4_cqe *read_cqe) { read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx; read_cqe->len = be32toh(wq->sq.oldest_read->read_len); read_cqe->header = htobe32(V_CQE_QPID(CQE_QPID(hw_cqe)) | V_CQE_SWCQE(SW_CQE(hw_cqe)) | V_CQE_OPCODE(FW_RI_READ_REQ) | V_CQE_TYPE(1)); read_cqe->bits_type_ts = hw_cqe->bits_type_ts; } static void advance_oldest_read(struct t4_wq *wq) { u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1; if (rptr == wq->sq.size) rptr = 0; while (rptr != wq->sq.pidx) { wq->sq.oldest_read = &wq->sq.sw_sq[rptr]; if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ) return; if (++rptr == wq->sq.size) rptr = 0; } wq->sq.oldest_read = NULL; } /* * Move all CQEs from the HWCQ into the SWCQ. * Deal with out-of-order and/or completions that complete * prior unsignalled WRs. */ void c4iw_flush_hw_cq(struct c4iw_cq *chp) { struct t4_cqe *hw_cqe, *swcqe, read_cqe; struct c4iw_qp *qhp; struct t4_swsqe *swsqe; int ret; PDBG("%s cqid 0x%x\n", __func__, chp->cq.cqid); ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); /* * This logic is similar to poll_cq(), but not quite the same * unfortunately. Need to move pertinent HW CQEs to the SW CQ but * also do any translation magic that poll_cq() normally does. */ while (!ret) { qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe)); /* * drop CQEs with no associated QP */ if (qhp == NULL) goto next_cqe; if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) goto next_cqe; if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) { /* * If we have reached here because of async * event or other error, and have egress error * then drop */ if (CQE_TYPE(hw_cqe) == 1) { syslog(LOG_CRIT, "%s: got egress error in \ read-response, dropping!\n", __func__); goto next_cqe; } /* * drop peer2peer RTR reads. */ if (CQE_WRID_STAG(hw_cqe) == 1) goto next_cqe; /* * Eat completions for unsignaled read WRs. */ if (!qhp->wq.sq.oldest_read->signaled) { advance_oldest_read(&qhp->wq); goto next_cqe; } /* * Don't write to the HWCQ, create a new read req CQE * in local memory and move it into the swcq. */ create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe); hw_cqe = &read_cqe; advance_oldest_read(&qhp->wq); } /* if its a SQ completion, then do the magic to move all the * unsignaled and now in-order completions into the swcq. */ if (SQ_TYPE(hw_cqe)) { int idx = CQE_WRID_SQ_IDX(hw_cqe); BUG_ON(idx >= qhp->wq.sq.size); swsqe = &qhp->wq.sq.sw_sq[idx]; swsqe->cqe = *hw_cqe; swsqe->complete = 1; flush_completed_wrs(&qhp->wq, &chp->cq); } else { swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx]; *swcqe = *hw_cqe; swcqe->header |= htobe32(V_CQE_SWCQE(1)); t4_swcq_produce(&chp->cq); } next_cqe: t4_hwcq_consume(&chp->cq); ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); } } static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq) { if (CQE_OPCODE(cqe) == FW_RI_TERMINATE) return 0; if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe)) return 0; if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe)) return 0; if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq)) return 0; return 1; } void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count) { struct t4_cqe *cqe; u32 ptr; *count = 0; ptr = cq->sw_cidx; BUG_ON(ptr >= cq->size); while (ptr != cq->sw_pidx) { cqe = &cq->sw_queue[ptr]; if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) && (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq)) (*count)++; if (++ptr == cq->size) ptr = 0; } PDBG("%s cq %p count %d\n", __func__, cq, *count); } static void dump_cqe(void *arg) { u64 *p = arg; syslog(LOG_NOTICE, "cxgb4 err cqe %016llx %016llx %016llx %016llx\n", (long long)be64toh(p[0]), (long long)be64toh(p[1]), (long long)be64toh(p[2]), (long long)be64toh(p[3])); } /* * poll_cq * * Caller must: * check the validity of the first CQE, * supply the wq assicated with the qpid. * * credit: cq credit to return to sge. * cqe_flushed: 1 iff the CQE is flushed. * cqe: copy of the polled CQE. * * return value: * 0 CQE returned ok. * -EAGAIN CQE skipped, try again. * -EOVERFLOW CQ overflow detected. */ static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe, u8 *cqe_flushed, u64 *cookie, u32 *credit) { int ret = 0; struct t4_cqe *hw_cqe, read_cqe; *cqe_flushed = 0; *credit = 0; ret = t4_next_cqe(cq, &hw_cqe); if (ret) return ret; PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x" " opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n", __func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe), CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe), CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe), CQE_WRID_LOW(hw_cqe)); /* * skip cqe's not affiliated with a QP. */ if (wq == NULL) { ret = -EAGAIN; goto skip_cqe; } /* * Gotta tweak READ completions: * 1) the cqe doesn't contain the sq_wptr from the wr. * 2) opcode not reflected from the wr. * 3) read_len not reflected from the wr. * 4) T4 HW (for now) inserts target read response failures which * need to be skipped. */ if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) { /* * If we have reached here because of async * event or other error, and have egress error * then drop */ if (CQE_TYPE(hw_cqe) == 1) { syslog(LOG_CRIT, "%s: got egress error in \ read-response, dropping!\n", __func__); if (CQE_STATUS(hw_cqe)) t4_set_wq_in_error(wq); ret = -EAGAIN; goto skip_cqe; } /* * If this is an unsolicited read response, then the read * was generated by the kernel driver as part of peer-2-peer * connection setup, or a target read response failure. * So skip the completion. */ if (CQE_WRID_STAG(hw_cqe) == 1) { if (CQE_STATUS(hw_cqe)) t4_set_wq_in_error(wq); ret = -EAGAIN; goto skip_cqe; } /* * Eat completions for unsignaled read WRs. */ if (!wq->sq.oldest_read->signaled) { advance_oldest_read(wq); ret = -EAGAIN; goto skip_cqe; } /* * Don't write to the HWCQ, so create a new read req CQE * in local memory. */ create_read_req_cqe(wq, hw_cqe, &read_cqe); hw_cqe = &read_cqe; advance_oldest_read(wq); } if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) { ret = -EAGAIN; goto skip_cqe; } if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) { *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH); wq->error = 1; if (!*cqe_flushed && CQE_STATUS(hw_cqe)) dump_cqe(hw_cqe); BUG_ON((cqe_flushed == 0) && !SW_CQE(hw_cqe)); goto proc_cqe; } /* * RECV completion. */ if (RQ_TYPE(hw_cqe)) { /* * HW only validates 4 bits of MSN. So we must validate that * the MSN in the SEND is the next expected MSN. If its not, * then we complete this with T4_ERR_MSN and mark the wq in * error. */ if (t4_rq_empty(wq)) { t4_set_wq_in_error(wq); ret = -EAGAIN; goto skip_cqe; } if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) { t4_set_wq_in_error(wq); hw_cqe->header |= htobe32(V_CQE_STATUS(T4_ERR_MSN)); goto proc_cqe; } goto proc_cqe; } /* * If we get here its a send completion. * * Handle out of order completion. These get stuffed * in the SW SQ. Then the SW SQ is walked to move any * now in-order completions into the SW CQ. This handles * 2 cases: * 1) reaping unsignaled WRs when the first subsequent * signaled WR is completed. * 2) out of order read completions. */ if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) { struct t4_swsqe *swsqe; int idx = CQE_WRID_SQ_IDX(hw_cqe); PDBG("%s out of order completion going in sw_sq at idx %u\n", __func__, idx); BUG_ON(idx >= wq->sq.size); swsqe = &wq->sq.sw_sq[idx]; swsqe->cqe = *hw_cqe; swsqe->complete = 1; ret = -EAGAIN; goto flush_wq; } proc_cqe: *cqe = *hw_cqe; /* * Reap the associated WR(s) that are freed up with this * completion. */ if (SQ_TYPE(hw_cqe)) { int idx = CQE_WRID_SQ_IDX(hw_cqe); BUG_ON(idx >= wq->sq.size); /* * Account for any unsignaled completions completed by * this signaled completion. In this case, cidx points * to the first unsignaled one, and idx points to the * signaled one. So adjust in_use based on this delta. * if this is not completing any unsigned wrs, then the * delta will be 0. Handle wrapping also! */ if (idx < wq->sq.cidx) wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx; else wq->sq.in_use -= idx - wq->sq.cidx; BUG_ON(wq->sq.in_use <= 0 || wq->sq.in_use >= wq->sq.size); wq->sq.cidx = (u16)idx; PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx); *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id; t4_sq_consume(wq); } else { PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx); BUG_ON(wq->rq.cidx >= wq->rq.size); *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id; BUG_ON(t4_rq_empty(wq)); t4_rq_consume(wq); goto skip_cqe; } flush_wq: /* * Flush any completed cqes that are now in-order. */ flush_completed_wrs(wq, cq); skip_cqe: if (SW_CQE(hw_cqe)) { PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n", __func__, cq, cq->cqid, cq->sw_cidx); t4_swcq_consume(cq); } else { PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n", __func__, cq, cq->cqid, cq->cidx); t4_hwcq_consume(cq); } return ret; } /* * Get one cq entry from c4iw and map it to openib. * * Returns: * 0 cqe returned * -ENODATA EMPTY; * -EAGAIN caller must try again * any other -errno fatal error */ static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ibv_wc *wc) { struct c4iw_qp *qhp = NULL; struct t4_cqe cqe, *rd_cqe; struct t4_wq *wq; u32 credit = 0; u8 cqe_flushed; u64 cookie = 0; int ret; ret = t4_next_cqe(&chp->cq, &rd_cqe); if (ret) { #ifdef STALL_DETECTION if (ret == -ENODATA && stall_to && !chp->dumped) { struct timeval t; gettimeofday(&t, NULL); if ((t.tv_sec - chp->time.tv_sec) > stall_to) { dump_state(); chp->dumped = 1; } } #endif return ret; } #ifdef STALL_DETECTION gettimeofday(&chp->time, NULL); #endif qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe)); if (!qhp) wq = NULL; else { pthread_spin_lock(&qhp->lock); wq = &(qhp->wq); } ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit); if (ret) goto out; INC_STAT(cqe); wc->wr_id = cookie; wc->qp_num = qhp->wq.sq.qid; wc->vendor_err = CQE_STATUS(&cqe); wc->wc_flags = 0; PDBG("%s qpid 0x%x type %d opcode %d status 0x%x wrid hi 0x%x " "lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe), CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie); if (CQE_TYPE(&cqe) == 0) { if (!CQE_STATUS(&cqe)) wc->byte_len = CQE_LEN(&cqe); else wc->byte_len = 0; wc->opcode = IBV_WC_RECV; } else { switch (CQE_OPCODE(&cqe)) { case FW_RI_RDMA_WRITE: wc->opcode = IBV_WC_RDMA_WRITE; break; case FW_RI_READ_REQ: wc->opcode = IBV_WC_RDMA_READ; wc->byte_len = CQE_LEN(&cqe); break; case FW_RI_SEND: case FW_RI_SEND_WITH_SE: case FW_RI_SEND_WITH_INV: case FW_RI_SEND_WITH_SE_INV: wc->opcode = IBV_WC_SEND; break; case FW_RI_BIND_MW: wc->opcode = IBV_WC_BIND_MW; break; default: PDBG("Unexpected opcode %d " "in the CQE received for QPID=0x%0x\n", CQE_OPCODE(&cqe), CQE_QPID(&cqe)); ret = -EINVAL; goto out; } } if (cqe_flushed) wc->status = IBV_WC_WR_FLUSH_ERR; else { switch (CQE_STATUS(&cqe)) { case T4_ERR_SUCCESS: wc->status = IBV_WC_SUCCESS; break; case T4_ERR_STAG: wc->status = IBV_WC_LOC_ACCESS_ERR; break; case T4_ERR_PDID: wc->status = IBV_WC_LOC_PROT_ERR; break; case T4_ERR_QPID: case T4_ERR_ACCESS: wc->status = IBV_WC_LOC_ACCESS_ERR; break; case T4_ERR_WRAP: wc->status = IBV_WC_GENERAL_ERR; break; case T4_ERR_BOUND: wc->status = IBV_WC_LOC_LEN_ERR; break; case T4_ERR_INVALIDATE_SHARED_MR: case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND: wc->status = IBV_WC_MW_BIND_ERR; break; case T4_ERR_CRC: case T4_ERR_MARKER: case T4_ERR_PDU_LEN_ERR: case T4_ERR_OUT_OF_RQE: case T4_ERR_DDP_VERSION: case T4_ERR_RDMA_VERSION: case T4_ERR_DDP_QUEUE_NUM: case T4_ERR_MSN: case T4_ERR_TBIT: case T4_ERR_MO: case T4_ERR_MSN_RANGE: case T4_ERR_IRD_OVERFLOW: case T4_ERR_OPCODE: case T4_ERR_INTERNAL_ERR: wc->status = IBV_WC_FATAL_ERR; break; case T4_ERR_SWFLUSH: wc->status = IBV_WC_WR_FLUSH_ERR; break; default: PDBG("Unexpected cqe_status 0x%x for QPID=0x%0x\n", CQE_STATUS(&cqe), CQE_QPID(&cqe)); wc->status = IBV_WC_FATAL_ERR; } } if (wc->status && wc->status != IBV_WC_WR_FLUSH_ERR) syslog(LOG_NOTICE, "cxgb4 app err cqid %u qpid %u " "type %u opcode %u status 0x%x\n", chp->cq.cqid, CQE_QPID(&cqe), CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe)); out: if (wq) pthread_spin_unlock(&qhp->lock); return ret; } int c4iw_poll_cq(struct ibv_cq *ibcq, int num_entries, struct ibv_wc *wc) { struct c4iw_cq *chp; int npolled; int err = 0; chp = to_c4iw_cq(ibcq); if (t4_cq_in_error(&chp->cq)) { t4_reset_cq_in_error(&chp->cq); c4iw_flush_qps(chp->rhp); } if (!num_entries) return t4_cq_notempty(&chp->cq); pthread_spin_lock(&chp->lock); for (npolled = 0; npolled < num_entries; ++npolled) { do { err = c4iw_poll_cq_one(chp, wc + npolled); } while (err == -EAGAIN); if (err) break; } pthread_spin_unlock(&chp->lock); return !err || err == -ENODATA ? npolled : err; } int c4iw_arm_cq(struct ibv_cq *ibcq, int solicited) { struct c4iw_cq *chp; int ret; INC_STAT(arm); chp = to_c4iw_cq(ibcq); pthread_spin_lock(&chp->lock); ret = t4_arm_cq(&chp->cq, solicited); pthread_spin_unlock(&chp->lock); return ret; }