//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Dead Loop Deletion Pass. This pass is responsible // for eliminating loops with non-infinite computable trip counts that have no // side effects or volatile instructions, and do not contribute to the // computation of the function's return value. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopDeletion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-delete" STATISTIC(NumDeleted, "Number of loops deleted"); enum class LoopDeletionResult { Unmodified, Modified, Deleted, }; /// Determines if a loop is dead. /// /// This assumes that we've already checked for unique exit and exiting blocks, /// and that the code is in LCSSA form. static bool isLoopDead(Loop *L, ScalarEvolution &SE, SmallVectorImpl &ExitingBlocks, BasicBlock *ExitBlock, bool &Changed, BasicBlock *Preheader) { // Make sure that all PHI entries coming from the loop are loop invariant. // Because the code is in LCSSA form, any values used outside of the loop // must pass through a PHI in the exit block, meaning that this check is // sufficient to guarantee that no loop-variant values are used outside // of the loop. bool AllEntriesInvariant = true; bool AllOutgoingValuesSame = true; for (PHINode &P : ExitBlock->phis()) { Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]); // Make sure all exiting blocks produce the same incoming value for the exit // block. If there are different incoming values for different exiting // blocks, then it is impossible to statically determine which value should // be used. AllOutgoingValuesSame = all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) { return incoming == P.getIncomingValueForBlock(BB); }); if (!AllOutgoingValuesSame) break; if (Instruction *I = dyn_cast(incoming)) if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { AllEntriesInvariant = false; break; } } if (Changed) SE.forgetLoopDispositions(L); if (!AllEntriesInvariant || !AllOutgoingValuesSame) return false; // Make sure that no instructions in the block have potential side-effects. // This includes instructions that could write to memory, and loads that are // marked volatile. for (auto &I : L->blocks()) if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); })) return false; return true; } /// This function returns true if there is no viable path from the /// entry block to the header of \p L. Right now, it only does /// a local search to save compile time. static bool isLoopNeverExecuted(Loop *L) { using namespace PatternMatch; auto *Preheader = L->getLoopPreheader(); // TODO: We can relax this constraint, since we just need a loop // predecessor. assert(Preheader && "Needs preheader!"); if (Preheader == &Preheader->getParent()->getEntryBlock()) return false; // All predecessors of the preheader should have a constant conditional // branch, with the loop's preheader as not-taken. for (auto *Pred: predecessors(Preheader)) { BasicBlock *Taken, *NotTaken; ConstantInt *Cond; if (!match(Pred->getTerminator(), m_Br(m_ConstantInt(Cond), Taken, NotTaken))) return false; if (!Cond->getZExtValue()) std::swap(Taken, NotTaken); if (Taken == Preheader) return false; } assert(!pred_empty(Preheader) && "Preheader should have predecessors at this point!"); // All the predecessors have the loop preheader as not-taken target. return true; } /// Remove a loop if it is dead. /// /// A loop is considered dead if it does not impact the observable behavior of /// the program other than finite running time. This never removes a loop that /// might be infinite (unless it is never executed), as doing so could change /// the halting/non-halting nature of a program. /// /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in /// order to make various safety checks work. /// /// \returns true if any changes were made. This may mutate the loop even if it /// is unable to delete it due to hoisting trivially loop invariant /// instructions out of the loop. static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI) { assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); // We can only remove the loop if there is a preheader that we can branch from // after removing it. Also, if LoopSimplify form is not available, stay out // of trouble. BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader || !L->hasDedicatedExits()) { LLVM_DEBUG( dbgs() << "Deletion requires Loop with preheader and dedicated exits.\n"); return LoopDeletionResult::Unmodified; } // We can't remove loops that contain subloops. If the subloops were dead, // they would already have been removed in earlier executions of this pass. if (L->begin() != L->end()) { LLVM_DEBUG(dbgs() << "Loop contains subloops.\n"); return LoopDeletionResult::Unmodified; } BasicBlock *ExitBlock = L->getUniqueExitBlock(); if (ExitBlock && isLoopNeverExecuted(L)) { LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!"); // Set incoming value to undef for phi nodes in the exit block. for (PHINode &P : ExitBlock->phis()) { std::fill(P.incoming_values().begin(), P.incoming_values().end(), UndefValue::get(P.getType())); } deleteDeadLoop(L, &DT, &SE, &LI); ++NumDeleted; return LoopDeletionResult::Deleted; } // The remaining checks below are for a loop being dead because all statements // in the loop are invariant. SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // We require that the loop only have a single exit block. Otherwise, we'd // be in the situation of needing to be able to solve statically which exit // block will be branched to, or trying to preserve the branching logic in // a loop invariant manner. if (!ExitBlock) { LLVM_DEBUG(dbgs() << "Deletion requires single exit block\n"); return LoopDeletionResult::Unmodified; } // Finally, we have to check that the loop really is dead. bool Changed = false; if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) { LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n"); return Changed ? LoopDeletionResult::Modified : LoopDeletionResult::Unmodified; } // Don't remove loops for which we can't solve the trip count. // They could be infinite, in which case we'd be changing program behavior. const SCEV *S = SE.getConstantMaxBackedgeTakenCount(L); if (isa(S)) { LLVM_DEBUG(dbgs() << "Could not compute SCEV MaxBackedgeTakenCount.\n"); return Changed ? LoopDeletionResult::Modified : LoopDeletionResult::Unmodified; } LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!"); deleteDeadLoop(L, &DT, &SE, &LI); ++NumDeleted; return LoopDeletionResult::Deleted; } PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); LLVM_DEBUG(L.dump()); std::string LoopName = L.getName(); auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI); if (Result == LoopDeletionResult::Unmodified) return PreservedAnalyses::all(); if (Result == LoopDeletionResult::Deleted) Updater.markLoopAsDeleted(L, LoopName); return getLoopPassPreservedAnalyses(); } namespace { class LoopDeletionLegacyPass : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopDeletionLegacyPass() : LoopPass(ID) { initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); } // Possibly eliminate loop L if it is dead. bool runOnLoop(Loop *L, LPPassManager &) override; void getAnalysisUsage(AnalysisUsage &AU) const override { getLoopAnalysisUsage(AU); } }; } char LoopDeletionLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { if (skipLoop(L)) return false; DominatorTree &DT = getAnalysis().getDomTree(); ScalarEvolution &SE = getAnalysis().getSE(); LoopInfo &LI = getAnalysis().getLoopInfo(); LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); LLVM_DEBUG(L->dump()); LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI); if (Result == LoopDeletionResult::Deleted) LPM.markLoopAsDeleted(*L); return Result != LoopDeletionResult::Unmodified; }