//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Stack allocation //===----------------------------------------------------------------------===// // The callseq_start node requires the hasSideEffects flag, even though these // instructions are noops on SystemZ. let hasNoSchedulingInfo = 1, hasSideEffects = 1 in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), [(callseq_start timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)]>; } // Takes as input the value of the stack pointer after a dynamic allocation // has been made. Sets the output to the address of the dynamically- // allocated area itself, skipping the outgoing arguments. // // This expands to an LA or LAY instruction. We restrict the offset // to the range of LA and keep the LAY range in reserve for when // the size of the outgoing arguments is added. def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), [(set GR64:$dst, dynalloc12only:$src)]>; //===----------------------------------------------------------------------===// // Branch instructions //===----------------------------------------------------------------------===// // Conditional branches. let isBranch = 1, isTerminator = 1, Uses = [CC] in { // It's easier for LLVM to handle these branches in their raw BRC/BRCL form // with the condition-code mask being the first operand. It seems friendlier // to use mnemonic forms like JE and JLH when writing out the assembly though. let isCodeGenOnly = 1 in { // An assembler extended mnemonic for BRC. def BRC : CondBranchRI <"j#", 0xA74, z_br_ccmask>; // An assembler extended mnemonic for BRCL. (The extension is "G" // rather than "L" because "JL" is "Jump if Less".) def BRCL : CondBranchRIL<"jg#", 0xC04>; let isIndirectBranch = 1 in { def BC : CondBranchRX<"b#", 0x47>; def BCR : CondBranchRR<"b#r", 0x07>; def BIC : CondBranchRXY<"bi#", 0xe347>, Requires<[FeatureMiscellaneousExtensions2]>; } } // Allow using the raw forms directly from the assembler (and occasional // special code generation needs) as well. def BRCAsm : AsmCondBranchRI <"brc", 0xA74>; def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>; let isIndirectBranch = 1 in { def BCAsm : AsmCondBranchRX<"bc", 0x47>; def BCRAsm : AsmCondBranchRR<"bcr", 0x07>; def BICAsm : AsmCondBranchRXY<"bic", 0xe347>, Requires<[FeatureMiscellaneousExtensions2]>; } // Define AsmParser extended mnemonics for each general condition-code mask // (integer or floating-point) foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { def JAsm#V : FixedCondBranchRI , "j#", 0xA74>; def JGAsm#V : FixedCondBranchRIL, "jg#", 0xC04>; let isIndirectBranch = 1 in { def BAsm#V : FixedCondBranchRX , "b#", 0x47>; def BRAsm#V : FixedCondBranchRR , "b#r", 0x07>; def BIAsm#V : FixedCondBranchRXY, "bi#", 0xe347>, Requires<[FeatureMiscellaneousExtensions2]>; } } } // Unconditional branches. These are in fact simply variants of the // conditional branches with the condition mask set to "always". let isBranch = 1, isTerminator = 1, isBarrier = 1 in { def J : FixedCondBranchRI ; def JG : FixedCondBranchRIL; let isIndirectBranch = 1 in { def B : FixedCondBranchRX; def BR : FixedCondBranchRR; def BI : FixedCondBranchRXY, Requires<[FeatureMiscellaneousExtensions2]>; } } // NOPs. These are again variants of the conditional branches, // with the condition mask set to "never". def NOP : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>; def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>; // Fused compare-and-branch instructions. // // These instructions do not use or clobber the condition codes. // We nevertheless pretend that the relative compare-and-branch // instructions clobber CC, so that we can lower them to separate // comparisons and BRCLs if the branch ends up being out of range. let isBranch = 1, isTerminator = 1 in { // As for normal branches, we handle these instructions internally in // their raw CRJ-like form, but use assembly macros like CRJE when writing // them out. Using the *Pair multiclasses, we also create the raw forms. let Defs = [CC] in { defm CRJ : CmpBranchRIEbPair<"crj", 0xEC76, GR32>; defm CGRJ : CmpBranchRIEbPair<"cgrj", 0xEC64, GR64>; defm CIJ : CmpBranchRIEcPair<"cij", 0xEC7E, GR32, imm32sx8>; defm CGIJ : CmpBranchRIEcPair<"cgij", 0xEC7C, GR64, imm64sx8>; defm CLRJ : CmpBranchRIEbPair<"clrj", 0xEC77, GR32>; defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>; defm CLIJ : CmpBranchRIEcPair<"clij", 0xEC7F, GR32, imm32zx8>; defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>; } let isIndirectBranch = 1 in { defm CRB : CmpBranchRRSPair<"crb", 0xECF6, GR32>; defm CGRB : CmpBranchRRSPair<"cgrb", 0xECE4, GR64>; defm CIB : CmpBranchRISPair<"cib", 0xECFE, GR32, imm32sx8>; defm CGIB : CmpBranchRISPair<"cgib", 0xECFC, GR64, imm64sx8>; defm CLRB : CmpBranchRRSPair<"clrb", 0xECF7, GR32>; defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>; defm CLIB : CmpBranchRISPair<"clib", 0xECFF, GR32, imm32zx8>; defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>; } // Define AsmParser mnemonics for each integer condition-code mask. foreach V = [ "E", "H", "L", "HE", "LE", "LH", "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { let Defs = [CC] in { def CRJAsm#V : FixedCmpBranchRIEb, "crj", 0xEC76, GR32>; def CGRJAsm#V : FixedCmpBranchRIEb, "cgrj", 0xEC64, GR64>; def CIJAsm#V : FixedCmpBranchRIEc, "cij", 0xEC7E, GR32, imm32sx8>; def CGIJAsm#V : FixedCmpBranchRIEc, "cgij", 0xEC7C, GR64, imm64sx8>; def CLRJAsm#V : FixedCmpBranchRIEb, "clrj", 0xEC77, GR32>; def CLGRJAsm#V : FixedCmpBranchRIEb, "clgrj", 0xEC65, GR64>; def CLIJAsm#V : FixedCmpBranchRIEc, "clij", 0xEC7F, GR32, imm32zx8>; def CLGIJAsm#V : FixedCmpBranchRIEc, "clgij", 0xEC7D, GR64, imm64zx8>; } let isIndirectBranch = 1 in { def CRBAsm#V : FixedCmpBranchRRS, "crb", 0xECF6, GR32>; def CGRBAsm#V : FixedCmpBranchRRS, "cgrb", 0xECE4, GR64>; def CIBAsm#V : FixedCmpBranchRIS, "cib", 0xECFE, GR32, imm32sx8>; def CGIBAsm#V : FixedCmpBranchRIS, "cgib", 0xECFC, GR64, imm64sx8>; def CLRBAsm#V : FixedCmpBranchRRS, "clrb", 0xECF7, GR32>; def CLGRBAsm#V : FixedCmpBranchRRS, "clgrb", 0xECE5, GR64>; def CLIBAsm#V : FixedCmpBranchRIS, "clib", 0xECFF, GR32, imm32zx8>; def CLGIBAsm#V : FixedCmpBranchRIS, "clgib", 0xECFD, GR64, imm64zx8>; } } } // Decrement a register and branch if it is nonzero. These don't clobber CC, // but we might need to split long relative branches into sequences that do. let isBranch = 1, isTerminator = 1 in { let Defs = [CC] in { def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>; def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; } // This doesn't need to clobber CC since we never need to split it. def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>, Requires<[FeatureHighWord]>; def BCT : BranchUnaryRX<"bct", 0x46,GR32>; def BCTR : BranchUnaryRR<"bctr", 0x06, GR32>; def BCTG : BranchUnaryRXY<"bctg", 0xE346, GR64>; def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>; } let isBranch = 1, isTerminator = 1 in { let Defs = [CC] in { def BRXH : BranchBinaryRSI<"brxh", 0x84, GR32>; def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>; def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>; def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>; } def BXH : BranchBinaryRS<"bxh", 0x86, GR32>; def BXLE : BranchBinaryRS<"bxle", 0x87, GR32>; def BXHG : BranchBinaryRSY<"bxhg", 0xEB44, GR64>; def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>; } //===----------------------------------------------------------------------===// // Trap instructions //===----------------------------------------------------------------------===// // Unconditional trap. let hasCtrlDep = 1, hasSideEffects = 1 in def Trap : Alias<4, (outs), (ins), [(trap)]>; // Conditional trap. let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>; // Fused compare-and-trap instructions. let hasCtrlDep = 1, hasSideEffects = 1 in { // These patterns work the same way as for compare-and-branch. defm CRT : CmpBranchRRFcPair<"crt", 0xB972, GR32>; defm CGRT : CmpBranchRRFcPair<"cgrt", 0xB960, GR64>; defm CLRT : CmpBranchRRFcPair<"clrt", 0xB973, GR32>; defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>; defm CIT : CmpBranchRIEaPair<"cit", 0xEC72, GR32, imm32sx16>; defm CGIT : CmpBranchRIEaPair<"cgit", 0xEC70, GR64, imm64sx16>; defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>; defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>; let Predicates = [FeatureMiscellaneousExtensions] in { defm CLT : CmpBranchRSYbPair<"clt", 0xEB23, GR32>; defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>; } foreach V = [ "E", "H", "L", "HE", "LE", "LH", "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { def CRTAsm#V : FixedCmpBranchRRFc, "crt", 0xB972, GR32>; def CGRTAsm#V : FixedCmpBranchRRFc, "cgrt", 0xB960, GR64>; def CLRTAsm#V : FixedCmpBranchRRFc, "clrt", 0xB973, GR32>; def CLGRTAsm#V : FixedCmpBranchRRFc, "clgrt", 0xB961, GR64>; def CITAsm#V : FixedCmpBranchRIEa, "cit", 0xEC72, GR32, imm32sx16>; def CGITAsm#V : FixedCmpBranchRIEa, "cgit", 0xEC70, GR64, imm64sx16>; def CLFITAsm#V : FixedCmpBranchRIEa, "clfit", 0xEC73, GR32, imm32zx16>; def CLGITAsm#V : FixedCmpBranchRIEa, "clgit", 0xEC71, GR64, imm64zx16>; let Predicates = [FeatureMiscellaneousExtensions] in { def CLTAsm#V : FixedCmpBranchRSYb, "clt", 0xEB23, GR32>; def CLGTAsm#V : FixedCmpBranchRSYb, "clgt", 0xEB2B, GR64>; } } } //===----------------------------------------------------------------------===// // Call and return instructions //===----------------------------------------------------------------------===// // Define the general form of the call instructions for the asm parser. // These instructions don't hard-code %r14 as the return address register. let isCall = 1, Defs = [CC] in { def BRAS : CallRI <"bras", 0xA75>; def BRASL : CallRIL<"brasl", 0xC05>; def BAS : CallRX <"bas", 0x4D>; def BASR : CallRR <"basr", 0x0D>; } // Regular calls. let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in { def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops), [(z_call pcrel32:$I2)]>; def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops), [(z_call ADDR64:$R2)]>; } // TLS calls. These will be lowered into a call to __tls_get_offset, // with an extra relocation specifying the TLS symbol. let isCall = 1, Defs = [R14D, CC] in { def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), [(z_tls_gdcall tglobaltlsaddr:$I2)]>; def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), [(z_tls_ldcall tglobaltlsaddr:$I2)]>; } // Sibling calls. Indirect sibling calls must be via R1, since R2 upwards // are argument registers and since branching to R0 is a no-op. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { def CallJG : Alias<6, (outs), (ins pcrel32:$I2), [(z_sibcall pcrel32:$I2)]>; let Uses = [R1D] in def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>; } // Conditional sibling calls. let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in { def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1, pcrel32:$I2), []>; let Uses = [R1D] in def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; } // Fused compare and conditional sibling calls. let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in { def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; } // A return instruction (br %r14). let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in def Return : Alias<2, (outs), (ins), [(z_retflag)]>; // A conditional return instruction (bcr , %r14). let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; // Fused compare and conditional returns. let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in { def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; } //===----------------------------------------------------------------------===// // Select instructions //===----------------------------------------------------------------------===// def Select32 : SelectWrapper, Requires<[FeatureNoLoadStoreOnCond]>; def Select64 : SelectWrapper, Requires<[FeatureNoLoadStoreOnCond]>; // We don't define 32-bit Mux stores if we don't have STOCFH, because the // low-only STOC should then always be used if possible. defm CondStore8Mux : CondStores, Requires<[FeatureHighWord]>; defm CondStore16Mux : CondStores, Requires<[FeatureHighWord]>; defm CondStore32Mux : CondStores, Requires<[FeatureLoadStoreOnCond2]>; defm CondStore8 : CondStores; defm CondStore16 : CondStores; defm CondStore32 : CondStores; defm : CondStores64; defm : CondStores64; defm : CondStores64; defm CondStore64 : CondStores; //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// // Register moves. def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>; def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>; let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { def LTR : UnaryRR <"ltr", 0x12, null_frag, GR32, GR32>; def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>; } let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>; // Immediate moves. let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF, // deopending on the choice of register. def LHIMux : UnaryRIPseudo, Requires<[FeatureHighWord]>; def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>; def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; // Other 16-bit immediates. def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; // 32-bit immediates. def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>; def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; } // Register loads. let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { // Expands to L, LY or LFH, depending on the choice of register. def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>, Requires<[FeatureHighWord]>; defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>, Requires<[FeatureHighWord]>; def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), [(set GR128:$dst, (load bdxaddr20only128:$src))]>; } } let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>; def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; } let canFoldAsLoad = 1 in { def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>; def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; } // Load and zero rightmost byte. let Predicates = [FeatureLoadAndZeroRightmostByte] in { def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>; def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>; def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00), (LZRF bdxaddr20only:$src)>; def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00), (LZRG bdxaddr20only:$src)>; } // Load and trap. let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { def LAT : UnaryRXY<"lat", 0xE39F, null_frag, GR32, 4>; def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>; def LGAT : UnaryRXY<"lgat", 0xE385, null_frag, GR64, 8>; } // Register stores. let SimpleBDXStore = 1, mayStore = 1 in { // Expands to ST, STY or STFH, depending on the choice of register. def STMux : StoreRXYPseudo, Requires<[FeatureHighWord]>; defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>, Requires<[FeatureHighWord]>; def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), [(store GR128:$src, bdxaddr20only128:$dst)]>; } } def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; // 8-bit immediate stores to 8-bit fields. defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; // 16-bit immediate stores to 16-, 32- or 64-bit fields. def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>; def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>; // Memory-to-memory moves. let mayLoad = 1, mayStore = 1 in defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; let mayLoad = 1, mayStore = 1, Defs = [CC] in { def MVCL : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>; def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>; def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>; } // Move right. let Predicates = [FeatureMiscellaneousExtensions3], mayLoad = 1, mayStore = 1, Uses = [R0L] in def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>; // String moves. let mayLoad = 1, mayStore = 1, Defs = [CC] in defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; //===----------------------------------------------------------------------===// // Conditional move instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in { // Select. let isCommutable = 1 in { // Expands to SELR or SELFHR or a branch-and-move sequence, // depending on the choice of registers. def SELRMux : CondBinaryRRFaPseudo<"selrmux", GRX32, GRX32, GRX32>; defm SELFHR : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>; defm SELR : CondBinaryRRFaPair<"selr", 0xB9F0, GR32, GR32, GR32>; defm SELGR : CondBinaryRRFaPair<"selgr", 0xB9E3, GR64, GR64, GR64>; } // Define AsmParser extended mnemonics for each general condition-code mask. foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { def SELRAsm#V : FixedCondBinaryRRFa, "selr", 0xB9F0, GR32, GR32, GR32>; def SELFHRAsm#V : FixedCondBinaryRRFa, "selfhr", 0xB9C0, GRH32, GRH32, GRH32>; def SELGRAsm#V : FixedCondBinaryRRFa, "selgr", 0xB9E3, GR64, GR64, GR64>; } } let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in { // Load immediate on condition. Matched via DAG pattern and created // by the PeepholeOptimizer via FoldImmediate. // Expands to LOCHI or LOCHHI, depending on the choice of register. def LOCHIMux : CondBinaryRIEPseudo; defm LOCHHI : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>; defm LOCHI : CondBinaryRIEPair<"lochi", 0xEC42, GR32, imm32sx16>; defm LOCGHI : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>; // Move register on condition. Matched via DAG pattern and // created by early if-conversion. let isCommutable = 1 in { // Expands to LOCR or LOCFHR or a branch-and-move sequence, // depending on the choice of registers. def LOCRMux : CondBinaryRRFPseudo<"locrmux", GRX32, GRX32>; defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>; } // Load on condition. Matched via DAG pattern. // Expands to LOC or LOCFH, depending on the choice of register. def LOCMux : CondUnaryRSYPseudo; defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>; // Store on condition. Expanded from CondStore* pseudos. // Expands to STOC or STOCFH, depending on the choice of register. def STOCMux : CondStoreRSYPseudo; defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>; // Define AsmParser extended mnemonics for each general condition-code mask. foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { def LOCHIAsm#V : FixedCondBinaryRIE, "lochi", 0xEC42, GR32, imm32sx16>; def LOCGHIAsm#V : FixedCondBinaryRIE, "locghi", 0xEC46, GR64, imm64sx16>; def LOCHHIAsm#V : FixedCondBinaryRIE, "lochhi", 0xEC4E, GRH32, imm32sx16>; def LOCFHRAsm#V : FixedCondBinaryRRF, "locfhr", 0xB9E0, GRH32, GRH32>; def LOCFHAsm#V : FixedCondUnaryRSY, "locfh", 0xEBE0, GRH32, 4>; def STOCFHAsm#V : FixedCondStoreRSY, "stocfh", 0xEBE1, GRH32, 4>; } } let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in { // Move register on condition. Matched via DAG pattern and // created by early if-conversion. let isCommutable = 1 in { defm LOCR : CondBinaryRRFPair<"locr", 0xB9F2, GR32, GR32>; defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>; } // Load on condition. Matched via DAG pattern. defm LOC : CondUnaryRSYPair<"loc", 0xEBF2, simple_load, GR32, 4>; defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, simple_load, GR64, 8>; // Store on condition. Expanded from CondStore* pseudos. defm STOC : CondStoreRSYPair<"stoc", 0xEBF3, GR32, 4>; defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>; // Define AsmParser extended mnemonics for each general condition-code mask. foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { def LOCRAsm#V : FixedCondBinaryRRF, "locr", 0xB9F2, GR32, GR32>; def LOCGRAsm#V : FixedCondBinaryRRF, "locgr", 0xB9E2, GR64, GR64>; def LOCAsm#V : FixedCondUnaryRSY, "loc", 0xEBF2, GR32, 4>; def LOCGAsm#V : FixedCondUnaryRSY, "locg", 0xEBE2, GR64, 8>; def STOCAsm#V : FixedCondStoreRSY, "stoc", 0xEBF3, GR32, 4>; def STOCGAsm#V : FixedCondStoreRSY, "stocg", 0xEBE3, GR64, 8>; } } //===----------------------------------------------------------------------===// // Sign extensions //===----------------------------------------------------------------------===// // // Note that putting these before zero extensions mean that we will prefer // them for anyextload*. There's not really much to choose between the two // either way, but signed-extending loads have a short LH and a long LHY, // while zero-extending loads have only the long LLH. // //===----------------------------------------------------------------------===// // 32-bit extensions from registers. def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>; def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>; // 64-bit extensions from registers. def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>; def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>; def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>; let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>; // Match 32-to-64-bit sign extensions in which the source is already // in a 64-bit register. def : Pat<(sext_inreg GR64:$src, i32), (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; // 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH, // depending on the choice of register. def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>, Requires<[FeatureHighWord]>; def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>, Requires<[FeatureHighWord]>; // 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH, // depending on the choice of register. def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>, Requires<[FeatureHighWord]>; defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>, Requires<[FeatureHighWord]>; def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; // 64-bit extensions from memory. def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>; def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; //===----------------------------------------------------------------------===// // Zero extensions //===----------------------------------------------------------------------===// // 32-bit extensions from registers. // Expands to LLCR or RISB[LH]G, depending on the choice of registers. def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>, Requires<[FeatureHighWord]>; def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>; // Expands to LLHR or RISB[LH]G, depending on the choice of registers. def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>, Requires<[FeatureHighWord]>; def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>; // 64-bit extensions from registers. def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>; def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>; def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>; // Match 32-to-64-bit zero extensions in which the source is already // in a 64-bit register. def : Pat<(and GR64:$src, 0xffffffff), (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; // 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH, // depending on the choice of register. def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>, Requires<[FeatureHighWord]>; def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>, Requires<[FeatureHighWord]>; // 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH, // depending on the choice of register. def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>, Requires<[FeatureHighWord]>; def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>, Requires<[FeatureHighWord]>; def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; // 64-bit extensions from memory. def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>; def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; // 31-to-64-bit zero extensions. def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>; def LLGT : UnaryRXY<"llgt", 0xE317, null_frag, GR64, 4>; def : Pat<(and GR64:$src, 0x7fffffff), (LLGTR GR64:$src)>; def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff), (LLGT bdxaddr20only:$src)>; // Load and zero rightmost byte. let Predicates = [FeatureLoadAndZeroRightmostByte] in { def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>; def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00), (LLZRGF bdxaddr20only:$src)>; } // Load and trap. let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>; def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>; } // Extend GR64s to GR128s. let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; //===----------------------------------------------------------------------===// // "Any" extensions //===----------------------------------------------------------------------===// // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. def : Pat<(i64 (anyext GR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>; // Extend GR64s to GR128s. let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; //===----------------------------------------------------------------------===// // Truncations //===----------------------------------------------------------------------===// // Truncations of 64-bit registers to 32-bit registers. def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, subreg_l32)>; // Truncations of 32-bit registers to 8-bit memory. STCMux expands to // STC, STCY or STCH, depending on the choice of register. def STCMux : StoreRXYPseudo, Requires<[FeatureHighWord]>; defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>, Requires<[FeatureHighWord]>; // Truncations of 32-bit registers to 16-bit memory. STHMux expands to // STH, STHY or STHH, depending on the choice of register. def STHMux : StoreRXYPseudo, Requires<[FeatureHighWord]>; defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>, Requires<[FeatureHighWord]>; def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; // Truncations of 64-bit registers to memory. defm : StoreGR64Pair; defm : StoreGR64Pair; def : StoreGR64PC; defm : StoreGR64Pair; def : StoreGR64PC; // Store characters under mask -- not (yet) used for codegen. defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>; def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>; //===----------------------------------------------------------------------===// // Multi-register moves //===----------------------------------------------------------------------===// // Multi-register loads. defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>; def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>; def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>; // Multi-register stores. defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>; def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>; //===----------------------------------------------------------------------===// // Byte swaps //===----------------------------------------------------------------------===// // Byte-swapping register moves. def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>; def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>; // Byte-swapping loads. def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>; def LRV : UnaryRXY<"lrv", 0xE31E, z_loadbswap32, GR32, 4>; def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>; // Byte-swapping stores. def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>; def STRV : StoreRXY<"strv", 0xE33E, z_storebswap32, GR32, 4>; def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>; // Byte-swapping memory-to-memory moves. let mayLoad = 1, mayStore = 1 in def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>; //===----------------------------------------------------------------------===// // Load address instructions //===----------------------------------------------------------------------===// // Load BDX-style addresses. let isAsCheapAsAMove = 1, isReMaterializable = 1 in defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>; // Load a PC-relative address. There's no version of this instruction // with a 16-bit offset, so there's no relaxation. let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>; // Load the Global Offset Table address. This will be lowered into a // larl $R1, _GLOBAL_OFFSET_TABLE_ // instruction. def GOT : Alias<6, (outs GR64:$R1), (ins), [(set GR64:$R1, (global_offset_table))]>; //===----------------------------------------------------------------------===// // Absolute and Negation //===----------------------------------------------------------------------===// let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LPR : UnaryRR <"lpr", 0x10, z_iabs, GR32, GR32>; def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>; } def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>; def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>; defm : SXU; defm : SXU; let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LNR : UnaryRR <"lnr", 0x11, z_inegabs, GR32, GR32>; def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>; } def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>; def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>; defm : SXU; defm : SXU; let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>; def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>; } defm : SXU; //===----------------------------------------------------------------------===// // Insertion //===----------------------------------------------------------------------===// let isCodeGenOnly = 1 in defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>; defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>; defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; // Insert characters under mask -- not (yet) used for codegen. let Defs = [CC] in { defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>; def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>; } // Insertions of a 16-bit immediate, leaving other bits unaffected. // We don't have or_as_insert equivalents of these operations because // OI is available instead. // // IIxMux expands to II[LH]x, depending on the choice of register. def IILMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def IIHMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>; def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>; def IILL64 : BinaryAliasRI; def IILH64 : BinaryAliasRI; def IIHL64 : BinaryAliasRI; def IIHH64 : BinaryAliasRI; // ...likewise for 32-bit immediates. For GR32s this is a general // full-width move. (We use IILF rather than something like LLILF // for 32-bit moves because IILF leaves the upper 32 bits of the // GR64 unchanged.) let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { def IIFMux : UnaryRIPseudo, Requires<[FeatureHighWord]>; def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>; } def IILF64 : BinaryAliasRIL; def IIHF64 : BinaryAliasRIL; // An alternative model of inserthf, with the first operand being // a zero-extended value. def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), imm64hf32:$imm)>; //===----------------------------------------------------------------------===// // Addition //===----------------------------------------------------------------------===// // Addition producing a signed overflow flag. let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in { // Addition of a register. let isCommutable = 1 in { defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>; } def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>; // Addition to a high register. def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>, Requires<[FeatureHighWord]>; def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>, Requires<[FeatureHighWord]>; // Addition of signed 16-bit immediates. defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>; defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>; defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>; // Addition of signed 32-bit immediates. def AFIMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def AFI : BinaryRIL<"afi", 0xC29, z_sadd, GR32, simm32>; def AIH : BinaryRIL<"aih", 0xCC8, z_sadd, GRH32, simm32>, Requires<[FeatureHighWord]>; def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>; // Addition of memory. defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>; defm A : BinaryRXPairAndPseudo<"a", 0x5A, 0xE35A, z_sadd, GR32, load, 4>; def AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>, Requires<[FeatureMiscellaneousExtensions2]>; def AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>; defm AG : BinaryRXYAndPseudo<"ag", 0xE308, z_sadd, GR64, load, 8>; // Addition to memory. def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>; def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; } defm : SXB; // Addition producing a carry. let Defs = [CC], CCValues = 0xF, IsLogical = 1 in { // Addition of a register. let isCommutable = 1 in { defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>; defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>; } def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>; // Addition to a high register. def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>, Requires<[FeatureHighWord]>; def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>, Requires<[FeatureHighWord]>; // Addition of signed 16-bit immediates. def ALHSIK : BinaryRIE<"alhsik", 0xECDA, z_uadd, GR32, imm32sx16>, Requires<[FeatureDistinctOps]>; def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>, Requires<[FeatureDistinctOps]>; // Addition of unsigned 32-bit immediates. def ALFI : BinaryRIL<"alfi", 0xC2B, z_uadd, GR32, uimm32>; def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>; // Addition of signed 32-bit immediates. def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>, Requires<[FeatureHighWord]>; // Addition of memory. defm AL : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>; def ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>; defm ALG : BinaryRXYAndPseudo<"alg", 0xE30A, z_uadd, GR64, load, 8>; // Addition to memory. def ALSI : BinarySIY<"alsi", 0xEB6E, null_frag, imm32sx8>; def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>; } defm : ZXB; // Addition producing and using a carry. let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in { // Addition of a register. def ALCR : BinaryRRE<"alcr", 0xB998, z_addcarry, GR32, GR32>; def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>; // Addition of memory. def ALC : BinaryRXY<"alc", 0xE398, z_addcarry, GR32, load, 4>; def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>; } // Addition that does not modify the condition code. def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>, Requires<[FeatureHighWord]>; //===----------------------------------------------------------------------===// // Subtraction //===----------------------------------------------------------------------===// // Subtraction producing a signed overflow flag. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8, CCIfNoSignedWrap = 1 in { // Subtraction of a register. defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>; def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>; defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>; // Subtraction from a high register. def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>, Requires<[FeatureHighWord]>; def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>, Requires<[FeatureHighWord]>; // Subtraction of memory. defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>; defm S : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>; def SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>, Requires<[FeatureMiscellaneousExtensions2]>; def SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>; defm SG : BinaryRXYAndPseudo<"sg", 0xE309, z_ssub, GR64, load, 8>; } defm : SXB; // Subtracting an immediate is the same as adding the negated immediate. let AddedComplexity = 1 in { def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), (AHIMux GR32:$src1, imm32sx16n:$src2)>, Requires<[FeatureHighWord]>; def : Pat<(z_ssub GR32:$src1, simm32n:$src2), (AFIMux GR32:$src1, simm32n:$src2)>, Requires<[FeatureHighWord]>; def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), (AHI GR32:$src1, imm32sx16n:$src2)>; def : Pat<(z_ssub GR32:$src1, simm32n:$src2), (AFI GR32:$src1, simm32n:$src2)>; def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2), (AGHI GR64:$src1, imm64sx16n:$src2)>; def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2), (AGFI GR64:$src1, imm64sx32n:$src2)>; } // And vice versa in one special case, where we need to load a // constant into a register in any case, but the negated constant // requires fewer instructions to load. def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2), (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>; def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2), (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>; // Subtraction producing a carry. let Defs = [CC], CCValues = 0x7, IsLogical = 1 in { // Subtraction of a register. defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>; def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>; defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>; // Subtraction from a high register. def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>, Requires<[FeatureHighWord]>; def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>, Requires<[FeatureHighWord]>; // Subtraction of unsigned 32-bit immediates. def SLFI : BinaryRIL<"slfi", 0xC25, z_usub, GR32, uimm32>; def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>; // Subtraction of memory. defm SL : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>; def SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>; defm SLG : BinaryRXYAndPseudo<"slg", 0xE30B, z_usub, GR64, load, 8>; } defm : ZXB; // Subtracting an immediate is the same as adding the negated immediate. let AddedComplexity = 1 in { def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2), (ALHSIK GR32:$src1, imm32sx16n:$src2)>, Requires<[FeatureDistinctOps]>; def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2), (ALGHSIK GR64:$src1, imm64sx16n:$src2)>, Requires<[FeatureDistinctOps]>; } // And vice versa in one special case (but we prefer addition). def : Pat<(add GR64:$src1, imm64zx32n:$src2), (SLGFI GR64:$src1, imm64zx32n:$src2)>; // Subtraction producing and using a carry. let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in { // Subtraction of a register. def SLBR : BinaryRRE<"slbr", 0xB999, z_subcarry, GR32, GR32>; def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>; // Subtraction of memory. def SLB : BinaryRXY<"slb", 0xE399, z_subcarry, GR32, load, 4>; def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>; } //===----------------------------------------------------------------------===// // AND //===----------------------------------------------------------------------===// let Defs = [CC] in { // ANDs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>; defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>; } let isConvertibleToThreeAddress = 1 in { // ANDs of a 16-bit immediate, leaving other bits unaffected. // The CC result only reflects the 16-bit field, not the full register. // // NIxMux expands to NI[LH]x, depending on the choice of register. def NILMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def NIHMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>; def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>; def NILL64 : BinaryAliasRI; def NILH64 : BinaryAliasRI; def NIHL64 : BinaryAliasRI; def NIHH64 : BinaryAliasRI; // ANDs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { // Expands to NILF or NIHF, depending on the choice of register. def NIFMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>; } def NILF64 : BinaryAliasRIL; def NIHF64 : BinaryAliasRIL; } // ANDs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm N : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>; defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>; } // AND to memory defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>; // Block AND. let mayLoad = 1, mayStore = 1 in defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // OR //===----------------------------------------------------------------------===// let Defs = [CC] in { // ORs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>; defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>; } // ORs of a 16-bit immediate, leaving other bits unaffected. // The CC result only reflects the 16-bit field, not the full register. // // OIxMux expands to OI[LH]x, depending on the choice of register. def OILMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def OIHMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>; def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>; def OILL64 : BinaryAliasRI; def OILH64 : BinaryAliasRI; def OIHL64 : BinaryAliasRI; def OIHH64 : BinaryAliasRI; // ORs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { // Expands to OILF or OIHF, depending on the choice of register. def OIFMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>; } def OILF64 : BinaryAliasRIL; def OIHF64 : BinaryAliasRIL; // ORs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm O : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>; defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>; } // OR to memory defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>; // Block OR. let mayLoad = 1, mayStore = 1 in defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // XOR //===----------------------------------------------------------------------===// let Defs = [CC] in { // XORs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>; defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>; } // XORs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { // Expands to XILF or XIHF, depending on the choice of register. def XIFMux : BinaryRIPseudo, Requires<[FeatureHighWord]>; def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>; } def XILF64 : BinaryAliasRIL; def XIHF64 : BinaryAliasRIL; // XORs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm X : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>; defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>; } // XOR to memory defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>; // Block XOR. let mayLoad = 1, mayStore = 1 in defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // Combined logical operations //===----------------------------------------------------------------------===// let Predicates = [FeatureMiscellaneousExtensions3], Defs = [CC] in { // AND with complement. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>; def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>; } // OR with complement. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>; def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>; } // NAND. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>; def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>; } // NOR. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>; def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>; } // NXOR. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>; def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>; } } //===----------------------------------------------------------------------===// // Multiplication //===----------------------------------------------------------------------===// // Multiplication of a register, setting the condition code. We prefer these // over MS(G)R if available, even though we cannot use the condition code, // since they are three-operand instructions. let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC], isCommutable = 1 in { def MSRKC : BinaryRRFa<"msrkc", 0xB9FD, mul, GR32, GR32, GR32>; def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>; } // Multiplication of a register. let isCommutable = 1 in { def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>; def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>; } def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>; defm : SXB; // Multiplication of a signed 16-bit immediate. def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>; def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; // Multiplication of a signed 32-bit immediate. def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>; def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; // Multiplication of memory. defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; def MGH : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>, Requires<[FeatureMiscellaneousExtensions2]>; def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>; // Multiplication of memory, setting the condition code. let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in { def MSC : BinaryRXY<"msc", 0xE353, null_frag, GR32, load, 4>; def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>; } // Multiplication of a register, producing two results. def MR : BinaryRR <"mr", 0x1C, null_frag, GR128, GR32>; def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>, Requires<[FeatureMiscellaneousExtensions2]>; def MLR : BinaryRRE<"mlr", 0xB996, null_frag, GR128, GR32>; def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>; def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2), (MGRK GR64:$src1, GR64:$src2)>; def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2), (MLGR (AEXT128 GR64:$src1), GR64:$src2)>; // Multiplication of memory, producing two results. def M : BinaryRX <"m", 0x5C, null_frag, GR128, load, 4>; def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>; def MG : BinaryRXY<"mg", 0xE384, null_frag, GR128, load, 8>, Requires<[FeatureMiscellaneousExtensions2]>; def ML : BinaryRXY<"ml", 0xE396, null_frag, GR128, load, 4>; def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>; def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; //===----------------------------------------------------------------------===// // Division and remainder //===----------------------------------------------------------------------===// let hasSideEffects = 1 in { // Do not speculatively execute. // Division and remainder, from registers. def DR : BinaryRR <"dr", 0x1D, null_frag, GR128, GR32>; def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>; def DSGR : BinaryRRE<"dsgr", 0xB90D, null_frag, GR128, GR64>; def DLR : BinaryRRE<"dlr", 0xB997, null_frag, GR128, GR32>; def DLGR : BinaryRRE<"dlgr", 0xB987, null_frag, GR128, GR64>; // Division and remainder, from memory. def D : BinaryRX <"d", 0x5D, null_frag, GR128, load, 4>; def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>; def DSG : BinaryRXY<"dsg", 0xE30D, null_frag, GR128, load, 8>; def DL : BinaryRXY<"dl", 0xE397, null_frag, GR128, load, 4>; def DLG : BinaryRXY<"dlg", 0xE387, null_frag, GR128, load, 8>; } def : Pat<(z_sdivrem GR64:$src1, GR32:$src2), (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>; def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))), (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; def : Pat<(z_sdivrem GR64:$src1, GR64:$src2), (DSGR (AEXT128 GR64:$src1), GR64:$src2)>; def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; def : Pat<(z_udivrem GR32:$src1, GR32:$src2), (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, subreg_l32)), GR32:$src2)>; def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))), (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, subreg_l32)), bdxaddr20only:$src2)>; def : Pat<(z_udivrem GR64:$src1, GR64:$src2), (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>; def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>; //===----------------------------------------------------------------------===// // Shifts //===----------------------------------------------------------------------===// // Logical shift left. defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop, GR32>; def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop, GR64>; def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>; // Arithmetic shift left. let Defs = [CC] in { defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>; def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>; def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>; } // Logical shift right. defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop, GR32>; def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop, GR64>; def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>; // Arithmetic shift right. let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop, GR32>; def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop, GR64>; def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>; } // Rotate left. def RLL : BinaryRSY<"rll", 0xEB1D, shiftop, GR32>; def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop, GR64>; // Rotate second operand left and inserted selected bits into first operand. // These can act like 32-bit operands provided that the constant start and // end bits (operands 2 and 3) are in the range [32, 64). let Defs = [CC] in { let isCodeGenOnly = 1 in def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; let CCValues = 0xE, CompareZeroCCMask = 0xE in def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; } // On zEC12 we have a variant of RISBG that does not set CC. let Predicates = [FeatureMiscellaneousExtensions] in def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>; // Forms of RISBG that only affect one word of the destination register. // They do not set CC. let Predicates = [FeatureHighWord] in { def RISBMux : RotateSelectRIEfPseudo; def RISBLL : RotateSelectAliasRIEf; def RISBLH : RotateSelectAliasRIEf; def RISBHL : RotateSelectAliasRIEf; def RISBHH : RotateSelectAliasRIEf; def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>; def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>; } // Rotate second operand left and perform a logical operation with selected // bits of the first operand. The CC result only describes the selected bits, // so isn't useful for a full comparison against zero. let Defs = [CC] in { def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; } //===----------------------------------------------------------------------===// // Comparison //===----------------------------------------------------------------------===// // Signed comparisons. We put these before the unsigned comparisons because // some of the signed forms have COMPARE AND BRANCH equivalents whereas none // of the unsigned forms do. let Defs = [CC], CCValues = 0xE in { // Comparison with a register. def CR : CompareRR <"cr", 0x19, z_scmp, GR32, GR32>; def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>; def CGR : CompareRRE<"cgr", 0xB920, z_scmp, GR64, GR64>; // Comparison with a high register. def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>, Requires<[FeatureHighWord]>; def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>, Requires<[FeatureHighWord]>; // Comparison with a signed 16-bit immediate. CHIMux expands to CHI or CIH, // depending on the choice of register. def CHIMux : CompareRIPseudo, Requires<[FeatureHighWord]>; def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>; def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH, // depending on the choice of register. def CFIMux : CompareRIPseudo, Requires<[FeatureHighWord]>; def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>; def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>, Requires<[FeatureHighWord]>; def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; // Comparison with memory. defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; def CMux : CompareRXYPseudo, Requires<[FeatureHighWord]>; defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>; def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>, Requires<[FeatureHighWord]>; def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>; def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>; def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>; def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>; // Comparison between memory and a signed 16-bit immediate. def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>; def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; } defm : SXB; // Unsigned comparisons. let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { // Comparison with a register. def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>; def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>; def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>; // Comparison with a high register. def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>, Requires<[FeatureHighWord]>; def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>, Requires<[FeatureHighWord]>; // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI // or CLIH, depending on the choice of register. def CLFIMux : CompareRIPseudo, Requires<[FeatureHighWord]>; def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>; def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>, Requires<[FeatureHighWord]>; def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; // Comparison with memory. def CLMux : CompareRXYPseudo, Requires<[FeatureHighWord]>; defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>, Requires<[FeatureHighWord]>; def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>; def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32, aligned_azextloadi16>; def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32, aligned_load>; def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, aligned_azextloadi16>; def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, aligned_azextloadi32>; def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64, aligned_load>; // Comparison between memory and an unsigned 8-bit immediate. defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; // Comparison between memory and an unsigned 16-bit immediate. def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; } defm : ZXB; // Memory-to-memory comparison. let mayLoad = 1, Defs = [CC] in { defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>; def CLCL : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>; def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>; def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>; } // String comparison. let mayLoad = 1, Defs = [CC] in defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; // Test under mask. let Defs = [CC] in { // TMxMux expands to TM[LH]x, depending on the choice of register. def TMLMux : CompareRIPseudo, Requires<[FeatureHighWord]>; def TMHMux : CompareRIPseudo, Requires<[FeatureHighWord]>; def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>; def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>; def TMLL64 : CompareAliasRI; def TMLH64 : CompareAliasRI; def TMHL64 : CompareAliasRI; def TMHH64 : CompareAliasRI; defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; } def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>; def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>; // Compare logical characters under mask -- not (yet) used for codegen. let Defs = [CC] in { defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>; def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>; } //===----------------------------------------------------------------------===// // Prefetch and execution hint //===----------------------------------------------------------------------===// let mayLoad = 1, mayStore = 1 in { def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; } let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in { // Branch Prediction Preload def BPP : BranchPreloadSMI<"bpp", 0xC7>; def BPRP : BranchPreloadMII<"bprp", 0xC5>; // Next Instruction Access Intent def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>; } //===----------------------------------------------------------------------===// // Atomic operations //===----------------------------------------------------------------------===// // A serialization instruction that acts as a barrier for all memory // accesses, which expands to "bcr 14, 0". let hasSideEffects = 1 in def Serialize : Alias<2, (outs), (ins), []>; // A pseudo instruction that serves as a compiler barrier. let hasSideEffects = 1, hasNoSchedulingInfo = 1 in def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>; let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>; def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>; def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>; def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>; def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>; def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>; def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>; def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>; def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>; def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>; } def ATOMIC_SWAPW : AtomicLoadWBinaryReg; def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32; def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm; let Predicates = [FeatureNoInterlockedAccess1] in { def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32; def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32; def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64; def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64; } def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg; def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64; def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm; let Predicates = [FeatureNoInterlockedAccess1] in { def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64; } def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm; let Predicates = [FeatureNoInterlockedAccess1] in { def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64; } def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm; let Predicates = [FeatureNoInterlockedAccess1] in { def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32; def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64; def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64; } def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg; def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm; def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32; def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64; def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64; def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg; def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg; def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg; def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg; def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64; def ATOMIC_CMP_SWAPW : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize), [(set GR32:$dst, (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize))]> { let Defs = [CC]; let mayLoad = 1; let mayStore = 1; let usesCustomInserter = 1; let hasNoSchedulingInfo = 1; } // Test and set. let mayLoad = 1, Defs = [CC] in def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>; // Compare and swap. let Defs = [CC] in { defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>; def CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>; } // Compare double and swap. let Defs = [CC] in { defm CDS : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>; def CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>; } // Compare and swap and store. let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>; // Perform locked operation. let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>; // Load/store pair from/to quadword. def LPQ : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>; def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>; // Load pair disjoint. let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { def LPD : BinarySSF<"lpd", 0xC84, GR128>; def LPDG : BinarySSF<"lpdg", 0xC85, GR128>; } //===----------------------------------------------------------------------===// // Translate and convert //===----------------------------------------------------------------------===// let mayLoad = 1, mayStore = 1 in def TR : SideEffectBinarySSa<"tr", 0xDC>; let mayLoad = 1, Defs = [CC, R0L, R1D] in { def TRT : SideEffectBinarySSa<"trt", 0xDD>; def TRTR : SideEffectBinarySSa<"trtr", 0xD0>; } let mayLoad = 1, mayStore = 1, Uses = [R0L] in def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>; let mayLoad = 1, Uses = [R1D], Defs = [CC] in { defm TRTE : BinaryMemRRFcOpt<"trte", 0xB9BF, GR128, GR64>; defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>; } let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>; defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>; defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>; defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>; } let mayLoad = 1, mayStore = 1, Defs = [CC] in { defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>; defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>; defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>; defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>; def CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>; def CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>; let isAsmParserOnly = 1 in { defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>; defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>; } } //===----------------------------------------------------------------------===// // Message-security assist //===----------------------------------------------------------------------===// let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { def KM : SideEffectBinaryMemMemRRE<"km", 0xB92E, GR128, GR128>; def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>; def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>; def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>; def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>; let Predicates = [FeatureMessageSecurityAssist4] in { def KMF : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>; def KMO : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>; def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D, GR128, GR128, GR128>; def PCC : SideEffectInherentRRE<"pcc", 0xB92C>; } let Predicates = [FeatureMessageSecurityAssist5] in def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>; let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>; let Predicates = [FeatureMessageSecurityAssist8] in def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929, GR128, GR128, GR128>; let Predicates = [FeatureMessageSecurityAssist9] in def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>; } //===----------------------------------------------------------------------===// // Guarded storage //===----------------------------------------------------------------------===// // These instructions use and/or modify the guarded storage control // registers, which we do not otherwise model, so they should have // hasSideEffects. let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in { def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>; def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>; let mayLoad = 1 in def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>; let mayStore = 1 in def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>; } //===----------------------------------------------------------------------===// // Decimal arithmetic //===----------------------------------------------------------------------===// defm CVB : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>; def CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>; defm CVD : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>; def CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>; let mayLoad = 1, mayStore = 1 in { def MVN : SideEffectBinarySSa<"mvn", 0xD1>; def MVZ : SideEffectBinarySSa<"mvz", 0xD3>; def MVO : SideEffectBinarySSb<"mvo", 0xF1>; def PACK : SideEffectBinarySSb<"pack", 0xF2>; def PKA : SideEffectBinarySSf<"pka", 0xE9>; def PKU : SideEffectBinarySSf<"pku", 0xE1>; def UNPK : SideEffectBinarySSb<"unpk", 0xF3>; let Defs = [CC] in { def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>; def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>; } } let mayLoad = 1, mayStore = 1 in { let Defs = [CC] in { def AP : SideEffectBinarySSb<"ap", 0xFA>; def SP : SideEffectBinarySSb<"sp", 0xFB>; def ZAP : SideEffectBinarySSb<"zap", 0xF8>; def SRP : SideEffectTernarySSc<"srp", 0xF0>; } def MP : SideEffectBinarySSb<"mp", 0xFC>; def DP : SideEffectBinarySSb<"dp", 0xFD>; let Defs = [CC] in { def ED : SideEffectBinarySSa<"ed", 0xDE>; def EDMK : SideEffectBinarySSa<"edmk", 0xDF>; } } let Defs = [CC] in { def CP : CompareSSb<"cp", 0xF9>; def TP : TestRSL<"tp", 0xEBC0>; } //===----------------------------------------------------------------------===// // Access registers //===----------------------------------------------------------------------===// // Read a 32-bit access register into a GR32. As with all GR32 operations, // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful // when a 64-bit address is stored in a pair of access registers. def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>; // Set access register. def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>; // Copy access register. def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>; // Load address extended. defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>; // Load access multiple. defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>; // Store access multiple. defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>; //===----------------------------------------------------------------------===// // Program mask and addressing mode //===----------------------------------------------------------------------===// // Extract CC and program mask into a register. CC ends up in bits 29 and 28. let Uses = [CC] in def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>; // Set CC and program mask from a register. let hasSideEffects = 1, Defs = [CC] in def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>; // Branch and link - like BAS, but also extracts CC and program mask. let isCall = 1, Uses = [CC], Defs = [CC] in { def BAL : CallRX<"bal", 0x45>; def BALR : CallRR<"balr", 0x05>; } // Test addressing mode. let Defs = [CC] in def TAM : SideEffectInherentE<"tam", 0x010B>; // Set addressing mode. let hasSideEffects = 1 in { def SAM24 : SideEffectInherentE<"sam24", 0x010C>; def SAM31 : SideEffectInherentE<"sam31", 0x010D>; def SAM64 : SideEffectInherentE<"sam64", 0x010E>; } // Branch and set mode. Not really a call, but also sets an output register. let isBranch = 1, isTerminator = 1, isBarrier = 1 in def BSM : CallRR<"bsm", 0x0B>; // Branch and save and set mode. let isCall = 1, Defs = [CC] in def BASSM : CallRR<"bassm", 0x0C>; //===----------------------------------------------------------------------===// // Transactional execution //===----------------------------------------------------------------------===// let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in { // Transaction Begin let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in { def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>; let hasNoSchedulingInfo = 1 in def TBEGIN_nofloat : TestBinarySILPseudo; def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561, int_s390_tbeginc, imm32zx16>; } // Transaction End let Defs = [CC] in def TEND : TestInherentS<"tend", 0xB2F8, z_tend>; // Transaction Abort let isTerminator = 1, isBarrier = 1, mayStore = 1, hasSideEffects = 1 in def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>; // Nontransactional Store def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>; // Extract Transaction Nesting Depth def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>; } //===----------------------------------------------------------------------===// // Processor assist //===----------------------------------------------------------------------===// let Predicates = [FeatureProcessorAssist] in { let hasSideEffects = 1 in def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>; def : Pat<(int_s390_ppa_txassist GR32:$src), (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), zero_reg, 1)>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions. //===----------------------------------------------------------------------===// // Find leftmost one, AKA count leading zeros. The instruction actually // returns a pair of GR64s, the first giving the number of leading zeros // and the second giving a copy of the source with the leftmost one bit // cleared. We only use the first result here. let Defs = [CC] in def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>; def : Pat<(i64 (ctlz GR64:$src)), (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>; // Population count. Counts bits set per byte or doubleword. let Predicates = [FeatureMiscellaneousExtensions3] in { let Defs = [CC] in def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>; def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>; } let Predicates = [FeaturePopulationCount], Defs = [CC] in def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>; // Search a block of memory for a character. let mayLoad = 1, Defs = [CC] in defm SRST : StringRRE<"srst", 0xB25E, z_search_string>; let mayLoad = 1, Defs = [CC], Uses = [R0L] in def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>; // Compare until substring equal. let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>; // Compare and form codeword. let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>; // Update tree. let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D], Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in def UPT : SideEffectInherentE<"upt", 0x0102>; // Checksum. let mayLoad = 1, Defs = [CC] in def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>; // Compression call. let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>; // Sort lists. let Predicates = [FeatureEnhancedSort], mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>; // Deflate conversion call. let Predicates = [FeatureDeflateConversion], mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939, GR128, GR128, GR64>; // Execute. let hasSideEffects = 1 in { def EX : SideEffectBinaryRX<"ex", 0x44, GR64>; def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>; } //===----------------------------------------------------------------------===// // .insn directive instructions //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, hasSideEffects = 1 in { def InsnE : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>; def InsnRI : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1, imm32sx16:$I2), ".insn ri,$enc,$R1,$I2", []>; def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R3, brtarget16:$I2), ".insn rie,$enc,$R1,$R3,$I2", []>; def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, brtarget32:$I2), ".insn ril,$enc,$R1,$I2", []>; def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, uimm32:$I2), ".insn rilu,$enc,$R1,$I2", []>; def InsnRIS : DirectiveInsnRIS<(outs), (ins imm64zx48:$enc, AnyReg:$R1, imm32sx8:$I2, imm32zx4:$M3, bdaddr12only:$BD4), ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>; def InsnRR : DirectiveInsnRR<(outs), (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2), ".insn rr,$enc,$R1,$R2", []>; def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2), ".insn rre,$enc,$R1,$R2", []>; def InsnRRF : DirectiveInsnRRF<(outs), (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2, AnyReg:$R3, imm32zx4:$M4), ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>; def InsnRRS : DirectiveInsnRRS<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R2, imm32zx4:$M3, bdaddr12only:$BD4), ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>; def InsnRS : DirectiveInsnRS<(outs), (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R3, bdaddr12only:$BD2), ".insn rs,$enc,$R1,$R3,$BD2", []>; def InsnRSE : DirectiveInsnRSE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R3, bdaddr12only:$BD2), ".insn rse,$enc,$R1,$R3,$BD2", []>; def InsnRSI : DirectiveInsnRSI<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R3, brtarget16:$RI2), ".insn rsi,$enc,$R1,$R3,$RI2", []>; def InsnRSY : DirectiveInsnRSY<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R3, bdaddr20only:$BD2), ".insn rsy,$enc,$R1,$R3,$BD2", []>; def InsnRX : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1, bdxaddr12only:$XBD2), ".insn rx,$enc,$R1,$XBD2", []>; def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, bdxaddr12only:$XBD2), ".insn rxe,$enc,$R1,$XBD2", []>; def InsnRXF : DirectiveInsnRXF<(outs), (ins imm64zx48:$enc, AnyReg:$R1, AnyReg:$R3, bdxaddr12only:$XBD2), ".insn rxf,$enc,$R1,$R3,$XBD2", []>; def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1, bdxaddr20only:$XBD2), ".insn rxy,$enc,$R1,$XBD2", []>; def InsnS : DirectiveInsnS<(outs), (ins imm64zx32:$enc, bdaddr12only:$BD2), ".insn s,$enc,$BD2", []>; def InsnSI : DirectiveInsnSI<(outs), (ins imm64zx32:$enc, bdaddr12only:$BD1, imm32sx8:$I2), ".insn si,$enc,$BD1,$I2", []>; def InsnSIY : DirectiveInsnSIY<(outs), (ins imm64zx48:$enc, bdaddr20only:$BD1, imm32zx8:$I2), ".insn siy,$enc,$BD1,$I2", []>; def InsnSIL : DirectiveInsnSIL<(outs), (ins imm64zx48:$enc, bdaddr12only:$BD1, imm32zx16:$I2), ".insn sil,$enc,$BD1,$I2", []>; def InsnSS : DirectiveInsnSS<(outs), (ins imm64zx48:$enc, bdraddr12only:$RBD1, bdaddr12only:$BD2, AnyReg:$R3), ".insn ss,$enc,$RBD1,$BD2,$R3", []>; def InsnSSE : DirectiveInsnSSE<(outs), (ins imm64zx48:$enc, bdaddr12only:$BD1,bdaddr12only:$BD2), ".insn sse,$enc,$BD1,$BD2", []>; def InsnSSF : DirectiveInsnSSF<(outs), (ins imm64zx48:$enc, bdaddr12only:$BD1, bdaddr12only:$BD2, AnyReg:$R3), ".insn ssf,$enc,$BD1,$BD2,$R3", []>; } //===----------------------------------------------------------------------===// // Peepholes. //===----------------------------------------------------------------------===// // Avoid generating 2 XOR instructions. (xor (and x, y), y) is // equivalent to (and (xor x, -1), y) def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y), (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>; // Shift/rotate instructions only use the last 6 bits of the second operand // register, so we can safely use NILL (16 fewer bits than NILF) to only AND the // last 16 bits. // Complexity is added so that we match this before we match NILF on the AND // operation alone. let AddedComplexity = 4 in { def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; } // Substitute (x*64-s) with (-s), since shift/rotate instructions only // use the last 6 bits of the second operand register (making it modulo 64). let AddedComplexity = 4 in { def : Pat<(shl GR64:$val, (sub imm32mod64, GR32:$shift)), (SLLG GR64:$val, (LCR GR32:$shift), 0)>; def : Pat<(sra GR64:$val, (sub imm32mod64, GR32:$shift)), (SRAG GR64:$val, (LCR GR32:$shift), 0)>; def : Pat<(srl GR64:$val, (sub imm32mod64, GR32:$shift)), (SRLG GR64:$val, (LCR GR32:$shift), 0)>; def : Pat<(rotl GR64:$val, (sub imm32mod64, GR32:$shift)), (RLLG GR64:$val, (LCR GR32:$shift), 0)>; } // Peepholes for turning scalar operations into block operations. defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore;