//===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file implements the lowering of LLVM calls to machine code calls for /// GlobalISel. // //===----------------------------------------------------------------------===// #include "ARMCallLowering.h" #include "ARMBaseInstrInfo.h" #include "ARMISelLowering.h" #include "ARMSubtarget.h" #include "Utils/ARMBaseInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/LowLevelTypeImpl.h" #include "llvm/Support/MachineValueType.h" #include #include #include #include using namespace llvm; ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI) : CallLowering(&TLI) {} static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI, Type *T) { if (T->isArrayTy()) return isSupportedType(DL, TLI, T->getArrayElementType()); if (T->isStructTy()) { // For now we only allow homogeneous structs that we can manipulate with // G_MERGE_VALUES and G_UNMERGE_VALUES auto StructT = cast(T); for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i) if (StructT->getElementType(i) != StructT->getElementType(0)) return false; return isSupportedType(DL, TLI, StructT->getElementType(0)); } EVT VT = TLI.getValueType(DL, T, true); if (!VT.isSimple() || VT.isVector() || !(VT.isInteger() || VT.isFloatingPoint())) return false; unsigned VTSize = VT.getSimpleVT().getSizeInBits(); if (VTSize == 64) // FIXME: Support i64 too return VT.isFloatingPoint(); return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32; } namespace { /// Helper class for values going out through an ABI boundary (used for handling /// function return values and call parameters). struct OutgoingValueHandler : public CallLowering::ValueHandler { OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder &MIB, CCAssignFn *AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} bool isIncomingArgumentHandler() const override { return false; } Register getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); LLT p0 = LLT::pointer(0, 32); LLT s32 = LLT::scalar(32); Register SPReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildCopy(SPReg, Register(ARM::SP)); Register OffsetReg = MRI.createGenericVirtualRegister(s32); MIRBuilder.buildConstant(OffsetReg, Offset); Register AddrReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildPtrAdd(AddrReg, SPReg, OffsetReg); MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); return AddrReg; } void assignValueToReg(Register ValVReg, Register PhysReg, CCValAssign &VA) override { assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size"); assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size"); Register ExtReg = extendRegister(ValVReg, VA); MIRBuilder.buildCopy(PhysReg, ExtReg); MIB.addUse(PhysReg, RegState::Implicit); } void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); Register ExtReg = extendRegister(ValVReg, VA); auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), /* Alignment */ 1); MIRBuilder.buildStore(ExtReg, Addr, *MMO); } unsigned assignCustomValue(const CallLowering::ArgInfo &Arg, ArrayRef VAs) override { assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); CCValAssign VA = VAs[0]; assert(VA.needsCustom() && "Value doesn't need custom handling"); assert(VA.getValVT() == MVT::f64 && "Unsupported type"); CCValAssign NextVA = VAs[1]; assert(NextVA.needsCustom() && "Value doesn't need custom handling"); assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); assert(VA.getValNo() == NextVA.getValNo() && "Values belong to different arguments"); assert(VA.isRegLoc() && "Value should be in reg"); assert(NextVA.isRegLoc() && "Value should be in reg"); Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), MRI.createGenericVirtualRegister(LLT::scalar(32))}; MIRBuilder.buildUnmerge(NewRegs, Arg.Regs[0]); bool IsLittle = MIRBuilder.getMF().getSubtarget().isLittle(); if (!IsLittle) std::swap(NewRegs[0], NewRegs[1]); assignValueToReg(NewRegs[0], VA.getLocReg(), VA); assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); return 1; } bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State) override { if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State)) return true; StackSize = std::max(StackSize, static_cast(State.getNextStackOffset())); return false; } MachineInstrBuilder &MIB; uint64_t StackSize = 0; }; } // end anonymous namespace void ARMCallLowering::splitToValueTypes(const ArgInfo &OrigArg, SmallVectorImpl &SplitArgs, MachineFunction &MF) const { const ARMTargetLowering &TLI = *getTLI(); LLVMContext &Ctx = OrigArg.Ty->getContext(); const DataLayout &DL = MF.getDataLayout(); const Function &F = MF.getFunction(); SmallVector SplitVTs; ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, nullptr, nullptr, 0); assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); if (SplitVTs.size() == 1) { // Even if there is no splitting to do, we still want to replace the // original type (e.g. pointer type -> integer). auto Flags = OrigArg.Flags[0]; Flags.setOrigAlign(Align(DL.getABITypeAlignment(OrigArg.Ty))); SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), Flags, OrigArg.IsFixed); return; } // Create one ArgInfo for each virtual register. for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { EVT SplitVT = SplitVTs[i]; Type *SplitTy = SplitVT.getTypeForEVT(Ctx); auto Flags = OrigArg.Flags[0]; Flags.setOrigAlign(Align(DL.getABITypeAlignment(SplitTy))); bool NeedsConsecutiveRegisters = TLI.functionArgumentNeedsConsecutiveRegisters( SplitTy, F.getCallingConv(), F.isVarArg()); if (NeedsConsecutiveRegisters) { Flags.setInConsecutiveRegs(); if (i == e - 1) Flags.setInConsecutiveRegsLast(); } // FIXME: We also want to split SplitTy further. Register PartReg = OrigArg.Regs[i]; SplitArgs.emplace_back(PartReg, SplitTy, Flags, OrigArg.IsFixed); } } /// Lower the return value for the already existing \p Ret. This assumes that /// \p MIRBuilder's insertion point is correct. bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder, const Value *Val, ArrayRef VRegs, MachineInstrBuilder &Ret) const { if (!Val) // Nothing to do here. return true; auto &MF = MIRBuilder.getMF(); const auto &F = MF.getFunction(); auto DL = MF.getDataLayout(); auto &TLI = *getTLI(); if (!isSupportedType(DL, TLI, Val->getType())) return false; ArgInfo OrigRetInfo(VRegs, Val->getType()); setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F); SmallVector SplitRetInfos; splitToValueTypes(OrigRetInfo, SplitRetInfos, MF); CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg()); OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn); return handleAssignments(MIRBuilder, SplitRetInfos, RetHandler); } bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, ArrayRef VRegs) const { assert(!Val == VRegs.empty() && "Return value without a vreg"); auto const &ST = MIRBuilder.getMF().getSubtarget(); unsigned Opcode = ST.getReturnOpcode(); auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL)); if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret)) return false; MIRBuilder.insertInstr(Ret); return true; } namespace { /// Helper class for values coming in through an ABI boundary (used for handling /// formal arguments and call return values). struct IncomingValueHandler : public CallLowering::ValueHandler { IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn) {} bool isIncomingArgumentHandler() const override { return true; } Register getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); auto &MFI = MIRBuilder.getMF().getFrameInfo(); int FI = MFI.CreateFixedObject(Size, Offset, true); MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(MPO.getAddrSpace(), 32)); MIRBuilder.buildFrameIndex(AddrReg, FI); return AddrReg; } void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); if (VA.getLocInfo() == CCValAssign::SExt || VA.getLocInfo() == CCValAssign::ZExt) { // If the value is zero- or sign-extended, its size becomes 4 bytes, so // that's what we should load. Size = 4; assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm"); auto LoadVReg = MRI.createGenericVirtualRegister(LLT::scalar(32)); buildLoad(LoadVReg, Addr, Size, /* Alignment */ 1, MPO); MIRBuilder.buildTrunc(ValVReg, LoadVReg); } else { // If the value is not extended, a simple load will suffice. buildLoad(ValVReg, Addr, Size, /* Alignment */ 1, MPO); } } void buildLoad(Register Val, Register Addr, uint64_t Size, unsigned Alignment, MachinePointerInfo &MPO) { auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOLoad, Size, Alignment); MIRBuilder.buildLoad(Val, Addr, *MMO); } void assignValueToReg(Register ValVReg, Register PhysReg, CCValAssign &VA) override { assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); auto ValSize = VA.getValVT().getSizeInBits(); auto LocSize = VA.getLocVT().getSizeInBits(); assert(ValSize <= 64 && "Unsupported value size"); assert(LocSize <= 64 && "Unsupported location size"); markPhysRegUsed(PhysReg); if (ValSize == LocSize) { MIRBuilder.buildCopy(ValVReg, PhysReg); } else { assert(ValSize < LocSize && "Extensions not supported"); // We cannot create a truncating copy, nor a trunc of a physical register. // Therefore, we need to copy the content of the physical register into a // virtual one and then truncate that. auto PhysRegToVReg = MRI.createGenericVirtualRegister(LLT::scalar(LocSize)); MIRBuilder.buildCopy(PhysRegToVReg, PhysReg); MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg); } } unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg, ArrayRef VAs) override { assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); CCValAssign VA = VAs[0]; assert(VA.needsCustom() && "Value doesn't need custom handling"); assert(VA.getValVT() == MVT::f64 && "Unsupported type"); CCValAssign NextVA = VAs[1]; assert(NextVA.needsCustom() && "Value doesn't need custom handling"); assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); assert(VA.getValNo() == NextVA.getValNo() && "Values belong to different arguments"); assert(VA.isRegLoc() && "Value should be in reg"); assert(NextVA.isRegLoc() && "Value should be in reg"); Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), MRI.createGenericVirtualRegister(LLT::scalar(32))}; assignValueToReg(NewRegs[0], VA.getLocReg(), VA); assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); bool IsLittle = MIRBuilder.getMF().getSubtarget().isLittle(); if (!IsLittle) std::swap(NewRegs[0], NewRegs[1]); MIRBuilder.buildMerge(Arg.Regs[0], NewRegs); return 1; } /// Marking a physical register as used is different between formal /// parameters, where it's a basic block live-in, and call returns, where it's /// an implicit-def of the call instruction. virtual void markPhysRegUsed(unsigned PhysReg) = 0; }; struct FormalArgHandler : public IncomingValueHandler { FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn AssignFn) : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} void markPhysRegUsed(unsigned PhysReg) override { MIRBuilder.getMRI()->addLiveIn(PhysReg); MIRBuilder.getMBB().addLiveIn(PhysReg); } }; } // end anonymous namespace bool ARMCallLowering::lowerFormalArguments( MachineIRBuilder &MIRBuilder, const Function &F, ArrayRef> VRegs) const { auto &TLI = *getTLI(); auto Subtarget = TLI.getSubtarget(); if (Subtarget->isThumb1Only()) return false; // Quick exit if there aren't any args if (F.arg_empty()) return true; if (F.isVarArg()) return false; auto &MF = MIRBuilder.getMF(); auto &MBB = MIRBuilder.getMBB(); auto DL = MF.getDataLayout(); for (auto &Arg : F.args()) { if (!isSupportedType(DL, TLI, Arg.getType())) return false; if (Arg.hasByValOrInAllocaAttr()) return false; } CCAssignFn *AssignFn = TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg()); FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(), AssignFn); SmallVector SplitArgInfos; unsigned Idx = 0; for (auto &Arg : F.args()) { ArgInfo OrigArgInfo(VRegs[Idx], Arg.getType()); setArgFlags(OrigArgInfo, Idx + AttributeList::FirstArgIndex, DL, F); splitToValueTypes(OrigArgInfo, SplitArgInfos, MF); Idx++; } if (!MBB.empty()) MIRBuilder.setInstr(*MBB.begin()); if (!handleAssignments(MIRBuilder, SplitArgInfos, ArgHandler)) return false; // Move back to the end of the basic block. MIRBuilder.setMBB(MBB); return true; } namespace { struct CallReturnHandler : public IncomingValueHandler { CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder MIB, CCAssignFn *AssignFn) : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} void markPhysRegUsed(unsigned PhysReg) override { MIB.addDef(PhysReg, RegState::Implicit); } MachineInstrBuilder MIB; }; // FIXME: This should move to the ARMSubtarget when it supports all the opcodes. unsigned getCallOpcode(const ARMSubtarget &STI, bool isDirect) { if (isDirect) return STI.isThumb() ? ARM::tBL : ARM::BL; if (STI.isThumb()) return ARM::tBLXr; if (STI.hasV5TOps()) return ARM::BLX; if (STI.hasV4TOps()) return ARM::BX_CALL; return ARM::BMOVPCRX_CALL; } } // end anonymous namespace bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const { MachineFunction &MF = MIRBuilder.getMF(); const auto &TLI = *getTLI(); const auto &DL = MF.getDataLayout(); const auto &STI = MF.getSubtarget(); const TargetRegisterInfo *TRI = STI.getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); if (STI.genLongCalls()) return false; if (STI.isThumb1Only()) return false; auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN); // Create the call instruction so we can add the implicit uses of arg // registers, but don't insert it yet. bool IsDirect = !Info.Callee.isReg(); auto CallOpcode = getCallOpcode(STI, IsDirect); auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode); bool IsThumb = STI.isThumb(); if (IsThumb) MIB.add(predOps(ARMCC::AL)); MIB.add(Info.Callee); if (!IsDirect) { auto CalleeReg = Info.Callee.getReg(); if (CalleeReg && !Register::isPhysicalRegister(CalleeReg)) { unsigned CalleeIdx = IsThumb ? 2 : 0; MIB->getOperand(CalleeIdx).setReg(constrainOperandRegClass( MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(), *MIB.getInstr(), MIB->getDesc(), Info.Callee, CalleeIdx)); } } MIB.addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv)); bool IsVarArg = false; SmallVector ArgInfos; for (auto Arg : Info.OrigArgs) { if (!isSupportedType(DL, TLI, Arg.Ty)) return false; if (!Arg.IsFixed) IsVarArg = true; if (Arg.Flags[0].isByVal()) return false; splitToValueTypes(Arg, ArgInfos, MF); } auto ArgAssignFn = TLI.CCAssignFnForCall(Info.CallConv, IsVarArg); OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn); if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler)) return false; // Now we can add the actual call instruction to the correct basic block. MIRBuilder.insertInstr(MIB); if (!Info.OrigRet.Ty->isVoidTy()) { if (!isSupportedType(DL, TLI, Info.OrigRet.Ty)) return false; ArgInfos.clear(); splitToValueTypes(Info.OrigRet, ArgInfos, MF); auto RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, IsVarArg); CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn); if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler)) return false; } // We now know the size of the stack - update the ADJCALLSTACKDOWN // accordingly. CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL)); MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP) .addImm(ArgHandler.StackSize) .addImm(0) .add(predOps(ARMCC::AL)); return true; }